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On n’a peut-être pas encore prêté assez d’attention [à] l’utilité dont cette étude [de 
la Géométrie] peut être pour préparer comme insensiblement les voies à l’esprit 

philosophique, et pour disposer toute une nation à recevoir la lumière que cet esprit 
peut y répandre [...]. Bientôt l’étude de la Géométrie conduira [...] à la vraie Philo-
sophie qui par la lumière générale et prompte qu’elle répandra, sera bientôt plus 

puissante que tous les efforts de la superstition. 

Jean le Rond D’Alembert, article “Géométrie” de L’Encyclopédie, 1772

Si toute la connaissance scientifique disparaissait dans un cataclysme, quelle 
phrase unique pourrait préserver le maximum d'information pour les générations 

futures? Comment pourrions-nous leur transmettre au mieux notre compréhension 
du monde? Je propose: "Toutes choses sont faites d'atomes, petites particules 
animées d'un mouvement incessant, qui s'attirent lorsqu'elles sont distantes les 

unes des autres, mais se repoussent lorsqu'on les force à se serrer de trop près". 
Cette seule phrase contient, vous le verrez, une quantité énorme d'information sur 

le monde, pour peu que l'on y mette un peu d'imagination et de réflexion.

Richard P. Feynman

The more the universe seems comprehensible, the more it also seems pointless. 
But if there is no solace in the fruits of our research, there is at least some consola-

tion in the research itself [...] The effort to understand the universe is one of the 
very few things that lifts human life a little above the level of farce, and gives it 

some of the grace of tragedy.

Steven Weinberg, from “The First Three Minutes”

Imagination is more important than knowledge. For knowledge is limited to all we 
now know and understand, while imagination embraces the entire world, and all 

there ever will be to know and understand.

Albert Einstein

Pensons, il en restera toujours quelque chose!
(Think, there will always be something left!)

Snoopy
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What if the Universe was a lattice 
and we were its topological singularities?

And what if the only fundamental principles of the Universe
 were Newton's and thermodynamics laws?

Introduction

Storytelling of this book

"What if the Universe was a crystal?" was the question that came to my mind little by little 
forty years ago when I was preparing a course for physics students in their fourth year of study. 
At that time, with a degree in physics-engineering and a doctorate in physics, I was pursuing 
research in dislocation dynamics at the Swiss Federal Institute of Technology of Lausanne, and 
as part of this research activity, I also had to participate in teaching. The course I was 
responsible for was directly related to my research and was called physics of dislocations. 
Dislocations are defects in arrangement in the crystal structure of solids, such as metals. And it 
is the movements of these structural defects which explain a good part of the macroscopic 
properties of deformation of crystalline solids, hence the importance of describing them 
theoretically and studying them experimentally.

When preparing for my course for the first time, I decided to teach a very theoretical 
mathematical approach to dislocations developed by M. Zorawski . Unfortunately, this approach 1

is very complicated, because it uses Riemann differential geometry to describe the spatio-
temporal evolution of dislocations in local infinitesimal frames, approach involving all the very 
heavy mathematical artillery of general relativity (metric tensor and symbols of Christoffel). This 
first version of my course was a bitter failure. This approach not only hid the whole reality of the 
behavior of dislocations behind an armada of very complicated mathematical objects (tensors), 
but it also very quickly provoked strong repulsion from students, but also from the professor.

During the second year of teaching this course, I therefore decided to completely change my 
approach to dislocations, basing it on a more usual description of the deformations of solids, 
using the classic Lagrange coordinate system and formalizing at best the physical properties of 
the medium, which is generally not very well done in most courses in the theory of continuous 
media.

By teaching this theory from year to year, and by perfecting the presentation of my course 
each time, I saw intriguing analogies appear with other theories of physics. The first analogy 
that appeared was surprising, as it involved Maxwell's theory of electromagnetism. And the 
analogy became over the years more and more clear and obvious, because it was not limited 
only to an analogy with one of the two pairs of Maxwell's equations in a vacuum, but it was also 

 M. Zorawski, «Théorie mathématique des dislocations», Dunod, Paris, 1967.1
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generalized to the various phenomenologies encountered in electromagnetism, such as 
dielectric polarization and magnetization of matter, as well as charges and electric currents.

It is by taking inspiration from the literature that I also showed in my course that it was 
possible to calculate the rest energy  of dislocations, which corresponds to the elastic energy   
of deformation  stored in the lattice by their presence and their kinetic energy , which 
corresponds to the kinetic energy of the particles of the lattice mobilized by their movement, 
which then allowed them to be assigned a mass  of virtual inertia which satisfies 
relationships perfectly similar to the famous equation  of Einstein’s special relativity, 
but which was obtained here in a completely classic way, that is to say without appealing to a 
principle of relativity. In addition, the dynamics of high velocity dislocations also satisfied the 
principles of special relativity and Lorentz transformations.

The analogy with Maxwell's equations was already very astonishing by the simple fact that it 
was initially postulated that the solid lattice satisfied a very simple dynamic, purely Newtonian, in 
the laboratory of the experimenter, while the dislocations, responsible for the plastic 
deformations of the solid, were necessarily subject to a relativistic dynamic within the solid, 
obligation due to the set of Maxwell equations governing the deformations of the medium. 
Therefore, I came to the very paradoxical conclusion that the relativistic dynamics of 
dislocations is in fact nothing more than a consequence of the perfectly classic Newtonian 
dynamics of the elastic solid lattice in the laboratory of the experimenter.

The numerous analogies which appeared during the preparation of my course between the 
theory of deformable solid media and the theories of electromagnetism and special relativity 
were sufficiently surprising and remarkable to not fail to tickle any open and somewhat scientific 
mind. But it was clear that these analogies were far from perfect. It was therefore very tempting 
to analyze these analogies in more depth and try to find out how to perfect them. This is what 
led me to work on this subject, in my spare time and for forty years, and finally to propose 
several theoretical books developing on the one hand an original approach to the deformation of 
solids  using coordinates of Euler instead of the coordinates of Lagrange, and on the other hand 2

a revolutionary theory of the Universe  based on the deepening, the improvement and the 3

understanding of the analogies between the theory of the deformation of crystalline solids and 
the great theories of modern physics such as Maxwell's equations, special relativity, Newtonian 
gravitation, general relativity, modern cosmology, quantum physics and the standard model of 
elementary particles.

It is quite remarkable to be able to deduce all the great theories of modern physics from a 
logical development based exclusively on the simple concepts that are, from a physical point of 
view, the three main principles of classical physics, namely Newtonian dynamics (Newton's 

E0
Edef Ecin

M 0

E0 = M 0c
2

 G. Gremaud, “Théorie eulérienne des milieux déformables – charges de dislocation et désinclinaison 2

dans les solides”,  Presses polytechniques et universitaires romandes (PPUR), Lausanne (Switzerland) 
2013, 751 pages, ISBN 978-2-88074-964-4
G. Gremaud, “Eulerian theory of newtonian deformable lattices – dislocation and disclination charges in 
solids”, Amazon, Charleston (USA) 2016, 312 pages, ISBN 978-2-8399-1943-2

 G. Gremaud, “Univers et Matière conjecturés comme un Réseau Tridimensionnel avec des Singularités 3

Topologiques”, Amazon, Charleston (USA) 2016, 664 pages, ISBN 978-2-8399-1940-1
G. Gremaud, “Universe and Matter conjectured as a 3-dimensional Lattice with Topological Singularities”, 
Amazon, Charleston (USA) 2016, 650 pages, ISBN 978-2-8399-1934-0
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equation), the first principle of thermodynamics (conservation of the total energy of a system) 
and the second principle of thermodynamics (the existence of a physical quantity, entropy, 
measuring the disorder of a system), and from a mathematical point of view, the detailed 
description of the spatio-temporal evolution of a lattice thanks to an original geometry based on 
Euler coordinates.

But if the basic principles of my theory are very simple and quite classic, the developments 
leading to find the great theories of modern physics from these principles are long, quite difficult 
and very theoretical, with many mathematics formulas. They are therefore not an easy 
approach, even for physicists, and especially if these are not versed in the field of solid state 
physics and their deformations. This is why I undertook to write this new book in which I have 
the ambition to make known, if possible with the minimum of mathematics, the ins and outs of 
my theory, in order to familiarize physicists and all people passionate about knowing the 
Universe at the simplicity and elegance of my original approach to it on some simple and very 
classic basic concepts.

I must note here that the existence of analogies between the mechanics of continuous media 
and the physics of defects and the theories of electromagnetism, special relativity and 
gravitation is by far not my own idea. Indeed, it had already been the subject of numerous 
publications before I was concerned about it. Excellent reviews on this subject have been 
published, notably by Whittaker   in 1951 and by Unzicker  in 2000.4 5

For example, Nye  initiated in 1953 the use of differential geometries to introduce topological 6

defects such as dislocations in deformable continuous media, and for the first time made the 
connection between the dislocation density tensor and the curvature of the lattice. On the other 
hand, Kondo   in 1952 and Bilby  in 1954 have independently shown that dislocations can be 7 8

identified with a crystalline version of 1922 Cartan's concept  of twisting a continuum.9

And this approach was formalized in great detail by Kröner  in 1960, who also proposed in 10

1980 that the existence of extrinsic point defects, which can be considered as extra-material, 
could be identified with the presence of matter in the universe  and be introduced consequently 11

in the form of Einstein equations, which would lead to a purely Riemannian differential geometry 
in the absence of dislocations. He also proposed that intrinsic point defects (vacancies, 

 S. E. Whittaker, «A History of the Theory of Aether and Electricity», Dover reprint, vol. 1, p. 142, 1951.4

 A. Unzicker, «What can Physics learn from Continuum Mechanics?», arXiv:gr-qc/0011064, 20005

 J.F. Nye, Acta Metall.,vol. 1, p.153, 19536

 K. Kondo, RAAG Memoirs of the unifying study of the basic problems in physics and engeneering 7

science by means of geometry, volume 1. Gakujutsu Bunken Fukyu- Kay, Tokyo, 1952

 B. A. Bilby , R. Bullough and E. Smith, «Continous distributions of dislocations: a new application of the 8

methods of non-riemannian geometry», Proc. Roy. Soc. London, Ser. A 231, p. 263–273, 1955

 E. Cartan, C.R. Akad. Sci., 174, p. 593, 1922  &  C.R. Akad. Sci., 174, p.734, 19229

 E. Kröner, «Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen», Arch. Rat. Mech. 10

Anal., 4, p. 273-313, 1960

 E. Kröner, «Continuum theory of defects», in «physics of defects», ed. by R. Balian et al., Les Houches, 11

Session 35, p. 215–315. North Holland, Amsterdam, 1980.

http://arxiv.org/abs/gr-qc/0011064
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interstitials) could be approached by a non-metric part of an affine connection. Finally, he also 
considered that the introduction of other topological defects such as disclinations could call on 
even more complex higher-order geometries, such as Finsler or Kawaguchi geometries. 
Kröner's analogies between the mechanics of continuous media and the great modern theories 
of physics are undoubtedly the most famous. However, none of this previous research had gone 
as far in highlighting analogies as the approach presented in this book.

