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Introduction

One fundamental problem of modern physics is the search for a theory of everything able to 
explain the nature of space-time, what matter is and how matter interacts. There are various 
propositions, as Grand Unified Theory, Quantum Gravity, Supersymmetry, String and Super-
string Theories, and M-Theory. However, none of them is able to consistently explain at the 
present and same time electromagnetism, relativity, gravitation, quantum physics and observed 
elementary particles. 
In this book, it is suggested that Universe could be a massive elastic 3D-lattice, and that fun-
damental building blocks of Ordinary Matter could consist of topological singularities of this lat-
tice, namely diverse dislocation loops and disclination loops. For an isotropic elastic lattice 
obeying Newton’s law, with specific assumptions on its elastic properties, one shows that the 
behaviors of this lattice and of its topological defects display “all” known physics, unifying elec-
tromagnetism, relativity, gravitation and quantum physics, and resolving some longstanding 
questions of modern cosmology. Moreover, studying lattices with axial symmetries, represented 
by “colored” cubic 3D-lattices, one can identify a lattice structure whose topological defect loops 
coincide with the complex zoology of elementary particles, which could open a promising field 
of research.
This book does not present a theory of everything which would be completely elaborated and 
usable, but it would and could be extremely fruitful to give simple explanations to the modern 
physics theories which are very difficult, if not impossible, to deeply understand. It could also 
and above all be useful to define close links and unifying bridges between the diverse theories 
of modern physics.
In a first part of the book, one summarizes autonomously a first book  published in french du1 -
ring year 2013, which lays methodically the foundations of an original approach of the solid lat-
tices deformation using the Euler coordinates, and which introduces in details the concept of 
tensor dislocation charges and tensor disclination charges within a lattice. This new concept 
allows one to quantify the topological singularities which can appear at the microscopic scale of 
a solid lattice. On the basis of this original approach of the solid lattices and their topological 
singularities, one can deduct a set of fundamental and phenomenological equations allowing to 
treat rigorously the macroscopic spatiotemporal evolution of a newtonian solid lattice which de-
forms in the absolute space of an external observer laboratory.
In a second part of the book, one introduces an imaginary lattice, named « cosmic lattice » with 
quite special elastic and structural properties. The Newton equation of this lattice and its topo-
logical singularities present then a set of very surprising properties, which will be progressively 
developed in the course of the chapters. It will appear strong and amazing analogies with all 

 Théorie eulérienne des milieux déformables, charges de dislocation et de désinclinaison dans les so1 -
lides, G. Gremaud, Presses polytechniques et universitaires romandes, Lausanne, Suisse, 2013, 750 
pages (ISBN 978-2-88074-964-4)



introduction �ii

modern physics theories: Maxwell equations, special relativity, newtonian gravitation, general 
relativity, modern cosmology, quantum physics and standard model of elementary particles.

The problem of unified field theories

One fundamental problem of modern physics is the search for a theory of everything able to 
explain the nature of space-time, what matter is and how matter interacts. Since the 19th centu-
ry, physicists have attempted to develop unified field theories, which would consist of a single 
coherent theoretical framework able to account for several fundamental forces of nature. For 
instance:
- Grand Unified Theory merges electromagnetic, weak and strong interaction forces,
- Quantum Gravity, Loop Quantum Gravity and String Theories attempt to describe the quan-
tum properties of gravity, 
- Supersymmetry proposes an extension of the space-time symmetry relating the two classes of 
elementary particles, bosons and fermions,
- String and Superstring Theories are theoretical frameworks incorporating gravity in which 
point-like particles are replaced by one-dimensional strings, whose quantum states describe all 
types of observed elementary particles,
- M-Theory is a unifying theory of five different versions of string theories, with the surprising 
property that extra dimensions are required for its consistency.

However, none of them is able to consistently explain at the present and same time electroma-
gnetism, relativity, gravitation, quantum physics and observed elementary particles. Many phy-
sicists believe now that 11-dimensional M-theory is the theory of everything. However, there is 
no widespread consensus on this issue and, at present, there is no candidate theory able to 
calculate the fine structure constant or the mass of the electron. Particle physicists expect that 
the outcome of the ongoing experiments – search for new particles at the large particle accele-
rators and search for dark matter – are needed to provide further input for a theory of every-
thing.
In this book, it is suggested that Universe could be a massive elastic 3D-lattice, and that fun-
damental building blocks of Ordinary Matter could consist of topological singularities of this lat-
tice, namely diverse dislocation loops and disclination loops. We find, for an isotropic elastic 
lattice obeying Newton’s law, with specific assumptions on its elastic properties, that the beha-
viours of this lattice and of its topological defects display “all” known physics, unifying electro-
magnetism, relativity, gravitation and quantum physics, and resolving some longstanding ques-
tions of modern cosmology. Moreover, studying lattices with axial symmetries, represented by 
“colored” cubic 3D-lattices, one can identify a lattice structure whose topological defect loops 
coincide with the complex zoology of elementary particles, which could open a promising field 
of research.

