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Considering a finite imaginary sphere of a cosmic lattice, we can introduce the 
concept of "cosmological evolution" of the lattice, assuming that one injects a cer-
tain amount of kinetic energy inside the lattice. In this case, the lattice has strong 
temporal variations of its volume expansion, that can be modeled very simplistically 
assuming that volume expansion remains perfectly homogeneous throughout the 
lattice during its evolution.

On the cosmological behavior of a sphere of perfect solid

Let’s imagine that in an absolute referential � , the GO observes a solid, of spherical 
form, of radius � , made of a lattice of �  nodes (fig. 16.1). Let’s assume this solid possesses 
a homogeneous volume expansion of the background with depends on time in the form

�    (16.1)

In this case, the GO  will observe that the radius �  of the sphere will depend on time

�    (16.2)

and that this sphere will expand or contract.  This behavior will be described as a “cosmological 
behaviour”  by analogy to the theories of the cosmological expansion of the Universe.  We as-
sume that the total energy �  of the solid is a constant. It is made up of the elastic energy 
�  and the kinetic energy �  of expansion. 

�

Figure 16.1 - “Cosmological” volume expansion �  of an imaginary solid sphere
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The total kinetic energy �  of volume expansion is linked to the speed of expansion which we 
can characterize by the velocity  �  of the surface of the sphere (fig. 16.1).  The kinetic 
energy �  can then be obtained by integrating on all the sphere and considering the energy 
located in the lattice contained in the volume between radius �  and � . The velocity of ex-
pansion of the surface is

� (16.3)

since the volume expansion �  was supposed homogeneous. And using the fact that the density 
of sites �  is given by  

� (16.4)

we have for the kinetic energy

� (16.5)

We deduce that the velocity of expansion �  is proportional to �

� (16.6)

We also deduce that 

� (16.7)

and so, as a consequence, the derivative �  tends towards �  if �  goes to zero and 
�  is finite and not null. Let’s study the cosmological behavior of perfect solids and cos-
mic lattices that we have previously defined.

The cosmological evolution of a cosmic lattice with �  and �

Imagine that in the absolute framework � , the GO observes a cosmic lattice of spherical 
radius � , consisting of a lattice with �  meshes (fig. 16.1). The elastic energy �  is written, 
by using (13.7)

� (16.9)

To plot the behavior of � as a function of �  for this lattice, we must look for the extremas of 
�

� (16.10)

If the modulus �  of the lattice is positive,  then for �  and � , the value of �  
tends towards two minimas equal to zero, while for � , the value of �  goes through a 
minimum equal to � . The graph of �  is shown in fi-
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gure 16.4a, and we can see that it is very different from the case of a lattice of usual perfect so-
lid.
There are three modes of oscillation depending on the value of � , as illustrated in figure 16.4:

- if � , there are two modes of oscillation possible, a first mode between 
�  and �  and a second mode between �  and � ,

- if � , there is a third mode of oscillation possible, between �  
and � .

In the graphs of figure 16.4, we can show the limit �  taken from rela-
tion (14.26). We show a value of �  close to � , corresponding to the case where � . 
There are again domains of different behaviors of the solid: a domain where there coexists 
transverse and longitudinal waves (for � ) and a domain where there are only transverse 
waves and localized vibrational eigenmodes (for � ) . But unlike the perfect solid, in the 
cosmic lattice, the position of these domains is reversed along the  � axis!

Figure 16.4 - “cosmological” behavior of elastic energy �  of expansion 
and velocity �  of expansion of an imaginary cosmic lattice with �

The cosmological evolution of a cosmic lattice with �  and �

If the modulus �  of the lattice is negative, the plastic energy �  presents two maximas 
for �  and � , and a minima for � . Furthermore, �  for �  
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(fig. 16.5).  We can consider here three different cases following the value of total energy � :

Figure 16.5 - “cosmological behavior” of elastic energy �  of expansion 
and velocity �  of expansion of an imaginary cosmic lattice with �

- if � , there exists a “cosmological solution”  around the value � , for which the lattice 
contacts and expands indefinitely between values �  and � ,  and a second solution 
for which the lattice dilates indefinitely, at constant velocity, from the value � ,

- if � , there exists a solution for values inferior to � , and a solution for the superior 
values. The lattice can dilate from � , and can afterwards, either contract towards 
�  and start the cycle again, or dilate indefinitely towards � ,

- if � , there exists a unique solution for which the lattice dilates one time only from 
�  to � . The symmetric solution which would consist in the lattice contracting 
form � , where the lattice possesses a phenomenal kinetic energy of contraction, to 
�  is not prohibited but it is seems strongly improbable!

In the case of this lattice, we also notice the existence of domains of different behavior: for 
�  a domain where there are both transverse and longitudinal 
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waves, and for �  a domain where there are only transverse 
waves and localized longitudinal eigenmodes of vibration.