In search of a Theory of Everything

One of the fundamental problems of modern physics is the search for a Theory of Everything 
capable of explaining the nature of space-time, what matter is and how matter interacts. Since 
the 19th century, physicists have sought to develop theories of unified fields, which should 
consist of a coherent theoretical framework capable of taking into account the various funda-
mental forces of nature. Some attempts to find a unified theory include:
- The “Great Unification” which brings together the electromagnetic interaction forces, the weak 
forces and the strong forces,
- Quantum Gravity, Quantum Loop Gravitation, and String Theories, which seek to describe the 
quantum properties of gravity,
- Supersymmetry, which proposes an extension of space-time symmetry connecting the two 
classes of elementary particles, bosons and fermions,
- The Theories of Strings and Superstrings, which are theoretical structures integrating gravity, 
in which the point particles are replaced by one-dimensional strings whose quantum states 
describe all the types of elementary particles observed,
- M Theory, which unifies five different versions of string theories, with the surprising property 
that extra-dimensions are required to ensure its consistency.

However, none of these approaches is yet capable of explaining in a consistent manner and 
at the same time the electromagnetism, relativity, gravitation, quantum physics and the 
elementary particles observed. Many physicists believe that the 11-dimensional M Theory is the 
Theory of Everything. However, there is not a broad consensus on this point and there is 
currently no candidate theory capable of calculating experimental quantities known as the fine 
structure constant or the mass of the electron. Particle physicists hope that the future results of 
current experiments - the search for new particles in large accelerators and the search for dark 
matter - will still be necessary to define a Theory of Everything. But this research seems to 
really stagnate for several years, and several physicists now cast serious doubts on the 
aptitudes of these theories. On this subject, I strongly advise readers to consult among others 
the books of Smolin , Woit   and Hossenfelder .12 13 14

 Lee Smolin, «The trouble with Physics», Penguin Books 2008, London, ISBN 978-0-141-01835-512

Lee Smolin, «La révolution inachevée d’Einstein, au-delà du quantique», Dunod 2019, ISBN 
978-2-10-079553-6
Lee Smolin, «Rien ne va plus en physique., L’échec de la théorie des cordes», Dunod 2007, ISBN 
978-2-7578-1278-5

 Peter Woit, «Not Even Wrong, the failure of String Theory and the continuing challenge to unify the laws 13

of physics», Vintage Books 2007, ISBN 9780099488644

 Sabine Hossenfelder, «Lost in Maths», Les Belles Lettres 2019, ISBN978-2-251-44931-914
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In this book, the problem of unifying physical theories is dealt with in a radically different way. 
Instead of trying to build a unified theory by tinkering with an assembly of existing theories, 
making them more complex, even adding strange symmetries and additional dimensions for 
their "mathematical beauty", I start exclusively from the most classic fundamentals concepts of 
physics that are Newton's equation and the first two principles of thermodynamics. Using these 
fundamental principles, and by developing an original geometry based on the Euler coordinates, 
I come, by a purely logical and deductive path, to suggest that the Universe could be a crystal, a 
three-dimensional lattice, elastic and massive, and that the constituent elements of Ordinary 
Matter could be structural defects (hereinafter called topological singularities) of this crystal 
lattice, namely various loops of dislocation and disclinations which we will describe in detail. I 
find, for an elastic isotropic lattice satisfying Newton's law, with specific hypotheses on its elastic 
properties, that the behaviors of this lattice and its topological singularities regroup “all” the 
physics currently known, by spontaneously appearing very similar analogies, strong and often 
perfect, with all the major current physical theories of the Macrocosm and the Microcosm, such 
as Maxwell's Equations, Special Relativity, Newtonian Gravitation, General Relativity, Modern 
Cosmology, Quantum Physics and the Standard Model of Elementary Particles. In addition, by 
studying lattices with special symmetries called axial, symbolically represented by “colored” 3D 
cubic lattices, I was able to identify a lattice structure whose topological singularities in loops 
perfectly coincide with the complex zoology of elementary particles, which could open up a very 
promising field of investigation for particle physics.

This theory, published in my second book "Universe and Matter Conjectured as a Three-
Dimensional Network with Topological Singularities"3, does not pretend to present a Theory of 
All which would already be fully developed and usable, but it should and could by against 
proving to be extremely fruitful in giving simple explanations to modern physical theories whose 
deep meaning it is difficult, if not impossible, to understand, but also and above all to define 
close links and unifying bridges between the various major theories of modern physics.

The aim of this book is therefore to make this theory known to an informed and interested 
public, by approaching it in the simplest possible way, on the basis of numerous figures, by 
explaining it "with the hands" and by trying to avoid as much as possible the development of the 
underlying mathematical equations. On the other hand, I think that it is important to highlight the 
most fundamental equations of theory in figures, but without it being necessary to understand 
them. Regarding the organization of the content of the book, I tried to follow as closely as 
possible the plan of the initial theoretical book, so that those interested could refer directly to the 
complete mathematical treatments it contains.

In this book, I begin by autonomously summarizing the theory2 published initially in 2013, 
which methodically laid the foundations for an original approach to solid lattices by Euler 
coordinates, and which also introduced in detail the concept of charge of dislocation and 
disclination within a crystal lattice, a concept which makes it possible to quantify structural 
defects, topological singularities, which can appear on the microscopic scale of such a lattice. 

On the basis of this original approach of solid lattices and their topological singularities, I 
deduce a set of fundamental and phenomenological equations which makes it possible to treat 
in a very rigorous way the macroscopic spatio-temporal evolution of a solid Newtonian lattice 
deforming in the absolute space of the laboratory of an observer outside this lattice.
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I then introduce an imaginary lattice, with fairly special elastic and structural properties, the 
concept of which was imagined and published in 2016 in my second book1, and which I have 
pompously described as a "cosmological lattice". By means of some judicious conjectures, 
Newton's equation of this lattice and the topological singularities which it can contain then 
present a set of very astonishing properties, which will gradually appear strong and surprising 
analogies with all the major current physical theories, such as sums up well the "breadcrumb of 
the book".



Chapter 1 

Eulerian theory of deformable Newtonian lattices 

To describe the spatio-temporal evolution of the deformation of a solid lattice, it is first 
necessary to define a reference system for making space and time measurements in the 
laboratory. For this, we have the choice between several possible coordinate systems, and we 
will choose here the Euler coordinate system for several reasons which will be explained in 
detail. Following this choice, it becomes possible to describe how the deformation of a lattice 
can be characterized by distortions and contortions. But to quantify these distortions and 
contortions, it will be necessary to use mathematical objects called scalars, vectors and tensors. 
We will therefore try to explain simply these mathematical objects, and why we systematically 
use a vector representation of tensors, which has undeniable advantages over the purely 
tensorial representation, if only by the possibility of using powerful formalism of a mathematical 
tool called vector analysis. This crucial choice makes it possible to fairly easily obtain equations 
which ensure the solidity of the lattice, known as geometro-compatibility equations, and 
equations which make it possible to describe the kinetics of the deformation, known as 
geometro-kinetic equations.

The basic concepts of physics, namely Newtonian dynamics and Eulerian thermokinetics, 
can then be introduced in this topological context. With all these ingredients, it then becomes 
possible to describe a number of specific behaviors of deformable solid lattices, such as 
elasticity, anelasticity, and self-diffusion.

Coordinate systems to describe the deformation of a medium

If an observer, who we will call hereafter Great Observer GO, wishes to describe in his 
laboratory the evolution of a certain continuous medium which moves in space by translation 
and rotation, and which, moreover, can deform at over time (figure 1.1), it must first define the 
kinetic behavior of the medium. Taking as a basic axiom that the evolution of the medium in 
space and time satisfies the principle of additivity of velocities, namely that the velocity of an 
object moving at velocity v1 with respect to another moving object at velocity v2 in the laboratory 
will have a velocity v1 + v2 in the laboratory, we will then have to deal with kinetics satisfying the 
transformation of Galileo, and called Galilean kinetics. In this case, the observer GO can 
describe this spatio-temporal evolution on the basis of an absolute reference system placed in 
his laboratory. This frame of reference is composed of an orthonormal Euclidean coordinate 
system , that is to say of three rules of unit length, oriented perpendicularly to each 
other and represented by three arrows which are called the base vectors  of the 
coordinate system, and of a universal clock ensuring that time  is measured identically 
everywhere in the laboratory (figures 1.1 and 1.2).

To describe the spatio-temporal evolution of a deformable continuous medium, the observer 
then has several possibilities among which the Lagrange coordinate system, used to describe 

Ox1x2x3
(!e1 ,
!e2 ,
!e3)

t
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the deformation of solids, and the Euler coordinate system, 
used in general to describe the hydrodynamics of fluids.

To simply and completely describe the spatio-temporal 
evolution of a solid continuous medium, the observer GO can 
use the Lagrange coordinate system. First, it performs a 
marking of the solid material medium at the initial instant  
using a grid of points .

Then, he can define a stationary reference frame  
in his laboratory. By providing this fixed frame  with 
unit length rules , and by orienting it judiciously with 
respect to the initial position of the medium at the instant 

, it can measure the position of all the points  of the 
medium at the initial instant  using of arrows, vectors  .1

At a point  in time, a point  in the middle will have moved to , and the observer 
can then connect the point  to the point  using an arrow, the vector  which is called the 
displacement vector of point . As this vector depends on the initial position  of the point  
and time , the set of vectors  identifying all the points of the medium is called the 
displacement field of the medium in Lagrange coordinates.

The Lagrange coordinate system is therefore based on the description of the evolution in 
space and time of the vectors  of the displacement field defined above, knowing the 
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 Vector: a vector is a mathematical object corresponding to an arrow oriented in space. A vector actually 1

represents a physical quantity described by three numbers which correspond respectively to the lengths of 
the three projections of the arrow on the axes  of the coordinate system. We speak of a vector 
field when a vector physical quantity takes different values at all points in space and over time.
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coordinates  of all the points of the initial solid in the fixed 
frame  of the laboratory of the observer, as illustrated 
in figure 1.1.

By using previously the expression of continuous medium, 
one appealed to an intuitive concept, namely that a medium 
presents, on the macroscopic scale where it is observed, 
neither discontinuous structure in the static state, nor 
appearance of discontinuities, such as tears, local ruptures or 
cavity formations during its spatio-temporal evolution.

From the macroscopic observation of the behavior of the 
medium, and in particular of the continuity of the displacement 
field , it is possible to attribute qualifiers to the medium 
observed. If the medium presents a perfectly continuous displacement field during its spatio-
temporal evolution, it is qualified as solid medium. It then has the macroscopic property of 
having its own form which is difficult to modify.

If, on the other hand, the medium has a discontinuous displacement field , forming over 
time an inextricable entanglement, it is qualified as a fluid medium. This has the macroscopic 
property of flowing and must therefore be kept in a container whose shape it follows. In this 
case, the displacement field  of the Lagrange coordinates loses all physical significance, and 
only the vector velocity  of the fluid located at the instant  at the space coordinate  of 
the absolute reference frame retains a physical meaning. This definition of the movements of 
the medium by the observer GO is called the Euler coordinate system.
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The Euler coordinate system is therefore based on the description of the evolution in space 
and time of the vectors of the velocity field  of the points of the fluid or solid medium 
located at the space  and time  coordinates in the absolute coordinate system  of 
the observer GO laboratory (figure 1.2).

What is a solid lattice?