First part: searching for a new description of the lattice deformation

When one desires to study the solid deformation, one generally uses lagrangian coordinates to 
describe the evolution of the deformations, and diverse differential geometries to describe the 
topological defects contained in the solid.
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The use of lagrangian coordinates presents a number of inherent difficulties. From the mathe-
matical point of view, the tensors describing the continuous solid deformation are always of or-
der higher than one concerning the spatial derivatives of the displacement field components, 
which leads to a very complicated mathematical formalism when the solid presents strong dis-
tortions (deformations and rotations). To these mathematical difficulties are added physical diffi-
culties when one has to introduce some known properties of solids. Indeed, the lagrangian co-
ordinates become practically unusable, for example when one has to describe the temporal 
evolution of the microscopic structure of a solid lattice (phase transitions) and of its structural 
defects (point defects, dislocations, disclinations, boundaries, etc.), or when it is necessary to 
introduce some physical properties of the medium (thermal, electrical, magnetic or chemical 
properties) leading to scalar, vectorial or tensorial fields in the real space.

The use of differential geometries in order to introduce topological defects as dislocations in a 
deformable continuous medium has been initiated by the work of Nye  (1953), who showed for 2

the first time the link between the dislocation density tensor and the lattice curvature. On the 
other hand, Kondo  (1952) and Bilby  (1954) showed independently that the dislocations can be 3 4

identified as a crystalline version of the Cartan’s concept  of torsion of a continuum. This ap5 -
proach was generalized in details by Kröner  (1960). However, the use of differential geome6 -
tries in order to describe the deformable media leads very quickly to difficulties similar to those 
of the lagrangian coordinates system. A first difficulty arises from the complexity of the mathe-
matical formalism which is similar to the formalism of general relativity, what makes very difficult 
to handle and to interpret the obtained general field equations. A second difficulty arises with 
the differential geometries when one has to introduce topological defects other than disloca-
tions. For example, Kröner  (1980) has proposed that the existence of extrinsic point defects 7

could be considered as extra-matter and introduced in the same manner that matter in general 
relativity under the form of Einstein equations, which would lead to a pure riemannian differen-
tial geometry in the absence of dislocations. He has also proposed that the intrinsic point de-
fects (vacancies and interstitials) could be approached as a non-metric part of an affine connec-
tion. Finally, he has also envisaged introducing other topological defects, as disclinations for 
example, by using higher order geometries much more complex, as Finsler or Kawaguchi geo-
metries. In fact, the introduction of differential geometries implies generally a heavy mathemati-
cal artillery (metric tensor and Christoffel symbols) in order to describe the spatiotemporal evo-
lution in infinitesimal local referentials, as shown for example in the mathematical theory of dis-
locations of Zorawski  (1967). 8

 J.F. Nye, Acta Metall.,vol. 1, p.153, 19532

 K. Kondo, RAAG Memoirs of the unifying study of the basic problems in physics and engineering science 3

by means of geometry, volume 1. Gakujutsu Bunken Fukyu- Kay, Tokyo, 1952
 B. A. Bilby , R. Bullough and E. Smith, «Continuous distributions of dislocations: a new application of the 4

methods of non-riemannian geometry», Proc. Roy. Soc. London, Ser. A 231, p. 263–273, 1955
 E. Cartan, C.R. Akad. Sci., 174, p. 593, 1922  &  C.R. Akad. Sci., 174, p.734, 19225

 E. Kröner, «Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen», Arch. Rat. Mech. 6

Anal., 4, p. 273-313, 1960
 E. Kröner, «Continuum theory of defects», in «physics of defects», ed. by R. Balian et al., Les Houches, 7

Session 35, p. 215–315. North Holland, Amsterdam, 1980.
 M. Zorawski, «Théorie mathématique des dislocations», Dunod, Paris, 1967.8
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Eulerian deformation theory of newtonian lattices