The cosmological evolution of a cosmic lattice with �  and �

Figure 16.6 - “cosmological behavior” of elastic energy �  of expansion
 and velocity �  of expansion of an imaginary cosmic lattice with �

If, in the absolute referential �  of the GO we consider a cosmic lattice with  �  and 
� , the elastic energy of expansion �  is written

� (16.11)

To plot the behavior of �  as a function of �  for this solid, we must seek the extremes of
�

� (16.12)
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If the modulus �  of the solid is negative, the energy �  as a function of �  presents a 
minimum for �  as illustrated in figure 16.6.      
We then deduce the “cosmological behavior” of this type of lattice and show it in figure 16.6:
- if � , the lattice oscillates indefinitely on a closed trajectory between minimum �  and 
maximum � , 
- if � , the lattice oscillates between �  and a maximum � .
In this case the lattice still presents longitudinal waves as since � , we also have  
� .

The cosmological evolution of a cosmic lattice with �  and �

If the �  modulus of a cosmic lattice is positive, the energy �  as a function of �  presents 
a maximum for �  as illustrated in figure 16.7. 

     

Figure 16.7 - “cosmological behavior”  of elastic energy �  of expansion 
and velocity �  of expansion of an imaginary cosmic lattice with �

We deduce the “cosmological behavior” of this type of lattice as shown in figure 16.7: 
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- if � , the lattice presents two possible trajectories, one that oscillates 
indefinitely between �  and a maximal value � , and one which corresponds to an 
irreversible expansion, at constant velocity, from an initial value with � ,

- if � , the lattice presents an irreversible expansion from �  to  
� , with a first decreasing velocity and then increasing velocity,

- if � , the evolution of the lattice only has one trajectory presenting an irreversible expan-
sion from value �  to  � , with an increasing velocity.

In this case, the lattice presents longitudinal waves if � , but does not present 
them if � .

The cosmological evolution of a cosmic lattice with �  and �

The elastic free energy of this lattice is written

� (16.13)

This function is represented at the top of figure 16.8. It has zeroes for 

� (16.14)

as well as a maximum in the domain �  and a minimum in the domain � . According to 
relation (16.6), these extremas correspond respectively to the minimum and maximum of the 
velocity of expansion �  of the lattice, so that we have

� (16.15)

We deduce the “cosmological behavior” of this type of lattice, as shown in figure 16.8: 

- if � , the lattice presents only one possible trajectory, entirely in the domain � , and 
which corresponds to a contraction and an expansion that keeps on going between two extreme 
values of � ,

- if � , the lattice presents two possible trajectories: the first one is an expansion/
contraction that goes on indefinitely between a positive and a negative value of � , and the se-
cond corresponds to an indefinite oscillation between a negative value of �  and an expansion 
going to � ,

- if � , the lattice presents only one trajectory which is rather interesting. We oscillate 
indefinitely between a big-bang and a big crunch! The big-bang is followed by an expansion 
phase which is very fast, then a slowdown, and then again an expansion with increasing veloci-
ty, and suddenly an inversion of the velocity of expansion, so it contracts by retracing all the 
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steps followed during the expansion phase. The contraction finishes with a big crunch, which 
can only be followed by a big-bang since the lattice has accumulated a total kinetic energy �  
equal to � , this phenomena is called “big bounce”!

 
Figure 16.8 - «cosmological behavior» of elastic energy �  of expansion

 and velocity � of expansion of an imaginary cosmic lattice with �  and �

In the case of this lattice, we notice too the existence of domains of volume expansion that 
present different behaviors with regards to longitudinal waves: a domain where we have trans-
verse and longitudinal waves for � ,  and a domain for 
�  where there are only transverse waves and localized vi-
brational eigenmodes. The domain where there are no longitudinal waves corresponds precisely 
to the domain of the big-bang, the inflation, the slowdown of inflation, finally followed by an ac-
celeration of the expansion!

On the analogy with the cosmological evolution of our universe

In figure 16.9, we show eight different behaviors that can be obtained with a cosmic lattice, de-
pending on the values that the moduli �  and �  can take. It is also shown in this figure the 
domains of expansion in which the longitudinal waves cannot exist.
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Figure 16.9 - all the “cosmological behaviors” that are possible for cosmic lattices, 

depending on values �  and � :  (a) through (d) the lattices with infinite accelerating expansion,
(e) through (h) the lattices oscillating from big-bang to big-crunch

It is noted that there are four different "cosmological behavior", three of which have convincing 
analogies with the cosmology of the real universe:

K0 K1
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- cosmological lattices with �  which are reported in figures 16.9 (a), (c) and (d). These 
three types of lattices all have a big bang followed by high speed inflation, a slowdown in infla-
tion and ultimately an expansion at increasing velocity towards � .  All the stages follow 
in perfect order. The disappearance of the longitudinal waves takes place in these networks to 
higher expansions than a critical value � , which depends on the value of the shear modulus 
� ,