The concept of continuous medium defined above only applies when this medium is 
observed on a macroscopic scale. Indeed, an enlargement of the same medium on a sufficiently 
microscopic scale will reveal a discontinuous collection of objects, to which we will attribute in 
the following the generic name of particles (for example corpuscles, atoms, molecules, etc.). We 
logically conclude that the global phenomenological properties observed at the macroscopic 
scale where the medium appears continuous are in fact statistical effects resulting from the 
large number of particles interacting with each other at the microscopic scale.

The enlargement of the medium also makes it possible to define certain important 
microscopic characteristics of the medium, such as its structure, that is to say the way in which 
the particles which compose it are assembled, and its chemical composition, that is to say ie the 
nature of the particles that compose it.

A continuous medium will be said to be solid when, on the microscopic scale, it corresponds 
to a collection of particles such that the identity of the nearest neighbors of a given particle does 
not change over time. In other words, each particle is connected to its closest neighbors by 
elastic bonds which prevent it from moving at a great distance from these. Consequently, only 
relative movements at a short distance from its closest neighbors are allowed to it via the 
elasticity of the bonds. Under the effect of these bonds, it is said that the particles then form a 
solid lattice.

It is possible to define different classes of solid lattices, according to the arrangement of the 
particles with respect to each other. If the arrangement of the particles presents a well-
established order, which is repeated at great distance by translation of an elementary cell, we 
speak of a lattice of crystal structure. For example, the three-dimensional lattices drawn in 
figures 1.1 and 1.2 are obtained by the translation of a cubic unit cell, and they present a perfect 
order both at long distance and at short distance. The same is true of the two-dimensional 
lattice shown in figure 1.3a, which is obtained by translation in space of a hexagonal cell.

Certain solid lattices can present arrangements of particles having no order at long distance, 
but only a certain order at short distance. We speak in this case of an amorphous lattice 
structure. The two-dimensional example shown in figure 1.3 (b) represents an amorphous lattice 
of particles, obtained by tiling the surface with pentagons, hexagons and irregular heptagons, 
whose sides have a fixed length. The short-range order of the amorphous lattice is reflected in 
the fact that each of the particles has exactly three closest neighbors.

There can also exist solid lattices whose arrangement of particles does not present an order 
by translation at long distance, but a certain order by rotation. In this case, we are talking about 
a lattice of quasi-crystalline structure, the example of which in figure 1.3 (c) clearly shows the 
absence of order by long-distance translation. This lattice is obtained by two-dimensional tiling 
using two different types of rhombuses with different angles at the top (in this case, we speak of 
Penrose tiling). At first glance, this lattice seems amorphous. But the more detailed analysis of 
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figure 1.3 (d) shows that the particles are aligned on parallel lines between them. The distances 
between particles aligned on a straight line, as well as the distances between parallel straight 
lines, are not regular. There are in fact five preferred directions for the orientation of these 
alignments of particles. This two-dimensional quasi-crystalline structure therefore has a form of 
symmetry by rotation of order five, which is prohibited in the case of a crystalline structure 
obtained by translation of a basic pattern.

The examples given in figure 1.3 are two-dimensional representations. It is therefore still 
necessary to generalize these concepts to three-dimensional space. In three dimensions, the 
crystal lattices are formed by the translation of a three-dimensional elementary cell which is 
called the unit cell of the lattice (figure 1.4). The crystal lattices can be classified according to 
the operations of rotational symmetry, reflection and inversion with respect to a point which it is 
possible to apply to the elementary unit cell of the lattice. These symmetry operations lead to 
the existence of fourteen different lattices, called Bravais lattices, which are shown in Figure 1.4. 
These fourteen Bravais lattices can be further broken down into seven crystalline systems 
(triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal and cubic) by 
considering the way in which space is paved by the elementary unit cell. For some of these 
seven crystalline systems, there may be different types of lattices (P, C, I or F), which 
correspond to the different patterns of filling of the elementary unit cell with particles.

It is interesting to note that the pattern of filling of a unit cell by the particles can lead to 
different values of the number of alternative sites specific to each unit cell and which can 
contain a bound particle. For example, in the case of the cubic structures represented in figure 
1.4, the number of sites specific to a unit cell is 1 for the simple cubic system, 2 for the centered 
cubic system and 4 for the cubic system with centered faces.

In the case of non-ordered solid media, such as amorphous media, quasi-crystalline media 
or polycrystalline media with very fine grains, the notion of lattice unit cell no longer has any 
meaning. On the other hand, the concept of lattice site retains a precise physical meaning, even 
if there is no single elementary unit cell.
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In the case of an ordered solid lattice, structural defects may appear in the regular assembly 
of the lattice particles. These structural defects have various origins, such as irregularities in the 
chemical species of the objects making up the lattice, or topological singularities, that is to say 
irregularities in the topological structure of the lattice, such as dislocations or disclinations which 
will be discussed later, and they can be classified into point, linear or planar defects according to 
their topology in the lattice.

It is also by observations of the dynamics at the microscopic scale, during the macroscopic 
spatio-temporal evolution of the lattice, that it will be possible to understand the objective 
reasons for certain macroscopic behaviors. For example, we will see that there are close links 
between the macroscopic deformation properties of ordered lattices and the lattice unit cell 
distortions induced by the presence of mobile topological singularities within the lattice, such as 
dislocations or disclinations.
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In conclusion, a complete description of the spatio-temporal evolution of a lattice which can 
be considered as continuous on the macroscopic scale cannot absolutely do without the 
description of the phenomena occurring on the microscopic scale. The search for a theory 
describing the macroscopic spatio-temporal evolution of a deformable continuous lattice must 
therefore be based on the definition of mean macroscopic fields (scalar, vector and tensorial in 
nature) deduced from a statistical description of the dynamics at the microscopic scale of a 
multitude of objects interacting with each other.

To describe a solid lattice, it is therefore perfectly possible to use the Lagrange coordinate 
system or the Euler coordinate system. However, using Lagrange coordinates to describe 
deformable solids presents a number of inherent difficulties. From a mathematical point of view, 
mathematical objects (tensors) describing the deformations of a continuous solid in Lagrange 
coordinates are always very complicated (of order greater than one in the spatial derivatives of 
the components of the displacement field), which leads to a mathematical formalism very 
difficult to manage when a solid presents strong distortions (deformations and rotations). To 
these mathematical difficulties are added physical difficulties when it comes to introducing 
certain known properties of solids. Indeed, the Lagrange coordinate system becomes practically 
unusable, for example when it is necessary to describe the temporal evolution of the 
microscopic structure of a solid lattice (phase transitions) and of its structural defects (point 
defects, dislocations, disclinations, joints, etc.), or if it is necessary to introduce certain physical 
properties of the medium (thermal, electrical, magnetic, chemical, etc.) resulting in the existence 
in real space of scalar, vector or tensorial fields. Given the complexity of the calculations 
obtained in the case of the Lagrange coordinate system, which is however generally used to 
describe solids, it was desirable to try to develop the description of solids using the Euler 
coordinate system, which is generally used to describe fluids. This approach to deformable 
solids by Euler coordinates, which is ultimately much simpler and much more rigorous than that 
obtained with Lagrange coordinates, was developed and published in 2013 in the book 
"Eulerian theory of deformable media"  .2

Definition of local quantities in Euler coordinates

In the case of a collection of particles in space in the liquid or solid state, each particle  has 
its own velocity represented by a vector  (figure 1.5). To determine an average local velocity 
of the particles, you need to fix a small volume element  centered on the space coordinate 

, then measure the velocities  of all the particles contained in the fixed volume .
If the instantaneous number of particles in this volume  is equal to , and that  is 

sufficiently large, the average velocity  at the place  and at the time  is defined by the 
average of the velocities  taken on all the particles contained in .

If an average velocity  other than zero is measured, it also means that, for each particle, it 
is possible to find a fluctuation  at average velocity  by the relation .
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In the case of a solid lattice, the existence of an average velocity  other than zero 
implies that the solid lattice of particles is subjected to a collective movement. The velocity 

 therefore represents the average local velocity of movement of the particles linked to 
the lattice sites, therefore the average velocity of the lattice sites (figure 1.2), while the  are 
the velocity fluctuations of the particles linked to the lattice around each of these sites. For 
example, in a real solid, such fluctuations are due to the disordered movements of the thermal 
agitation of the particles, which are in direct relation with the temperature of the medium.

Apart from the average local velocity  of a solid lattice, there is another quantity which 
will be called upon to play a fundamental role in Euler coordinates: it is the volume density of 
elementary substitutional sites of the lattice, which will be written with the symbol , and which 
represents the number of lattice sites contained in the volume unit of the lattice. In the case of 
figure 1.5, this number  represents then the number of particles contained in the volume  
when one chooses a volume  equal to the unit. This choice implies then to define all the 
physical quantities characterizing the solid lattice like average values taken on each site in the 
lattice. It is also clear that, in the case of unordered lattices, the quantity  can also be related 
to the density of elementary sites of the unordered lattice.

The volume density  of substitutional sites of the solid lattice presents a direct link 
with the notion of volume expansion of the medium, since  for intense expansions and 

 for intense contractions. This notion of expansion of the lattice volume can be 
expressed even better by introducing a quantity  defined as the inverse of , that is to say 

. Indeed, this quantity  has for dimension a volume. It represents the average volume 
occupied by a solid lattice site. This volume  translates well the notion of volume expansion of 
the medium, since  for intense expansions and  for intense contractions.

But it is even more interesting to introduce a dimensionless value using the natural logarithm 
of  thanks to the relation . There appears then a dimensionless 

 
!
φ(!r ,t)

 
!
φ(!r ,t)

 Δ
!vi

φ
!
(!r ,t)

n

n Vf
Vf

n

n(!r ,t)
n→ 0

n→∞
v n

v =1/n v
v

v→∞ v→ 0

v τ = − ln(n/n0)= ln(v /v0)



Eulerian theory of deformable Newtonian lattices 17

scalar   which will be called scalar of volume expansion, depending on the coordinates 3

of space  and time  within the lattice, and this time perfectly measuring the notion of volume 
expansion of the lattice, since  for intense expansions (when ),  for 
intense contractions (when ) and  when . By the construction of the scalar 

, the constants  and  introduced here can be adjusted so that the scalar  is zero when 
the lattice is in the state of expansion of rest. Figure 1.6 illustrates an example of velocity fields 
which leads to a uniform volume expansion of the medium which goes from a certain value of  
at the instant  to a greater value of  at the instant , without the volume expansion 

 depending on the place where it is measured.

Distortions of a solid lattice

In the presence of a non-zero velocity field  in space, a lattice can present 
movements which do not lead to any deformation, such as the global translation of the medium 
(figure 1.7a) or the global rotation of the medium (figure 1.7b ).

But there can also exist non-zero velocity fields  in space which lead to real 
deformations of the medium, such as for example the volume expansion of the medium 
described above (figure 1.6), the pure shear with zero volume expansion of the medium ( figure 
1.8) or the zero volume expansion elongation of the medium (figure 1.9). There may also 
appear much more complicated velocity fields leading for example to local rotations with non-
uniform shearing of the medium (Figure 1.10a) or to non-uniform expansions of the medium 
which lead to an expansion which depends not only on time, but also space coordinates (figure 
1.10b).

In the presence of a non-homogeneous velocity field  in space, a lattice can therefore 
present, in addition to a global translation and a global rotation, movements corresponding to all 
kinds of deformation. To explain in detail the behaviors of global and local rotation and the 
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Chapter 118

behaviors of deformations, which will be called generically distortions of the lattice, it is 
necessary to introduce topological quantities having to translate these distortions.