In view of the complexity of calculations in the case of lagrangian coordinates as well as in the 
case of differential geometries, it seemed to me that it would be better to develop a much sim-
pler approach of deformable solids, but at least equally rigorous, which has been finally publi-
shed in a first book1 during year 2013: la théorie eulérienne des milieux déformables.
In the first part of the book, one presents a summary of this new and original eulerian approach 
of the deformation of solids through several sections:
- a first section (A) introduces the eulerian deformation theory of newtonian lattices. The defor-
mation of a lattice is characterized by distortions and contortions (chap. 1 to 3). A vectorial re-
presentation of the tensors, presenting undeniable advantages over purely tensorial representa-
tion thanks the possibility to use the powerful formalism of the vectorial analysis, allows to ob-
tain the geometro-compatibility equations of the lattice which insure its solidity, and the geome-
tro-kinetics equations of the lattice, which allow one to describe the deformation kinetics.
One introduces then the physics in this topological context (chap. 4), namely the newtonian dy-
namics and the eulerian thermo-kinetics (based on the first and second principles of thermody-
namics). With all these ingredients, it becomes possible to describe the particular behaviors of a 
solid lattice (chap. 5), as the elasticity, the anelasticity, the plasticity and the self-diffusion. This 
first section ends with the establishment of the complete set of evolution equations of a lattice in 
the Euler coordinate system (chap. 6).
- a second section (B) is dedicated to the applications of the eulerian theory (chap. 7). It pre-
sents very succinctly some examples of phenomenologies of everyday solids. One shows how 
to obtain the functions and equations of state of an isotropic solid, what are the elastic and 
thermal properties which can appear, how waves propagate and why there exist thermoelastic 
relaxations, what are the mass transport phenomena and why it could appear inertial relaxa-
tions, what are the common phenomenologies of anelasticity and plasticity, and finally how it 
can appear structural transitions of first and second order in a solid lattice.

Dislocation and disclination charges in eulerian lattices

Regarding the description of defects (topological singularities) which can appear within a solid, 
as dislocations and disclinations, it is a domain of physics initiated principally by the idea of ma-
croscopic defects of Volterra  (1907). This domain experienced a fulgurant development during 9

the twentieth century, as well illustrated by  Hirth  (1985). The lattice dislocation theory started 10

up in 1934, when Orowan , Polanyi  and Taylor  published independently papers describing 11 12 13

the edge dislocation. In 1939, Burgers  described the screw and mixed dislocations. And finally 14

 V. Volterra, «L’équilibre des corps élastiques», Ann. Ec. Norm. (3), XXIV, Paris, 19079

 J.-P. Hirth, «A Brief History of Dislocation Theory», Metallurgical Transactions A, vol. 16A, p. 2085, 198510

 E. Orowan, Z. Phys., vol. 89, p. 605,614 et 634, 193411

 M. Polanyi, Z. Phys., vol.89, p. 660, 193412

 G. I. Taylor, Proc. Roy. Soc. London, vol. A145, p. 362, 193413

 J. M. Burgers, Proc. Kon. Ned. Akad. Weten schap., vol.42, p. 293, 378, 193914
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in 1956, Hirsch, Horne et Whelan  and Bollmann  observed independently dislocations in me15 16 -
tals by using electronic microscopes. Concerning the disclinations, it is in 1904 that  Lehmann  17

observed them in molecular crystals, and in 1922 that Friedel  gave them a physical explana18 -
tion. From the second part of the century, the physics of lattice defects has grown considerably.
In the first part of this essay, the dislocations and the disclinations are approached by introdu-
cing intuitively the concept of dislocation charges by using the famous Volterra pipes  (1907) 19