- the cosmic lattice of figure 16.9 (b), with �  and �  for which there are never longi-
tudinal waves provided that � , making it a very simple and very interesting case to 
describe the cosmological behavior of the real universe,

- the cosmic lattice with �  or �  and �  are shown in figures 16.9 (e), (g) and 
(h). These three types of lattice go through the four stages of the cosmology of the real uni-
verse, in the absence of longitudinal waves (a "big bang" from a singularity of space-time, follo-
wed by a period of very rapid inflation and a slowdown in inflation, followed by an expansion 
whose speed seems to increase over time), before entering an expansion phase during which 
the longitudinal waves appear, and precede a symmetrical contraction phase back to the singu-
larity state �  ("big crunch"). In this case, there is a region of the diagram for which 
�  where there are no longitudinal waves, and wherein the lattice is expanding with in-
creasing velocity. Note that the lattice of figure 16.9 (g) could be an excellent candidate to des-
cribe the cosmological behavior of the real universe, because all its elastic moduli are positive,

- finally, the cosmic lattice of figure 16.9 (f), with �  and � , does not present the 
stages corresponding to the cosmology of the real universe, and it always has longitudinal 
waves. It is clearly not suitable to describe the cosmological behavior of our universe.

The "cosmological behavior" of a cosmic lattice can be illustrated more clearly by plotting the 
velocity of volume expansion �  as a function of the volume expansion � , as shown in the 
cases (c) and (d) with �  in figure 16.10 and for the case (g) and (h) with �  in figure 
16.11. To find these behaviors, we retrieve the value �  of the expression (16.4)

� (16.16)

and we deduce the velocity of expansion �

� (16.17)

which, compared to expression (16.6) of �  allows us to write

� (16.18)

The behavior of the rate of volume expansion �  as a function of �  can then be deduced 
from the knowledge of � , which allows us to do the plots of figures 16.10 and 16.11.
The figures 16.10 and 16.11 are very interesting because they clearly show the existence of an 
extremely fast initial stage of inflation of the volume expansion in cosmic lattices since 
�  for �  just after the big bang stage or just before the big crunch, and the 
rate of expansion or contraction of the volume is at a minimum before accelerating again, just 
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after the stage of inflation or just after the stage of re-contraction.

Figure 16.10 - «cosmological behaviors» of the velocity �  of expansion
as a function of expansion �  of two imaginary cosmic lattices with�
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Figure 16.11 - «cosmological behaviors» of the velocity �  of expansion 

as a function of expansion �  of two imaginary cosmic lattices with �

The figures 16.10 and 16.11 are very interesting because they clearly show the existence of an 
extremely fast initial stage of inflation of the volume expansion in cosmic lattices since 
�  for �  just after the big bang stage or just before the big crunch, and the 
rate of expansion or contraction of the volume is at a minimum before accelerating again, just 
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after the stage of inflation or just after the stage of re-contraction.

On the limits of our model

It goes without saying that the modeling used in this chapter to describe the “cosmological be-
haviors” of imaginary lattices is extremely simple, if not simplistic. It is essentially the initial as-
sumption of a homogeneous volume expansion throughout the lattice that can be questioned, 
because with this hypothesis was evaded the two major problems that would lead in principle to 
much more complicated models: the fact that the solid is subjected to Newtonian dynamics in 
the absolute space of GO, and the fact that we should have put a condition on the validity of the 
pressure at the outer edge of the solid sphere. But despite the extreme simplifications of our 
modeling, the overall predicted behaviors in figures 16.9 to 16.11 should still remain close en-
ough to the behaviors which could have been obtained by a more realistic treatment of the pro-
blem!

On the ‘reasonable’ choice of a cosmic lattice to describe the real universe

Among the various lattices proposed in this chapter, it is clear that the cosmic lattices have more 
interesting features than the perfect solids to describe the experimental observations  of cosmo-
logists. It is obviously not possible here to choose the cosmic lattice which is close to most of 
the known cosmological evolution of the real universe. But from a philosophical point of view 
and from the point of view of common sense, the cosmic lattices (fig. 16.9 (e) to (h)) which have 
a big bang followed by a big crunch, and thus ultimately a big-bounce, are much more satisfying 
for a Cartesian mind than cosmic lattices presenting a single and infinite expansion (fig. 16.9 (a) 
to (d)). One can then emit here a conjecture of ‘philosophical nature’

Conjecture 3:  It seems more ‘reasonable’ to imagine cosmic lattices with � ,
                         so as to have a finite expansion (16.19)

As for value of � , nothing allows us for the moment to propose a positive, zero or negative 
value, as the cases illustrated in figure 16.11 are both very interesting!

On the origin of the ‘dark energy”

It should finally be noted that the elastic energy �  contained in the cosmic lattice could 
very well correspond to the ‘dark energy’ which astrophysicists introduce to explain the accele-
ration of the velocity of expansion of the universe which was recently observed experimentally, 
since it is that elastic energy which is fully responsible for an increase of the rate of volume ex-
pansion via relation (16.18).
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