An elegant way of proceeding in Euler coordinates is to note that the scalar volume 
expansion field  defined above is already a scalar topological quantity which perfectly 
describes the volume expansion of the medium. We can then show that this scalar is in fact 
deductible from a more complicated topological quantity, namely a tensor  of second order 4

which is called the tensor of distortion . A tensor of order two is a mathematical object 
represented by an array 3 of 3 of nine different numbers (figure 1.11).

These nine numbers are then sufficient to describe perfectly the set of global and local 
rotations and deformations of the solid lattice. But as the manipulation of this tensor is 
mathematically quite complicated, and especially since it generally camouflages the real 
physical behavior of the medium, we choose an entirely original way of representing it in the 

τ
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 Second order tensor: second order tensor is a mathematical object represented by an array 3 of 3 of 4

nine different numbers. A tensor of order two actually represents a physical quantity described by nine 
numbers. It can be very convenient to represent a tensor of order two using three vectors in the Euler co-
ordinate system. We speak of a tensor field of order two when a tensorial physical quantity takes different 
values at all points in space and over time.
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form of three vectors. Thus, the tensor field of lattice distortion  will be represented for 
convenience by a field of three vectors , remembering that a vector is an arrow 
oriented in space composed of three numbers. This vectorial representation of the tensor fields 
is completely original and extremely powerful, because it makes it possible mathematically to 
call upon the spatial operators of the vector analysis, and it then considerably simplifies the 
physical interpretation of the tensor fields.

It is possible to apply symmetry operations on the distortion tensor  to extract the details 
of the rotations and the deformations of the medium. The operation of carrying out the sum of 
the diagonal elements of the tensor, namely , provides a scalar called the trace 
of the tensor and which is in fact nothing other than the scalar of volume expansion . 

The operation of taking the symmetrical part of the distortion tensor provides a symmetric 
tensor of second order , called the strain tensor, which represents all the deformations of the 
medium, but without the global rotations of the medium. 

The operation of taking the anti-symmetrical part of the distortion tensor provides an axial 
vector , called the rotation vector, which represents all the local and global rotations within 
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the medium.
Finally, by removing its trace from the strain tensor , we obtain a symmetric tensor of 

second order without trace , called the shear tensor, which represents the set of shears of 
the medium. These operations of symmetry are described in figure 1.11, where, for the fine 
connoisseurs of vectorial computation, one made explicitly appear the mathematical operations 
of symmetry used, as well as the relation existing between the scalar of volume expansion, the 
density of sites of the network and the volume per network site.

Geometro-kinetics of a lattice in Euler coordinates

In Euler coordinates, we describe the evolution of the solid network in space and time using 
the vectors of the velocity field  of the points of the lattice located at the space and time 
coordinates  and  in the absolute reference frame  of the laboratory of the observer 
GO (Figure 1.2). However, if there is a non-homogeneous velocity field within the lattice, there 
must necessarily appear a spatio-temporal evolution of the distortions within this lattice. In Euler 
coordinates, the relationships between the velocity field  and the evolution of the 
distortion tensor , the rotation vector  and the volume expansion scalar  will be called the 
geometro-kinetic equations. These equations are shown in figure 1.12.
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Geometro-kinetic equations actually link the temporal variations of the distortions of the solid, 
which are calculated along the trajectory of the particles of the medium using a mathematical 
operator of time called the material derivative , with the spatial variations of the velocity field 5

 of the medium, which are calculated using mathematical space operators from vector 
analysis applied to the velocity field, and which are called the gradient  in the case of the 6

distortion tensor, the curl  in the case of the rotation vector and the divergence  in the case of 7 8

the scalar of volume expansion. In these geometro-kinetic equations, there also appears a 
quantity  which corresponds to the possibility of the existence of a mechanism which can 
create or destroy lattice sites. This quantity  is called the source of lattice sites, and 
corresponds to the number of lattice sites created or destroyed per unit of time and per unit of 
volume of the lattice. The mechanisms leading to such sources of lattice sites will be discussed 
later.

Geometro-compatibility of lattice distortions

We have previously shown that the description of solids in Lagrange coordinates is 
characterized by a displacement field . Indeed, in Lagrange coordinates (figure 1.1), the 
solid is described by a vector  locating the initial position of all its points in the reference frame  

 of the observer GO. The Lagrange displacement vector field then makes it possible to 
locate in space at the instant  the position of all the points of the solid initially located at the 
coordinate  in the coordinate system .

It is intuitively clear that the description of the distortions of a solid in Euler coordinates 
should also make it possible to find such a displacement field. Indeed, in Euler coordinates 
(figure 1.2), the deformed solid is described at instant  in the absolute frame of reference of 
the observer GO. For a point  of the solid located at the coordinate  of this frame of 
reference it must be possible to define a displacement vector  which connects this point 

 to the place  where the same point  of the solid was located at the initial instant .
There is a close link between the particle time derivative of the distortion tensor  and the 

gradient of the components of the velocity field  as shown in the geometro-kinetic 
equation reported in figure 1.12. However, the velocity field  itself must be closely related 
to the temporal variation, called the temporal derivative, of the displacement field . It is 
therefore deduced that there must necessarily be a close link between the distortion tensor  
and the gradient of the displacement field  if the latter exists, and that the distortion tensor 

 is very probably the gradient tensor  of the components of the displacement 
field  .
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Even if this reasoning seems complicated, it spontaneously leads to a mathematical 
condition on the distortion tensor  so that there really exists a displacement field . Indeed, 
in vector analysis, we demonstrate an unavoidable mathematical property, namely that the curl 
of a gradient is necessarily zero. Consequently, for there really exists a displacement field  in 
coordinates of Euler, it is necessary that the curl of the tensor of distortion  is null, therefore 
that .

This equation is called the geometro-compatibility condition of the distortion tensor , and it 
ensures that there is indeed a continuous displacement field  in Euler coordinates. Note 
again that if we take the trace of the geometro-compatibility equation for , in other words the 
sum of the diagonal elements of the tensor , we find a new geometro-compatibility 
condition which then applies to the rotation vector , namely that the divergence of the vector 
of rotation  must be null so that there exists a field   of continuous displacement in 
coordinates of Euler. These two geometro-compatibility equations are essential to ensure that a 
solid does not tear and that there do not appear any cavities during its space-time evolution. 
The various operations performed on the distortion tensors are summarized in figure 1.13.

The physical interpretation of these two geometro-compatibility conditions can be illustrated 
quite easily by the drawings shown in figures 1.14 and 1.15. The compatibility condition

 for the distortion tensor  implies that the displacement field  has good 
continuity properties. To show it, it suffices to consider a closed contour  within the medium, 
and to transfer the vectors of displacement  along this contour (figure 1.14). If the medium 
presents a field of distortions satisfying the condition of compatibility , the vector of 
closure , called dislocation of the medium, is null, which effectively means from a topological 
point of view, that there are no discontinuities of displacements, called dislocations, in the 
medium.

The existence of a displacement field  without discontinuities makes it possible to ensure 
the topological connectivity of the medium, that is to say from a physical point of view the fact 
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that there was no localization of the distortions, such as tears followed by a sliding of the jaws 
relative to each other, as well as the topological compactness of the medium, that is to say from 
a physical point of view the fact that it does not appear cavity formations or overlaps within the 
medium. In summary, the condition  ensures the solidity of the medium.

To find the meaning of the compatibility condition  for the rotation vector , we 
draw the rotation vector  on a closed surface  surrounding a volume  of solid (figure 
1.15). The compatibility condition for the rotation vector  then stipulates that the flow of the 
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rotation field crossing the closed surface  is zero, which implies that there is no divergent 
singularity of the rotation field within the solid, such as that shown in the drawing in figure 1.15.

Contortions of a solid lattice

In a solid lattice, the fields  represent the set of distortions, deformations, 
shears, rotations and volume expansions that the lattice unit cells undergo locally. If each unit 
cell is subjected to a field of distortion, which can vary from one cell to another, it must also 
appear effects of flexion and torsions on a more macroscopic scale of the solid medium, related 
to the lattice continuity.

These "curvatures" of the solid will be called the contortions of the lattice. In a geometro-
compatible medium, they depend in fact only on deformations of the lattice, and are therefore 
deduced as spatial variations of the deformation field  in the manner illustrated by the 
diagram in figure 1.16. A contortion tensor  then appears, which can be broken down by 
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symmetries into a flexion vector  and a transverse symmetric tensor (without trace) of torsion 
.

In a geometro-compatible medium, the contortions of the lattice are also closely linked to the 
spatial derivatives of the rotation vector  as shown by the mathematical relationships giving 
the contortion tensor  and the flexion vector  in figure 1.16. These must therefore also 
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measure variations in rotations within the solid, such as twists or bends. We can therefore 
define more precisely the meaning of these tensors   and  using two typical examples of 
spatial variations of .

In the first example, a bent medium presents a rotation vector parallel to the axis , and 
which increases in the direction of the axis , as represented in figure 1.17. In this case, 
there is a non-diagonal component  of the tensor  which is not zero, and 
this component is associated with the bending of the solid as well illustrated by the figure 1.17.
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But in the case illustrated in figure 1.17, the vector  seems to turn around the axis Ox1 so 
that there is a non-zero flexion vector  parallel to this axis as illustrated in figure 
1.17.

In the second example (figure 1.18), we represent an increase along axis of a rotation 
vector parallel to axis . For once it is a diagonal component  of the 
tensor  which necessarily becomes non-zero. And we see that this corresponds to a torsion 
of the solid medium.

In these two examples, it has been illustrated that spatial variations in the rotation vector  
do indeed lead to bending or twisting of the solid medium. But in a geometro-compatible 
medium, these same bends and twists are also deductible directly from the strain tensor .

Geometro-compatibility of lattice contortions

In the table of figure 1.16, we note that there are also two geometro-compatibility conditions 
for the contortion tensor  and the flexion vector  respectively, in a very similar way as in 
the case of the distortion tensor and the rotation vector.
 The condition of compatibility  of the contortion tensor  can be interpreted by 
considering a closed contour  within the medium and by plotting the local rotation vector  
deduced from the strain tensor along this contour (figure 1.19). The condition of compatibility 
implies then that the closure vector , called the Frank vector, is zero, which means from a 
topological and physical point of view that there are no discontinuities of rotations by 
deformation, which are called disclinations in the medium.

The condition of compatibility  of the flexion vector  is interpreted by 
considering a closed surface  surrounding a volume  of medium (figure 1.20). The 
compatibility condition for the flexion vector  then stipulates that the flow of the bending field 
crossing the closed surface  is zero, which implies that there is no diverging singularity of the 
flexion field within the solid, such as that shown in the drawing in figure 1.20.

Newtonian dynamics and Eulerian thermokinetics

It has been shown previously that a solid collection of particles in space can present a 
collective movement which corresponds to the global movements of 
translation, of global and local rotation and of deformation of the 
medium in the space of the observer, and that, in Euler coordinates, 
these movements are described by an average local speed 

. To go further in the description and prediction of these 
movements, we must now introduce the physical principles to which 
the environment obeys.