and an analogy with the electrical charges. With Euler coordinates, the concept of dislocation 
charge density appears then in an equation of geometro-compatibility of the solid, when the 
concept of flux of charges is introduced in an equation of geometro-kinetics of the solid. 
The rigorous formulation of the charge concept in the solids makes the essential originality of 
this approach of the topological singularities. The detailed development of this concept leads to 
the appearance of tensorial charges of first order, the dislocation charges, associated with the 
plastic distortions of the solid (plastic deformations and rotations), and of tensorial charges of 
second order, the disclination charges, associated with the plastic contortions of the solid (plas-
tic flexions and torsions). It appears that these topological singularities are quantified in a solid 
lattice and that they have to appear as strings (thin tubes) which can be modelized as unidi-
mensional lines of dislocation or disclination, or as membranes (thin sheets) which can be mo-
delized as two-dimensional boundaries of flexion, torsion or accommodation.
The concept of dislocation and disclination charges allows one to find rigorously the main re-
sults obtained by the classical dislocation theory. But it allows above all to define a tensor �  of  
linear dislocation charge, from which one deduces a scalar �  of linear rotation charge, which is 
associated with the screw part of the dislocation, and a vector �  of linear flexion charge, which 
is associated with the edge part of the dislocation. For a given dislocation, both charges �  and 
�  are perfectly defined without needing a convention at the contrary of the classical definition 
of a dislocation with its Burger vector! On the other hand, the description of the dislocations in 
the eulerian coordinate system by the concept of dislocation charges allows one to treat exactly 
the evolution of the charges and the deformations during very strong volumetric contractions 
and expansions of a solid medium.
The description of this new approach of the topological defects of a lattice is briefly described 
by the two following sections of part one of the book:
- a third section (C) is dedicated to the introduction of dislocation charges and disclination 
charges in the eulerian lattices. After the analytical introduction of the concepts of density and 
flux of dislocation and disclination charges in the lattices (chap. 8), one presents a detailed re-
view of the lattice macroscopic and microscopic topological singularities which can be associa-
ted to the dislocation and disclination charges (chap. 9).
Then one discusses the motion of dislocation charges within the lattice by introducing the dislo-
cation charges flux of the dislocation charges and the Orowan relations (chap. 10). Finally, one 
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 P. B. Hirsch, R. W. Horne, M. J. Whelan, Phil. Mag., vol. 1, p. 667, 195615

 W. Bollmann, Phys. Rev., vol. 103, p. 1588, 195616

 O. Lehmann, «Flussige Kristalle», Engelman, Leibzig, 190417

 G. Friedel, Ann. Physique, vol. 18, p. 273, 192218

 V. Volterra, «L’équilibre des corps élastiques», Ann. Ec. Norm. (3), XXIV, Paris, 190719
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deduces the Peach and Koehler force which acts on the dislocations, and one establishes the 
new set of evolution equations of a lattice in the Euler coordinate system (chap. 11), which 
takes into account the existence of topological singularities within the lattice.
- a fourth section (D) is dedicated to the applications of the charge concept within the eulerian 
solid lattice (chap. 12). It shows the elements of the dislocation theory in the everyday solids. 
One begins to show that, in the particular case of the deformation of isotropic lattices by pure 
shears, one can replace the shear strain tensor by the rotation vector, which allows one to find 
a set of equations, which corresponds strictly to all the Maxwell equations of electromagnetism! 
Then one shows how to calculate the fields and energies of the screw and edge dislocations in 
an isotropic lattice, just as the interactions, which can occur between dislocations. One finishes 
this section of applications by presenting the string model of dislocations, which is the funda-
mental model allowing one to explain most of the macroscopic behaviors of anelasticity and 
plasticity of crystalline solids.

Second part: searching for a “cosmic lattice”

In the first part of the book, it is shown that it is possible to calculate the resting energy �  of 
the dislocations, which corresponds to the elastic energy stored in the lattice by their presence, 
and their kinetic energy � , which corresponds to the kinetic energy of the lattice particles 
mobilized by their movement. This allows to attribute to the dislocations a virtual inertial mass 
�  which satisfies relations similar to the famous equation �  of the Einstein special 
relativity, but which is obtained here through purely classical calculations, without using relativity 
principles! Moreover, at high velocity, the dislocation dynamics satisfy also the special relativity 
principles and the Lorentz transformations.

It is also shown in the first part that it appears, in the case of isotropic solid media presenting a 
constant and homogeneous volumetric expansion, a perfect and complete analogy with the 
Maxwell equations of electromagnetism when the shear stress tensor is replaced by the rotation 
vector. The existence of an analogy between the electromagnetism and the theory of incom-
pressible continuous media has already been distinguished very long ago by several authors, 
as shown by Whittaker  (1951). However, this analogy is much more complete in my first 20