We suppose then that the solid lattice considered behaves in a 
Newtonian way in the absolute reference frame of GO, in other 
words that the dynamics of the particles of the medium satisfy 
Newton's law  which implies that the acceleration  of a 
particle is related to the force  that we apply to it via the mass of 
inertia  of the particle. In addition, we also admit that the physical 
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behaviors of the particle lattice obey the first two principles of thermodynamics, which have 
never been faulted, namely that energy is a conserved quantity, and that there exists a quantity 
called entropy which measures the state of disorder of the lattice.

We are going to introduce here rigorously the Newtonian dynamics and the thermokinetics of 
the lattice in Eulerian coordinates, starting from these three completely classic and well-known 
basic physical axioms. With this axiomatic and rigorous approach, we are led to define average 
quantities per site of the lattice, as well as sources and flows of physical quantities, which must 
satisfy three principles of continuity shown in figure 1.21.

Admitting the axiom that the individual movement of each particle of the lattice satisfies a 
Newtonian dynamic, namely the Newton's law , to the movement of each particle at 
velocity  must correspond a momentum and a kinetic energy. Per particle, according to 
Newtonian mechanics, the momentum is written  and the kinetic energy is written 

. These expressions of the momentum and the kinetic energy of a particle of the 
medium calls upon a conservative scalar physical quantity, specific to the particle: its mass of 
inertia or inert mass . In Euler coordinates, we show that the conservation of the mass of 
inertia leads to a principle of continuity for the mass of inertia which is reported in figure 1.21.

This principle links the local temporal variation  of the quantity of mass contained in 
the volume unit of the medium, which is called the mass density  of the medium, to: (i) the 
existence of a volume source of mass , associated with creation or annihilation of mass 
within the medium and which is generally zero due to the principle of conservation of mass, (ii) 
the temporal variation  of the scalar of volume expansion of the medium along the 
trajectory of its particles, (iii) the existence of a source  of lattice sites and (iv) the existence 
of a mass transport flow , i.e. a mass displacement by 
another physical process within the lattice, such as the self-
diffusion which we will talk about later.

The movements of random fluctuations  of the medium 
particles corresponding to thermal agitation and the attractive or 
repulsive interactions that may exist between the particles of the 
medium must correspond respectively to an internal thermal 
energy and an internal potential energy. It is precisely the 
subject of the axiom of the first principle of phenomenological 
thermodynamics, which postulates the existence, for a given 
physical system, of a function depending on the state of the 
system, called the internal energy of the system, which is such 
that, for any infinitesimal transformation of the system (any 
infinitesimal variation of one of the physical quantities of the 
system), we have the relation , where  represents the variation of the 
internal energy of the system,  represents the set of heat exchanges between the system 
and the outside world, and all of the work exchanges between the system and the outside 
world.

In the case of a solid lattice moving at velocity , the total energy is linked both to its internal 
energy and to its kinetic energy of global movement at velocity . In Euler coordinates, we 
show that the conservation of the energy of the deforming solid leads to a principle of continuity 
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for the total energy which is shown in figure 1.21. By expressing the average internal energy  
and the average kinetic energy  per lattice site, the continuity principle of energy states that 
the sum of the variations of internal energy  and kinetic energy  taken along the trajectory 
of the particles depends on: (i) the existence of an external work source corresponding to a 
supply of mechanical energy from outside the medium, (ii) the work flow , i.e. exchanges of 
mechanical energy within the medium, (iii) the heat flow , that is to say heat exchanges within 
the medium, and (iv) the source  of lattice sites, that is to say the creation or annihilation of a 
certain number of lattice sites per unit of time.

The second principle of phenomenological thermodynamics postulates the existence, for a 
given physical system, of a function  depending on the state of the system, called the entropy 
of the system. This function in fact characterizes the state of disorder reigning within the system, 
and it is such that any infinitesimal transformation of the system satisfies the relation

 where  represents the variation of the entropy of the system,  represents 
the set of heat exchanges between the system and the outside world and  is the temperature 
of the system.

In Euler coordinates, we show that the second principle of phenomenological 
thermodynamics leads to a principle of continuity for the entropy which is reported in figure 1.21. 
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By expressing the average entropy  per lattice site, the principle of continuity of entropy 
stipulates that the variation of entropy  taken along the trajectory of particles depends on: (i) 
the existence of a volume source of entropy , that is to say, the local creation of entropy 
within the medium, (ii) the heat flow  within the medium, (iii) the temperature  of the 
medium which characterizes the state of thermal agitation of the medium particles and (iv) the 
source  of lattice sites.

These three physical principles are absolutely essential in solid media, and they are the only 
fundamental physical principles absolutely necessary for a complete description of Newtonian 
geometro-dynamics and of phenomenological thermodynamics of deformable media in Euler 
coordinates.

Physical properties specific to the medium

The equations of geometro-kinetics (figure 1.12) and geometro-compatibility (figure 1.16), as 
well as the three principles of continuity deduced from Newton's laws and phenomenological 
thermodynamics (figure 1.21) are the basic concepts for the treatment of deformable solid 
media in Euler coordinates, and remain the same whatever the solid considered. But we know 
very well that the physical properties and the macroscopic behaviors that we can observe on a 
solid medium can be very different from one medium to another. These physical properties are 
called the phenomenological properties of the medium. We will therefore now discuss the most 
important phenomenological physical properties of a solid lattice, namely the mechanical 
properties of the lattice, such as elasticity and anelasticity, and the mass transport properties 
within the lattice, such as self-diffusion.

It is common experience that you can bend a hacksaw blade strongly without great effort, 
and that it resumes all its straightness when you release the force that you applied to it. This 
typical phenomenological behavior is called the elasticity of the solid. The elasticity of the 
medium is due to the internal bonding forces between particles of the solid, so that bending the 
saw blade amounts to storing internal energy in the medium, in fact in the bonds between its 
particles, energy which is then used to return the blade to its original shape when released. 
Thus, to introduce this property of elasticity in the Eulerian equations of the medium, one will 
use the average internal energy  per site of lattice which one defined in the preceding 
paragraph, and one will express that this one depends on the deformations applied to the solid, 
in other words elastic deformation fields  appearing in the solid when it is 
deformed. We express this situation by saying that internal energy  is a function

 depending on the state of elastic strain tensors, 
but also on the local entropy of the network, via the average entropy  per lattice site. This 
dependence on entropy reflects the effect on internal energy of the existence of a spatial and 
kinetic disorder within the medium, and in particular the effect of thermal agitation of the 
particles under the effect of heat.

When a solid is deformed, elasticity is an immediate response of the solid. But there can 
sometimes be another response from the solid which is generally added to the elastic response 
and which is delayed in time compared to the solicitation of the solid, but which is also 
recoverable with delay when the solicitation is released. Such a response of the solid is called 
the anelasticity of the solid. While the elastic response does not release thermal energy into the 
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solid, the anelastic response releases thermal energy when activated, and is said to be a 
dissipative process. 

It is this type of process which dissipates the vibration energy of certain metals, such as cast 
iron for example, which are used in industry precisely for this property of damping vibrations and 
noise. When anelastic deformation phenomena are activated in a solid, these also store internal 
energy in the solid, energy which is then used by the solid to restore its initial shape, as in the 
case of elasticity. Anelastic deformations  can therefore appear in a solid, 
which, as in the case of elastic deformations, also modify the function of the internal energy of 
the solid . This means 
that the internal energy of the solid is a function of the state of both elasticity and anelasticity of 
the solid. It will be noted here that, for the sake of simplification, it has been assumed that it 
does exist anelastic volume expansion, that is to say that .

In principle, the existence of a non-zero source  of lattice sites would violate the 
Newtonian principle of mass conservation, unless there is a phenomenon of self-diffusion by 
intrinsic point defects within the lattice. An intrinsic point defect of the lacunar type, simply called 
a vacancy, is a site of the particle solid lattice which has no particles (figure 1.22). It is therefore 
a "hole" in the lattice. An intrinsic point defect of interstitial type, called simply a self-interstitial, is 
a particle which is in the solid lattice, but which does not occupy a regular substitutional site of 
this lattice (figure 1.22). It is therefore an "additional" particle in the network.

It is simple to understand how the presence of such intrinsic point defects can lead to the 
existence of mass transport phenomena by lacunar and / or interstitial self-diffusion. These two 
mass transport mechanisms can be illustrated in a lattice moving at absolute velocity  in the 
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space of the external observer GO (figure 1.22). The movement of a vacancy at velocity  
relative to the lattice in a given direction leads to a relative mass flow in the opposite direction, 
at velocity , while the movement of a self-interstitial at velocity  relative to the lattice 
in a given direction causes a mass flow in the same direction, at velocity .

To transcribe mathematically the existence of these point defects, we must first introduce the 
volume densities of vacancies and self-interstitials, i.e. the number  of vacancies 
and of self-interstitials per volume unit of lattice. From these densities, it is possible 
to define atomic concentrations of vacancies and auto-interstitials with respect to the density  
of network sites by relations  and . Contrary to appearances, there is a 
certain asymmetry between vacancies and auto-interstitials, which is expressed in the fact that 
the maximum atomic concentration of vacancies is always limited to 1, when all the sites of the 
lattice are locally unoccupied, while the atomic concentration of auto-interstitials depends on the 
number of interstitial sites accessible in each unit cell of a lattice with a given structure, and on 
the number of interstitials that it is possible to fit on each of these sites.

We can also introduce the diffusion flows  and  of vacancies and interstitials with 
respect to the lattice, defined by relations   and , and which measure 
the number of vacancies and interstitials that cross the unit surface per unit of time within the 
lattice. We can then deduce the self-diffusion equations reported in figure 1.22, which allow to 
calculate the temporal variations of the atomic concentrations of vacancies and auto-interstitials 
along the trajectory of the medium, on the one hand by the introduction of volume sources of 
vacancies  and interstitials  associated with the number of creations and annihilations of 
vacancies and interstitials per unit of time and per unit of volume, and on the other hand the 
introduction of fluxes  and  of vacancies and interstitials associated with the number of 
mobile vacancies and mobile interstitials crossing per unit time a unit surface within the lattice. 
The principle of mass conservation is then satisfied if the source of lattice sites is directly linked 
to the local creations and annihilations of vacancies and interstitials, that is to say linked to the 
sources  and  of vacancies and interstitials, via the relationship .

In an elastic and anelastic network with self-diffusion, it is intuitively clear that the atomic 
concentrations  and  of vacancies and auto-interstitial must also influence the energy 
state of the lattice, so that the internal energy state function has to be written now as a function 

 of 
the set of thermodynamic variables that characterize the state of the medium.

The presence of vacancies and self-interstitials in the lattice will modify the expressions of 
kinetic energy and momentum expressed as an average value per particle or per lattice site, as 
shown in figure 1.22.

The function  which characterizes the internal energy 
state of the solid lattice is a phenomenological quantity of the considered medium, in the sense 
that it must be established for each medium and that it is specific to each medium. It is 
essentially this which will control the space-time behavior of the medium via thermodynamic 
potentials. Indeed, if we express the temporal variation of the internal energy along the 
trajectory of the medium, we obtain an equation which is called the thermokinetic equation of 
the medium, which is expressed from the relation  as 
shown in figure 1.23.
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This thermokinetic equation reveals mechanical potentials  called the 
stress tensors  and   conjugated respectively to the elastic and anelastic shear tensors 

 and  , the moment vectors  and  conjugated respectively to the vectors of 
elastic and anelastic rotation  and , the pressure  conjugated to the scalar of volume 
expansion . These mechanical potentials represent the internal mechanical forces inside the 
medium, which tend to eliminate the deformations of the medium to restore the undeformed 
state of the solid medium. These mechanical potentials can be deduced from one another 
according to the graph shown in figure 1.23.