book1, because it is not restricted to one of the two Maxwell equation couples in the vacuum, 
but it is generalized to the two equation couples as well as to the diverse phenomenologies of 
dielectric polarization and magnetization of matter, just as to the electrical charges and the elec-
trical currents! The analogy with the Maxwell equations is very surprising on account of the fact 
that it is initially postulated a solid lattice satisfying a simple and purely newtonian dynamics in 
the absolute reference frame of the external observer laboratory, which is equipped with abso-
lute orthonormal measuring rods and an absolute clock. At the contrary, the topological singula-
rities within the lattice (dislocations and disclinations) with their respective charges, responsible 
for the plastic distortions and contortions of the lattice, are submitted to a relativistic dynamics 
within the lattice, due to the maxwellian equation set governing the shear strains of the massive 
elastic lattice. From this point of view, the relativistic dynamics of the topological singularities is 
a direct consequence of the purely classical newtonian dynamics of the elastic lattice in the ab-
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solute frame of the external observer! 
Finally, it also appears in the first part that the tensorial aspect of the distortion fields at short 
distances of a localized topological singularities cluster formed by one or more dislocation or 
disclination loops can be easily neglected at great distances of the cluster, because the distor-
tion fields can then be completely described by only two vectorial fields, the vectorial field of 
rotation by torsion and the vectorial field of curvature by flexion, associated respectively to the 
only two scalar charges of the cluster, its scalar rotation charge �  and its scalar curvature 
charge � . The rotation charge becomes the perfect analogue of the electrical charge in the 
Maxwell equations, when the curvature charge presents some analogy with the gravitational 
mass in the gravitation theory.
The existence of analogies between the theories of continuum mechanics and solid defects and 
the theories of electromagnetism, special relativity and gravitation has already been the subject 
of several publications, from which the more famous are most certainly those of Kröner4,5. Ex-
cellent reviews in this physics field have also been published, in particular by Whittaker20 (1951) 
and Unzicker  (2000). But none of these publications has gone as far as the approach publi21 -
shed in my first book1 concerning these highlighted analogies.
The numerous analogies which appear in the first book1 between the eulerian theory of defor-
mable media and the theories of electromagnetism, gravitation, special relativity, general relati-
vity and even standard model of elementary particles, reinforced by the absence of particles 
analogue to magnetic monopoles, by a possible solution of the famous paradox of electron field 
energy and by the existence of a small asymmetry between curvature charges of vacancy or 
interstitial type, were sufficiently surprising and remarkable to alert any open and curious scien-
tific spirit! But it was also clear that these analogies were, by far, not perfect. It was then tantali-
zing to analyze much more carefully these analogies and to try to find how to perfect them. That 
is the reason of this present essay,  of which the second part is entirely allotted to the deepe-
ning, the improvement and the understanding of these analogies.
The second part of this book is composed of five sections. Progressively, by introducing several 
judicious conjectures which are summarized in Appendix D, one addresses the problem of the 
analogies existing between (i) the eulerian theory of lattice deformation described in the first 
part , and applied to a very particular lattice, the cosmic lattice, and (ii) the modern physics 
theories of the macrocosm and the microcosm, as the Maxwell equations, the special relativity, 
the newtonian gravitation, the general relativity, the modern cosmology, the quantum mechanics 
and the standard model of elementary particles.

The “cosmic lattice” and its Newton’s equation

A first section (A) of part two is dedicated to the introduction of the « cosmic lattice ». By intro-
ducing particular elastic properties for the volumetric expansion, the shear strain and especially 
the rotation field and by expressing the distortion free energy per volume unit of the lattice, one 
obtains an imaginary lattice which presents a very particular Newton equation. Indeed, it ap-
pears in particular a novel force term directly related to the distortion free energy due to the sin-
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gularities contained in the lattice, which will play subsequently a very important role for the ana-
logies with the gravitation and the quantum physics (chap. 13). 
Then one shows that the propagation of waves in this cosmic lattice presents interesting parti-
cularities (chap. 14): propagation of linear polarization transversal waves is always associated 
with longitudinal wavelets, and propagation of pure transversal waves can only be done by cir-
cularly polarized waves (which will be strongly linked with the photons). On the other hand, 
when the local value of the lattice volumetric expansion becomes less than a given critical va-
lue, propagation of longitudinal waves disappears for the benefit of the appearance of localized 
longitudinal vibrations modes (which will be strongly linked with the quantum physics).
Afterwards, the calculation of the curvature of wave rays in the vicinity of a singularity of the 
lattice volumetric expansion allows one to find the conditions for which this expansion singulari-
ty becomes a real capturing trap for the waves, in other words a « black hole »  (chap. 15)!
Finally, one shows that such a cosmic lattice, if finite in the absolute space, can present dyna-
mical volumetric expansion and/or contraction if it contains some quantity of expansion kinetics 
energy (chap. 16). This phenomenon is perfectly similar to the cosmological expansion of the 
universe! Following the signs and the values of the lattice elastic modules, several cosmological 
behaviors of the lattice can appear, some of which presenting phenomena as big-bang, rapid 
inflation and acceleration of the expansion velocity, which can be sometimes followed by a re-
contraction of the lattice driving to a big-bounce phenomenon! One deduces that it is the ex-
pansion elastic energy contained in the lattice which is responsible for these phenomena, and 
notably for an expansion velocity increase, a phenomenon which has been recently discovered 
by the astrophysicists in the case of the present universe, and which has been attributed to a 
hypothetical « black energy ».

Maxwell’s equations and special relativity

A second section (B) is dedicated to the Maxwell equations and the special relativity. One be-
gins to show that the Newton equation of the cosmic lattice can be separated in a curl part and 
a divergent part, and that the curl part creates a set of equations for the macroscopic rotation 
field which is perfectly identical to the set of the Maxwell equations of the electromagnetism 
(chap. 17).
Then one shows that the Newton equation can also be separated in a different manner, in two 
partial Newton equations allowing to calculate on the one hand the distortion elastic fields asso-
ciated with the topological singularities, and on the other hand the volumetric expansion pertur-
bations associated with the distortion elastic energies of the topological singularities (chap. 18). 
By using the first partial Newton equation, on can calculate the fields and energies of elastic 
distortions generated by topological singularities within the cosmic lattice (chap. 19). One can 
then find conditions on the elastic modules of this lattice such as it is possible to attribute in a 
perfectly conventional manner an inertial mass to the topological singularities, which always 
satisfies the famous Einstein relation � .
Then one demonstrates that the topological singularities satisfy a typically relativist dynamics 
when their velocity inside the lattice becomes close to the celerity of the transversal waves 
(chap. 20).
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On these foundations, one finishes by discussing the analogy between this theory and the theo-
ry of special relativity (chap. 21). One notices that the cosmic lattice acts in fact as an aether, in 
which the topological singularities satisfy exactly the same properties than those of the special 
relativity concerning the length contraction, the time dilatation, the Michelson-Morley experiment 
and the Doppler-Fizeau effect. The existence of the cosmic lattice allows then to explain very 
simply some obscure sides of the special relativity, as for example the twin paradox!