The thermokinetic equation also reveals the chemical potentials  and , conjugated with 
the atomic concentrations  and  of vacancies and auto-interstitials respectively. These 
chemical potentials represent in fact the internal chemical forces acting on the vacancies and 
the auto-interstitials within the medium, which tend to eliminate spatial variations in atomic 
concentrations  and  of vacancies and auto-interstitials, in order to restore the chemical 
equilibrium state inside the solid medium.

Finally, the thermokinetic equation still reveals a significant quantity of the medium, namely 
its temperature , which is conjugated with its entropy , and which measures the thermal 
agitation within the medium.
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Potentialities of the Eulerian representation of deformable media

To end this chapter, we represent by a graph in figure 1.24 all the potentialities of the Eule-
rian representation to describe the spatio-temporal evolution of deformable Newtonian media, 
potentialities which are developed in detail in my first book written in French.
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Chapter 2 

Dislocation and disclination charges in a lattice

The description of structural defects, or topological singularities, which can appear within a 
solid, such as dislocations and disclinations, is a field of physics, initiated mainly by the idea of 
macroscopic defects of Volterra  in 1907, which has experienced very fast development during 1

its very rich century of history, as Hirth  illustrated very well in 1985.2

In this chapter, in order to describe the plasticity of solid lattices, we introduce an innovative 
concept of density of dislocation and disclination charges in Eulerian lattices, then we present a 
review of the macroscopic and microscopic topological singularities of the lattice which can be 
associated with dislocation and disclination charges. We then discuss the movement of 
dislocation charges within the lattice, by introducing the notion of dislocation charge flow, and 
we deduce the force acting on a dislocation charge, called the Peach and Koehler force. Finally, 
we present the potentialities inherent in this original approach of topological singularities within 
solid lattices in Euler coordinates.

Macroscopic concept of plastic distortion charges

In the previous chapter, we introduced the elastic and anelastic behaviors of a solid. There is 
yet another behavior that we will deal with now. If you take an aluminum bar and bend it slightly, 
it returns to its initial state if you release the stress that was applied to it, and this is elastic be-
havior. On the other hand, if it is folded very strongly and the stress is released, it no longer re-

turns to its original state, but remains definitively folded. We speak in this case of plastic beha-
vior and plasticity of the aluminum bar.

The description of the plasticity of a solid lattice is sometimes undertaken 
phenomenologically using a plastic distortion tensor . However, this approach is extremely 
limited, in particular by the fact that there is no unequivocal relationship between the local state 
of plastic deformation and the microscopic state of the network of structural defects responsible 
for this plastic deformation. This is the reason why the way of expressing the presence of plastic 
distortions in a lattice must be approached so that it is possible to take into account the 
microscopic state of the network of structural defects. A very elegant way of carrying out this 
modification is to introduce the concepts of densities and fluxes of dislocation charges, 
responsible for the plastic distortions of the solid, as well as densities of disclination charges, 
responsible for the plastic contortions of the solid.

The concept of charges of plastic distortions of the solid, which will henceforth be called 
simply dislocation charges by language shortcuts, is intuitively simple to grasp, if one uses the 
approach1 developed in 1907 by the Italian physicist Vito Volterra. The latter had the idea of 
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considering a pipe of solid material and imagining, either that it is cut and that it is subjected to a 
certain distortion before being glued, or that one removes part of it before being glued again, as 
shown by the examples in figure 2.1. In these two examples, the deformations undergone by 
the solid after gluing are irreversible and irrecoverable, therefore of plastic nature.

On the other hand, it is intuitively clear that internal forces have developed inside the solid 
after gluing. These appeared during the elastic deformation which 
was imposed on the rest of the solid to make the two jaws to be 
bonded coincide. In fact, everything happens exactly as if a 
localized topological discontinuity had appeared in the center of 
the pipe after gluing, discontinuity which would be the source of an 
elastic distortion field in the macroscopically continuous medium 
which composes the pipe. And this distortion field, by its presence, 
is itself a source of a field of conjugate stresses, which can be 
called internal stress field.

Mathematically, the discontinuity due to gluing should be able 
to be translated in terms of a local density of “plastic charges”, 
source of an elastic distortion field, and therefore of an internal 
stress field, in a completely similar way that in electromagnetism 
where the presence of a local density  of electric charges is 
responsible for the appearance of an electric displacement field , as shown by Maxwell's 
equation , and consequently of a conjugated electric field , since . The 
aim of this chapter will therefore be to show how it is possible to mathematically translate the 
phenomena of plasticity inside a solid, not only by introducing densities of plastic charges, but 
also flows of plastic charges, by analogy with the flow of electric charges  appearing in the 
equation  of Maxwell's electromagnetism, in which  represents the 
magnetic field.
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In figure 1.2, one saw that the condition of compatibility  prohibits the singularity by 
dislocation of the field of displacement . Consequently, if the compatibility condition was no 
longer zero, therefore if , the course on the closed contour  will result in the 
existence of a quantity , which is called macroscopic Burgers vector, defined on the contour 

 and which corresponds to the macroscopic translation necessary to accommodate the 
medium to the presence of density charges , in order to ensure compatibility of total 
deformations and rotations (the absence of voids and overlaps of matter within the solid).

The discontinuity  is called a macroscopic dislocation of the solid, in the sense of Volterra, 
and one will consequently call density of dislocation charges the tensorial density of charges 
responsible for plastic distortions.

Such macroscopic dislocation is carried out in a continuous solid by locally cutting this solid 
and by moving the two jaws of the cut parallel to each other, before gluing them again. This pro-
cess is illustrated schematically in figure 2.2a using a pipe of material which is cut along the 
plane  and which is glued after parallel sliding of the interfaces in the direction of the cut. 
There then appears a one-dimensional topological singularity of the distortion field located on 
the axis . This macroscopic singularity, characterized by a translation vector  parallel to the 
line of singularity, is called screw dislocation.

On the other hand, if the two jaws are glued together by parallel translation of the jaws, per-
pendicular to the plane of the cut, and with the addition or subtraction of a parallelepiped of ma-
terial (figure 8.2b), there appears another one-dimensional topological singularity of the distor-
tion field, located on the axis . This macroscopic singularity, characterized by a translation 
vector  perpendicular to the line of singularity, is called edge dislocation. Another way of pro-
ceeding to achieve an edge-type dislocation, but without adding or subtracting material, is to 
glue the two jaws together after parallel translation of the jaws in the plane of the cut, perpendi-
cular to the direction of the cut, as shown in figure 2.3. Under the sine qua non condition that 
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the elastic volume expansion of the medium remained zero during the plastic deformation pro-
cess, the Burgers vector , obtained by the course on a contour  surrounding the singularity, 
corresponds exactly to the macroscopic translation which has undergone the jaw .

Under the condition that the elastic volume expansion  of the medium remained zero du-
ring the plastic deformation process, the Burgers vector , obtained by the course on the 
contour  surrounding the singularity, then corresponds exactly to the macroscopic translation 
which the jaw  underwent. As the vector  must remain constant if we vary the diame-
ter of the integration contour  or if we move this contour vertically, we deduce that the disloca-
tion charges must be confined to the immediate vicinity of the axis of the pipe, and that their 
tensor density must be a constant along this axis.

One can also imagine that within a continuous solid one cuts a vacuum within the material in 
the shape of a torus, as illustrated by the section represented in figure 2.4a, then that one cuts 
the median plane located in the center torus. The two jaws  and  thus formed can then 
be moved relative to each other, then glued.

The first possible case is to move the two jaws parallel to the cutting plane by a distance  
as shown in figure 2.4b. After gluing, the medium is deformed by shearing and the torus 
contains a macroscopic dislocation of slip loop type, composed of edge, screw and mixed 
dislocation portions.

You can also insert additional material in the form of a thin disc with a thickness  between 
the two jaws and weld this disc to the two jaws (figure 2.4c). We then obtain a deformation of 
the medium responsible obviously for a curvature of the medium on both sides of the torus. The 
torus is then the site of a macroscopic dislocation, of the prismatic loop type. In this case, the 
prismatic loop is said to be interstitial, because it contains additional material, and it is 
composed of a single edge dislocation which closes on itself. A very similar case is obtained if, 
instead of adding a disc of material, we subtract a thin disc of material with a thickness , as 
illustrated in figure 2.4d. We also obtain a macroscopic dislocation, of the prismatic loop type, 
but this loop is said to be lacunar, because it lacks a certain amount of matter. Within the torus, 
there is also a single edge dislocation which closes on itself.
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All the singularities thus obtained are obviously responsible for a field of distortion within the 
solid. Consequently, they require a non-zero formation energy. They are stabilized within the 
solid by re-bonding the two jaws of the cut, therefore by the bonds within the solid.

Definition of density and flow tensors of plastic charges

In figure 1.12, we represented the geometro-kinetic equations of the medium, which in fact 
connect the temporal variations of the distortions of the solid, calculated along the trajectory of 
the medium particles using the material derivative, with the spatial variations of the velocity field 

 of the medium particles, calculated using the gradient of the components of the velocity 
field in the case of the distortion tensor. And in figures 1.13 to 1.15, we had introduced the 
geometro-compatibility equations, which ensured the continuity of the Eulerian field of 
displacement within the solid, therefore the absence of discontinuities of displacements like 
dislocations. In the presence of displacement discontinuities, like those which we have just 
described on the macroscopic scale, it becomes necessary to redefine the geometro-kinetic 
equations and the geometro-compatibility equations of the medium, in order to take into account 
the presence of these topological singularities of distortion.

Using the definition of the distortion tensor, as it was obtained in the previous chapter in the 
presence of plastic deformation, the total distortions  are the sum of elastic, anelastic and 
plastic distortions, such as . Another notation for these distortions can be 
introduced, which makes it possible to separate the contributions of plastic deformation from the 
contributions of elastic and anelastic deformation, by simply writing that  with 

, as illustrated in figure 2.5 (a).
This simple change of name makes it possible to introduce, by analogy with the equations of 

φ
!
(!r ,t)

!
βi

tot
!
βi

tot =
!
βi

él +
!
βi

an +
!
βi

pl

!
βi

tot →	
!
βi +
!
βi

pl

 
!
βi =

!
βi

él +
!
βi

an



Chapter 242

electromagnetism, the concept of tensor density of charges, responsible for plastic 
distortions, by assuming a priori the relation  of definition of  from the plastic 
distortion tensor , as well as the concept of tensor flow  of charges, responsible for the 
temporal variation of plastic distortions, by supposing a priori the relation  of 
definition of , starting from the temporal derivative  of the tensor of plastic distortion 

. It should also be noted here that the concept of charge flow is defined as a flow with 
respect to the lattice, because it is deduced from the material derivative of , that is to say 
from the temporal derivative of  taking along the trajectory of the solid lattice.

The geometro-kinetic equation for the distortion tensor  in figure 1.12 already contained a 
source  of lattice sites, which actually represented a source of plasticity related to the volume 
expansion of the lattice. The geometro-kinetic equation for the distortion tensor  obtained in 
figure 2.5 (a) generalizes this fact, by including the source of lattice sites in the concept of 
tensor flow  of plastic charges.

The introduction of these new tensors of density and flow of charges is not free, because 
these answer at best the requirement to find a way to express the presence of plastic distortions 
in a solid so that it is possible to take into account the microscopic state of the network of 
structural defects in the solid. It will also be verified a posteriori, during the interpretation of 
these tensors in the rest of this chapter, that this way of proceeding is indeed judicious. With this 
approach to the phenomena of plasticity by tensors  and , the topological equations 
describing the geometro-kinetics and the geometro-compatibility of the distortion tensor 
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 of an elastic, anelastic and plastic solid are now written in a much more general 
way, as illustrated in figure 2.5(a).

This new version of topological distortion tensors and geometro-kinetic equations is in fact 
nothing more than a simple change of terminology for plastic distortions, based on an analogy 
with the two Maxwell equations of electromagnetism  and . 
Finding all the potentialities contained in this formulation of topological equations will therefore 
be the subject of the rest of this chapter.

The density  of dislocation charges and the flow  of dislocation charges are tensor 
quantities, on which it is possible to apply symmetry operations to reduce their tensor order, i.e. 
to make them vector quantities and scalar quantities. These symmetry operations are shown in 
figure 2.5 (b).

Concerning the geometro-compatibility equations, we note that the tensorial density  of 
dislocation charges contains a vector density  of bending charges and a scalar density  of 
rotation charges. We will return later to the interpretation of vector bending charges, but we can 
already give an interpretation of the effects of scalar rotation charges. Indeed, if we consider 
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figure 1.15, we know that the compatibility condition  prohibits the singularity by 
divergence of the rotation field, which means that, if  within the volume V, there 
can appear a field of rotation vectors which diverge, of the same way that the local presence of 
a non-zero density of electric charges at a place in space induces a diverging electric field.

Concerning the geometro-kinetic equations, we note that the tensor flow  of dislocation 
charges contains a vectorial flow  of rotation charges and that it re-appears the scalar volume 
source  of lattice sites.

The mathematical combination of the material derivative of the geometro-compatibility 
equations with the rotational or the divergence of the geometro-kinetic equations makes it 
possible to deduce the continuity equations of figure 2.5(b) for the plastic distortion charges, 
which link the temporal evolution of the densities of charge along the trajectory of the medium to 
the spatial variations of the charge flows. These continuity equations reveal rather surprising 
terms of sources of plastic charges, in the sense that these terms are associated with the 
possible existence of a non-commutativity of the temporal operator of material derivative with 
the space operators. Finally, as regards the tensorial density  of dislocation charges, we note 
that it is linked to the curl of , so that it obligatorily satisfies the relation   of the 
vector analysis which we will call the conservation equation of the dislocation charges, equation 
which will be called thereafter to play a considerable role in the topological interpretation of the 
charges of dislocation.

Macroscopic concept of plastic contortion charges

In Figure 1.16, we reported the complete system of distortions and contortions of a solid 
lattice in Euler coordinates, in the case of a geometro-compatible solid. The same diagram, if it 
is drawn in the case of a solid with a non-zero density of dislocation charges , becomes 
clearly more complex as illustrated in figure 2.6.

Apart from the tensor density  of dislocation charges, the vector density  of bending 
charges and the scalar density  of rotation charges, which we will call 1st order charges 
associated with plastic distortions, there appear to be 2nd order charges, associated with plastic 
contortions, which will be called the tensor density of disclination charges and the scalar 
density  of curvature charges.

We also note that the expressions of contortions , flexions  and torsions of the 
solid lattice become much more complicated since they now call in their respective expressions 
for the existence of charge densities of contortion, of flexion and of torsion of 1st order, deduced 
as combinations of the charge densities of dislocation , of flexion  and of rotation .

In figure 1.19, one saw that the condition of compatibility  prohibited the singularity 
by disclination of the field of rotation  deduced from the deformation tensor. Consequently, 
if the compatibility condition is no longer zero, then if , the course on the closed 
contour  will result in the existence of a nonzero closure vector , called the Frank vector. 
This means from a topological and physical point of view that there will be discontinuities of 
rotations by deformation. The discontinuities  are called disclinations within the solid lattice.

Concerning the geometro-compatibility equations for 2nd order charges, we can also give an 
interpretation of the effects of the scalar charges  of curvature. Indeed, if we consider figure 
1.20, we know that the condition of compatibility  prohibits the singularity by 
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divergence of the flexion field, which means that, if  within the volume V, it can 
appear a field of vectors of curvature which diverge, in the same way as the local presence of a 
density of non-zero electric charges at a place in space induces a diverging electric field.

The operations by symmetry and by vector analysis operators, making it possible to deduce 
from the tensor charge density  of dislocation all the charge densities reported in figure 2.6, 
are summarized in figure 2.7.

It is quite simple to imagine carrying out a macroscopic scale disclination in a solid 
continuous medium by locally cutting this solid and turning the two jaws of the cut relative to 
each other, before putting them glue back together. This process is illustrated schematically in 
figure 2.8 using a pipe of material which is cut according to  and which is glued in two 
different ways:
- either by shearing the plane  of one of the jaws without adding or subtracting material 
(figure 2.8a), which leads to a unidimensional topological singularity located on the axis , 
called twist disclination,

div !χ =θ ≠0
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- either by rotation of one of the interfaces around the edge  with addition or subtraction of 
material (figure 2.8b), which leads to a one-dimensional topological singularity located on the 
axis , called wedge disclination.

Under the condition that the elastic volume expansion  of the medium remained zero 
during the plastic deformation process, the vector , obtained by the course on the outline 
surrounding the singularity, then corresponds exactly to the macroscopic rotation which the jaw  

 underwent. As the vector  must remain constant if one varies the diameter of the 
integration contour  or if one displaces this contour vertically, one deduces that the charges 
of disclination must be confined in the immediate vicinity of the axis  of the pipe, and that 
their tensor density must be a constant along this axis.

The topological singularities thus obtained are responsible for a distortion field within the 
solid. Consequently, they require a non-zero formation energy. They are stabilized within the 
solid by re-bonding the two jaws of the cut, therefore by the bonds within the solid.

By comparing figures 2.2 and 2.8, we can see an astonishing resemblance between screw 
dislocations and disclinations, as well as between edge dislocations and disclinations. This 
resemblance is not accidental, since the operations used to generate these discontinuities are 
very similar. It is interesting to note in particular that the macroscopic disclinations also present 
a displacement vector  going from  to  (figure 2.8), just like the macroscopic dislocations 
(figure 2.2). However, this vector , in the case of disclintions, increases linearly with the 
diameter of the integration loop that is used to calculate it. This means that in the presence of a 
macroscopic disclination, associated with a density of disclinations charges distributed along the 
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axis of the pipe, there must also exist a density of dislocation charges. But this, instead of 
being located on the axis of the pipe as it is the case for a macroscopic dislocation, will be found 
homogeneously on a surface located in the cutting plane  (figure 2.8), such that the 
Burgers vector  increases linearly with the diameter of the integration loop .

One can also imagine that within a continuous solid one cuts a void of material in the form of 
a torus, as illustrated by the section represented in figure 2.4a, then that one cuts the median 
plane located in the center of the torus. The two jaws  and  thus formed can then be 
moved relative to each other, then glued. We can proceed as in figure 2.9a, and move the two 
jaws in parallel by a rotation  of one relative to the other in the cutting plane. After re-
bonding, the medium is deformed by rotation  and the torus then contains a macroscopic 
disclination loop of the twist type.

Note here that the field of displacement of the medium on either side of the cutting plane is 
tangential to this plane and that the curvilinear vector of displacement  on the cutting plane 
increases from a zero value in the center to a value maximum on the edges of the torus. At the 
level of the torus, the local displacement field  looks like it can be mistaken for the 
displacement field of a screw dislocation closed on itself, but it is in fact a pseudo-dislocation 
because the curvilinear Burgers vector, tangential to the dislocation line is not preserved in this 
case, as shown in figure 2.9b.

One could also remove a piece of medium in the center of the torus, of lenticular or conical 
shape and with an angle  at the base, as illustrated in figure 2.9c. In this case, the gluing 
plane has a local displacement field  corresponding to perpendicular Burgers vectors whose 
lengths have a circular symmetry (figure 2.9d). At the level of the torus, the deformation required 
for re-bonding is a rotation  tangential to the torus, which would therefore correspond to a 
macroscopic wedge disclination loop, but which is in fact a pseudo-disclination since the vector 
of Frank, always tangential to the line of disclination, is not preserved along the line (figure 
2.9d).

Quantified dislocations in a lattice

Having described the macroscopic dislocations and disclinations that can appear in a conti-
nuous medium, we can now ask ourselves how it is possible to introduce these topological de-
fects on the microscopic scale of a solid lattice. It is clear that the presence of a lattice must ne-
cessarily imply a form of quantification of these defects, in the form of topological singularities of 
the lattice.

It was not until 1934 that the search for this type of singularity in solid lattices really started, 
and therefore that the theory of lattice dislocations was born, following three famous papers 
published independently and each describing in its own way the edge dislocation. These are the 
publications of Orowan , Polanyi  and Taylor . Then it was in 1939 that Burgers  described 3 4 5 6
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screw and mixed dislocations. And it was finally in 1956 that the first experimental observations 
of dislocations in metals were reported, simultaneously by Hirsch, Horne and Whelan  and by 7

Bollmann , thanks to the electron microscope. As for the disclinations, it was in 1904 that 8

Lehmann  observed them for the first time in molecular crystals, and it was in 1922 that 9

Friedel  gave their first physical description. Then, from the middle of the twentieth century, the 10

physics of defects in solids took on a considerable scale.
As the tensor density  of dislocation charges must satisfy the conservation equation 

, it is impossible for it to appear in point form and it must be in the form of three non-
diverging vector fields. This strong condition implies that the tensor density  of dislocation 
charges must always occupy a non-zero volume domain within the solid medium, which must 
have a form of tubular cord, which has necessarily to cross the solid right through, or have a 
shape of an O-ring.

The area of charges  of tubular or toric shape can be modeled in the form of a line of 
dislocation, commonly called dislocation, representable by a central one-dimensional fiber 
located at the center of the string of non-zero density  of charges. This line of dislocation 
must then necessarily either cross the solid right through, or form a closed on itself dislocation 
loop.

The closely related domains of non-zero density of dislocation charges can be modeled in 
the simplest way in the form of thin strings. If the dislocation string is sufficiently thin (of 
sufficiently small section), the density charge  can be represented by a single quantity 
confined to the immediate vicinity of the central fiber of the cord, which will be called dislocation 
line, by introducing the concept of linear tensor charge  of dislocation, namely a set of three 
vectors defined on the central fiber.

We can then show that the rectilinear strings appearing in a solid lattice are quantified on the 
microscopic scale of the lattice (figures 2.10 and 2.11), and that these strings then represent 
elementary plastic singularities of the distortion fields, in other words "elementary particles" of 
the plastic deformation of the lattice.

If we consider the case of an ordered lattice of particles on a microscopic scale, we can 
introduce dislocations by cutting the bonds on a lattice plane, parallel displacement of the jaws 
and reconstruction of the bonds, as illustrated in figures 2.10 and 2.11 in the case of a simple 
cubic lattice.