Gravitation, general relativity, weak interaction and cosmology

A third section (C) is dedicated to the gravitation and the cosmology. Thanks to the second par-
tial Newton equation, one begins with the calculation of the external expansion perturbations, 
that is to say the external scalar gravitation field, associated with a localized macroscopic topo-
logical singularity, knowing either its distortion elastic energy, or its curvature charge, or its rota-
tion charge (chap. 22). 
Immediately afterwards, one describes also macroscopic vacancy singularities and macrosco-
pic interstitial singularities, which can appear within the lattice in the form of a macroscopic hole 
in the lattice or an interstitial embedment of a piece of lattice. These singularities will become 
subsequently the ideal candidates to explain respectively the black holes and the pulsars of our 
universe.
By applying the calculations of the external gravitation field of topological singularities to locali-
zed microscopic topological singularities, in the form of loops of screw disclination, loops of 
edge dislocation or loops of mixed dislocation, one deduces the whole of the properties of these 
loops (chap. 23). It appears then the new concept of « curvature mass » of the edge dislocation 
loops, which corresponds to the equivalent mass associated to the gravitational effects of the 
curvature charges of these loops, and which can be positive (in the case of loops of vacancy 
type) or negative (in the case of loops of interstitial type). In fact, the curvature charge and the 
equivalent curvature mass which is associated do not appear in any other physics theory, nei-
ther in general relativity, nor in quantum physics, nor in standard model of elementary particles. 
The appearance of this new curvature charge is certainly the most important finding of our theo-
ry, because it is precisely that curvature mass which is responsible for a small asymmetry bet-
ween the particles (hypothetically containing edge dislocation loops of interstitial type) and the 
antiparticles (hypothetically containing edge dislocation loops of vacancy type), which will play a 
fundamental role concerning the cosmological evolution of the topological singularities within 
the universe!
By considering the gravitational interactions existing between the topological singularities com-
posed essentially of screw disclination loops, one can deduce the behaviors of the measuring 
rods and clocks of local observers as a function of the local expansion field which takes place 
within the cosmic lattice (chap. 24). One shows that, for any local observer, and whatever is the 
value of the local volumetric expansion of the lattice, the Maxwell equations remain always per-
fectly invariant, so that, for this observer, the transversal wave velocity is a perfect constant, 
when the transversal wave velocity measured by an observer situated outside the lattice in the 
absolute space depends strongly on the local expansion of the lattice!
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One shows that these gravitational interactions present strong analogies with the Newton’s gra-
vitation and with the general relativity, and one discusses in details the perfectly analogue 
points, as the perfect analogy with the Schwarzschild metric at great distances from massive 
objects and the curvature of wave rays by massive objects.
But one shows that our eulerian theory of the cosmic lattice provides also new elements to the 
gravitation theory, notably modifications of the Schwarzschild metric at very short distances 
from massive objects, and a better understanding of the critical radii associated with black 
holes: the radii of the photon perturbation sphere and of the point of no return become both 
equal to the Schwarzschild radius � , and the limit radius for which the 
time dilatation of a falling observer would stretch to the infinite becomes zero, so that our theory 
is not limited beyond the Schwarzschild sphere for the description of a black hole.
One establishes next a complete table of all the gravitational interactions existing between the 
diverse topological singularities of the cosmic lattice, and one finds that the gravitational interac-
tions between screw disclination loops is largely dominant (chap. 25). 
By considering now a topological singularity formed by coupling a screw disclination loop with 
an edge dislocation loop, called a dispiration loop, it appears an interaction force similar to a 
catch potential, with a very small range, which allows interactions between loops presenting a 
perfect analogy with the weak interactions between elementary particles of the standard model.
On the basis of the cosmological behaviors of a lattice described in section (A), and the gravita-
tional interactions between topological singularities described in section (C), on can imagine a 
very plausible scenario for the cosmological evolution of the topological singularities, leading to 
the present structure of our universe (chap. 26). This scenario allows one to give a very simple 
explanation of several facts still poorly understood, as the formation of galaxies, the disappea-
rance of antimatter, the formation of gigantic black holes at the heart of the galaxies, and even 
the famous « dark matter » that the astrophysicists had to concoct for explaining the gravitatio-
nal behavior of the galaxies.
In our theory, the dark matter would be in fact a sea of repulsive neutrinos in which the galaxies 
would have precipitated and would be immersed. Indeed, in the case of the simplest edge dis-
location loops, analogically similar to neutrinos, the « gravitational curvature mass » dominates 
the inertial mass, so that the neutrinos should be the only particles gravitationally repulsive, 
when the antineutrinos should be gravitationally attractive. It is this surprising particularity which 
could explain the formation of a repulsive neutrinos sea playing the role of dark matter for the 
galaxies, due to the compression force exerted by the repulsive neutrinos sea on the galaxies 
periphery!
Finally, one shows how can be treated the Hubble constant, the galaxy redshift and the evolu-
tion of the cosmic microwave background in the frame of our eulerian theory of cosmic lattice.

Quantum physics, particles spin and photons

A fourth section (D) is dedicated to the quantum physics and the standard model of particles. 
One begins by using the second partial Newton equation, in the dynamical case, to show that 
there exists also longitudinal gravitational perturbations associated to moving topological singu-
larities inside the lattice (chap. 27). By conjecturing operators similar to those of the quantum 
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mechanics, one shows then that the second partial Newton equation allows one to deduce the 
gravitational fluctuations associated to a topological singularity moving quasi-freely with relati-
vistic velocities within the lattice.
In the case of non-relativistic topological singularities bonded to a potential, one shows that the 
second partial Newton equation applied to the longitudinal gravitational fluctuations associated 
to these singularities leads to the Schrödinger equation of the quantum physics, which allows 
one for the first time to give a simple and realistic physical interpretation to the Schrödinger 
equation and to the quantum wave function: the quantum wave function deduced from the 
Schrödinger equation represents the amplitude and the phase lag of longitudinal gravitational 
vibrations associated to a topological singularity within the cosmic lattice!
All the consequences of the Schrödinger equation appear now with a simple physical explana-
tion, as for example the stationary wave equation of a topological singularity placed inside a 
static potential, the Heisenberg uncertainty principle and the probability interpretation of the 
square of the wave function.
In the case where the gravitational fluctuations of two topological singularities are coupled, it 
appears also very simply the concepts of bosons and fermions, as well as the Pauli exclusion 
principle.
At the heart of a topological singularity loop, one shows that there cannot exist static solutions 
to the second partial Newton equation for the longitudinal gravitational fluctuations (chap. 28). It 
becomes then necessary to find a dynamical solution to this equation. The most simplest dy-
namical solution is to imagine that the loop rotates around one of its diameter. By solving this 
rotation motion with the second partial Newton equation, which is nothing other than the Schrö-
dinger equation, one obtains a quantified solution for the internal gravitational fluctuations of the 
loop. This solution is in fact nothing other than the quantic loop spin, which can take several 
different values (1/2, 1, 3/2, …) and which is perfectly similar to the spin of particles in the stan-
dard model! If the loop is composed of a screw disclination loop, it appears also a magnetic 
moment of the loop, proportional to the famous Bohr magneton. The notorious argument of the 
quantum physics pioneers wherein the spin cannot be a real rotation of the particle on itself be-
cause the equatorial velocity should become superior to light velocity, is swept out in our theory 
by the fact that the static expansion at the vicinity of the loop heart is so high that the light velo-
city becomes much higher that the equatorial rotation velocity of the loop!
In this argumentation about the absolute necessity of a spin of the singularity loops for satis-
fying the second partial Newton equation, only the exact value of the spin of a loop, namely 1/2 
or 1, does not find at the moment a simple explanation!
One finishes by showing how to construct a pure transversal wave packet with a circular polari-
zation (chap. 29) and why it appears a quantification of the energy of these fluctuations. These 
waves packets form quasiparticles which have properties perfectly similar to the quantum pro-
perties of photons: circular polarization, zero mass, non-zero momentum, non-locality, wave-
particle duality, quantum entanglement and quantum decoherence.

Standard model of elementary particles and strong interactions

In the second part of this section (D), one searches for the ingredients which have to be added 
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to the cosmic lattice in order to find an analogy between the loops and the diverse particles of 
the standard model (chap. 30). One shows that, by introducing a cubic lattice with three families 
of planes (imaginary « colored » in red, green and blue), satisfying some simple rules concer-
ning their successive arrangement and their mutual rotation, one finds topological loops perfect-
ly analogous to all the particles, leptons and quarks, of the first family of elementary particles of 
the standard model. One finds also topological loops analogous to the W and Z bosons of the 
standard model. It appears also spontaneously a strong force, in the sense that this force pre-
sents an asymptotical behavior, acting between the loops analogous to the quarks of the stan-
dard model. This implies that these loops have to group together in triplets to form combinations 
of three loops analogous to the baryons, or in doublets to form combinations of loop-anti-loop 
analogous to the mesons. Furthermore, one finds also topological bicolor loops which corres-
pond perfectly to the gluons associated to the strong force in the standard model!
In order to explain the existence of three families of quarks and leptons in the standard model, 
one shows that the introduction of more complicated topological structures of the edge disloca-
tion loops, based on assembling of pairs of edge disclination loops, allows one to explain in a 
satisfactory way the existence of three, or even four, families of particles with very different 
energies.
Finally, one discusses the interest of this strong analogy between the topological singularities of 
a cubic « colored » lattice and the elementary particles of the standard model, as well as the 
numerous questions still pending concerning this analogy.

Vacuum quantum state fluctuations, multiverse cosmological theory and gravitons

A fifth section (E) is dedicated to some very hypothetical consequences concerning the pure 
gravitational fluctuations associated to the perfect cosmic lattice (chap. 31). One can imagine 
the existence of pure longitudinal fluctuations within the cosmic lattice, which are not correlated 
with the presence of topological singularities, and which can be treated either as random gravi-
tational fluctuations that could present some analogy with the vacuum quantum state fluctua-
tions, or as stable gravitational fluctuations that could lead at the macroscopic scale to a cos-
mological theory of multiverse. At the microscopic scale, stable gravitational fluctuations could 
also lead to stable quasiparticles which could be called gravitons, by analogy with the photons, 
but which have nothing common with the gravitons postulated in the frame of the general relati-
vity.
One finishes this book by a general conclusion in which one shows the central roles played by 
the Newton equation and by the microscopic structure of the cosmic lattice. One highlights also 
the numerous positive points, but also the still misunderstood points, which have appeared 
throughout this essay concerning the analogy between the newtonian cosmic lattice and all the 
theories of modern physics.
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