The Burgers vector  of the singularities thus obtained, that is to say the microscopic 
discontinuity of the displacements of the lattice due to the presence of the dislocation, is 
deduced by considering a closed circuit  on the lattice of the real solid, surrounding the 
singularity, and by searching for the closing vector  of the corresponding open circuit in the 
undistorted virtual network.
Thanks to figures 2.10 and 2.11, we can see that the microscopic lattice singularities have an 
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essential characteristic: their Burgers vector is quantified, that is to say that its components  
can only be integer multiples of the step  of the virtual lattice, thus of the lattice in 
homogeneous volume expansion of value .

The nature of the microscopic plastic singularity can change according to the respective 
directions which take, in the system of local coordinates, the Burgers vector  and the unit 
vector  tangent to the line:
- when  is parallel to  (figure 2.10), the linear charge  of dislocation presents a non-zero 
trace ( ), therefore a charge of rotation, and a null antisymmetric part ( ). One 
speaks in this case of screw dislocations, and of linear charge  of rotation of the screw 
dislocation, and one symbolically represents this by a screw located on the line of dislocation.

Like , when the screw dislocation has a right rotation, identical to the direction 
of rotation of a normal screw or a corkscrew,  is positive and the vectors  and  are 
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oriented in opposite directions. On the other hand, if the screw dislocation has a left rotation, 
therefore in the opposite direction of rotation to that of a normal screw or a corkscrew,  is 
negative and the vectors  and  are oriented in the same direction (figure 2.12) . Note that 
the choice of a given direction  is perfectly arbitrary since only the sign of  is fixed.
- when  is perpendicular to  (figure 2.11), the linear charge  of dislocation presents a 
null trace ( ), therefore no charge of rotation, but a non-zero antisymmetric part ( ). 
One speaks in this case of edge dislocations, and of linear charge   of flexion of the edge 
dislocation, and one symbolically represents this one by a sign  on the line of dislocation, 
oriented so as to represent the additional plane of particles. The vector  always has the 
direction of the additional plane of the edge dislocation (figure 2.13).

- when  is neither parallel nor perpendicular to , the linear dislocation charge  has a 
non-zero trace ( ), but also a non-zero asymmetric part ( ), so that it behaves at the 
same time as a source of elastic and anelastic rotations and flexions. We speak in this case of 
mixed dislocations.

In a discrete network, a dislocation can perfectly change direction. In other words, along the 
dislocation line, the tangent vector  is not necessarily preserved. In this case, as the Burgers 
vector  is kept in the local frame, this means that the dislocation must change in nature. For 
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example, in figure 2.14, a simple cubic lattice model is shown in which a screw dislocation 
enters the left face, turns becoming mixed within the lattice and emerges as an edge dislocation 
on the right adjacent face. 

Quantified dislocations are the most basic vectors of the plastic deformation of a lattice. In 
this sense, we could call them the "elementary particles" of plastic deformation. Besides, any 
dislocation string has its "anti-string". Indeed, it is easy to see that two parallel dislocations of 
the same direction  and vectors of Burgers  and  respectively annihilate completely if 
they come to meet within the lattice.

We also note that screw dislocations, carrying a scalar linear charge , are sources of 
a field of divergent local rotations, which is, as we have seen, the analog of the electric field. So, 
at a distance  from the string, the norm of the rotation field is simply .

As for the corner dislocations, which carry a fexion charge , they are sources of a 
lattice flexion, therefore of a local curvature of the lattice in their vicinity as well illustrated by the 
dislocation emerging from the cubic crystal in the figure. 2.14.

Dissociation of quantified dislocations

The dislocations appearing in structures a little more complex than the simple cubic lattice, 
such as for example cubic lattices with centered faces, cubic centered or hexagonal, generally 
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present much more complicated core structures. It can thus appear, essentially for energetic 
reasons, and according to the crystalline system considered, a dissociation of the core of the 
dislocation into two or more partial dislocations, of which the individual Burgers vectors are 
fractions of the translation vectors of the lattice.

For example, in face-centered cubic metals (CFC), the stacking of atoms is characterized by 
sequences abc abc abc ... (figure 2.15). The Burgers vector  of a perfect dislocation must in 
principle connect two nodes of the lattice. But for energy reasons, the most favorable Burgers 
vectors are those that have a minimum length, because the distortion energy stored in the 
lattice by a dislocation is proportional to the square of its Burgers vector. Thus in the case of 
figure 2.15, the dislocations have interest to dissociate on their gliding plane in two partial of 
Burgers vectors  and , so that . In the case of this dissociation, we have 
indeed , so that . The two partial obtained in 
figure 2.15 by this dissociation are called Shockley type. The distance between the two partials 
is then controlled by a competition between the decrease in energy associated with the increase 
of the distance between the partials which repel each other, and the increase in energy due to 
the formation of an energy ribbon of crystalline stacking fault (abc ac abc abc ...) located 
between the two partial dislocations, as shown in figure 2.15.

Since the stacking fault ribbon has an energy  per unit area, the total energy  per 
unit dislocation length for a dissociated dislocation over a distance  is written 

, where  is the energy of the two partials as a function of the 
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distance  separating them, which is a monotonic function decreasing from  for  to 

 for  in the case of Shockley partials illustrated in figure 2.15.
The energy  therefore presents a minimum for the distance  (figure 2.16), 

which is the equilibrium distance between the two partials, controlled by the competition 
between the energy decrease associated with the distance increase between the repulsive 
partials, and the energy increase due to the formation of a stacking-fault ribbon between the two 
partials. We see here appear a behavior of the energy  which induces an interaction force 
between the two partial which one could qualify as “strong force”, in the sense that the energy of 
the pair of partial presents a minimum which fixes the equilibrium position , but that it 
continues to increase if we try to increase the separation distance beyond . The qualifier 
"strong force" is proposed here because the attractive behavior of the interaction force between 
partial at long distance presents a very interesting analogy with the strong force acting between 
quarks in the Standard Model of elementary particles.
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By way of exemplary illustration, figure 2.17 shows the model of a mixed dislocation, with an 
edge and a screw nature at the same time, dissociated into two partials in a cubic face centered 
structure. We can clearly see the existence of a stacking defect between the two partials. And 
since this is a mixed dislocation, the two partials show a series of kinks in it. In addition, we can 
even observe the bending of the network induced by the edge part of the dissociated 
dislocation.

All of the consequences linked to the structure of the lattice are obviously too specific for 
each conceivable crystal structure to be dealt with in detail here. But they can be approached in 
any book dealing with dislocations in crystalline structures.

Quantified dislocation membranes

A thin interface which contains dislocation charges and which separates two media 
containing no charges is called a charged membrane. These membranes can be any surfaces 
in space (infinite surfaces, closed spheroidal or toric surfaces, ribbons or hollow tubes, thin 
plates, etc.), with the only topological condition that, on any point of the membrane, the equation 
of conservation of the dislocation charges  is satisfied and that the disclination 
charges derive from the dislocation charges through the relation .

If a dislocation charged membrane is very thin, it is possible to introduce the notion of 
surface tensor charge  of dislocation. The existence of a surface charge of dislocation  in 
the membrane leads to a discontinuity of the tangential components of the distortion vectors  
on either side of it, and it is subject to the condition that there is a gradient of the components of 
the Burgers vector on the surface of the membrane.

Two-dimensional modeling of a thin membrane obtained with surface charges is generally 
called a joint. The joint is then entirely characterized by the data of the surface tensor  of 
dislocation charges, the vectors of which are tangent to the surface of the membrane, which is 
in fact a direct consequence of the equation of conservation  of the dislocation 
charges. But it can also be characterized by the data of the anti-symmetrical part  (the 
surface charge of flexion of the joint) and of the trace  (the surface charge of rotation of the 
joint) of the load tensor , as in the case of the one-dimensional lines of dislocation. This point 
is perfectly illustrated in figure 2.18, in which three thin membranes are presented whose 
Burgers vectors, growing linearly along the axis , are oriented respectively along the axes

, , and . Since these thin dislocation membranes actually disorient or 
accommodate the solid grains on either side of the membrane, they are generally called grain 
boundaries.

We can for example consider that these membranes are in fact charged by edge dislocations 
or screw dislocations oriented parallel to the axis . We can then simply represent each 
individual dislocation by a linear vector charge  if it is an edge dislocation or by a scalar linear 
charge  if it is a screw dislocation. We then verify that:
- the thin edge type membrane with a Burgers vector perpendicular to the surface and 
increasing along the axis  (figure 2.18a) can be entirely characterized by a vector surface 
charge  of flexion, the vector of which is tangent to the plane of the membrane, directed 
according to , and worth . As this type of edge membrane makes it possible to 
disorient the solid grains located on either side of the membrane, it is called a disorientation 
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joint, and in this particular case, as the disorientation corresponds to a flexion of the solid, we 
speak of a bending joint.
- the thin edge-type membrane with a Burgers vector parallel to the surface and increasing 
along the axis  (figure 2.18b) can be entirely characterized by a vector surface charge  of 
flexion, whose vector is perpendicular to the membrane, and being equal . As this 
type of edge membrane in fact makes it possible to modify in the direction  the density of 
the crystalline planes of the solid grains situated on either side of the membrane, it can be 
qualified as an accommodation joint.
- the thin screw type membrane with a Burgers vector parallel to the membrane and increasing 
along the axis  (figure 2.18c) is entirely characterized by the scalar surface charge  of 
rotation, being equal . This type of screw membrane also corresponds to a 
disorientation joint between the solid grains located on either side of the membrane. In this 
particular case, as the disorientation corresponds to a rotation of the grains relative to one 
another, we speak of a torsion joint.

Quantified disclinations in a lattice

As the charges of disclination always derive from dislocation charges through relationship 
, there can be no dislocation strings in an isolated state. But strings 
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of disclination can appear in the presence of a large dislocation charge domain, such as a 
dislocation membrane in the form of a ribbon.

We can consider for example the case of flat ribbons charged with dislocations, which 
abruptly stop along the axis , as shown in figure 2.16. The boundaries which border these 
dislocation ribbons are then lines of disclination, because it appears on these boundaries 
singularities by disclination of the field of rotations by deformations, as described in figure 1.19, 
having a non-zero Frank vector . In this figure, we see the following points:
- the edge-type dislocation ribbon with a Burgers vector perpendicular to the membrane and 
increasing along the axis  (figure 2.19a) corresponds to a localized bending joint. It is 
bordered by two wedge type disclinations whose Frank vectors are parallel to the axis , 
and which are respectively worth ,
- the edge-type dislocation ribbon with a Burgers vector parallel to the membrane and 
increasing along the axis  (igure 2.19b) corresponds to a localized accommodation joint. As 
there is then no discontinuity in the rotational field by deformations, it is not bordered by any 
disclination and ,
- the screw-type dislocation ribbon with a Burgers vector parallel to the membrane and 
increasing along the axis  (figure 2.19c) corresponds to a localized torsional joint. It is 
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bordered by two twist-type disclinations whose Frank vectors are parallel to the axis , and 
which are worth respectively .

It will be noted that the disclination of figure 2.19a corresponds to the macroscopic 
disclination represented in figure 2.8b, while that the disclination of figure 2.19c corresponds to 
the macroscopic disclination of figure 2.8a. The quantification on a cubic lattice of a ribbon of 
disclination similar to that of figure 2.19c is illustrated in figure 2.20, in which one has reported 
the two disclinations bordering a quantized dislocation ribbon composed of three aligned lattice 
screw dislocations.

Although there cannot be isolated disclinations, it is possible to imagine structured solid 
media which would contain rectilinear disclinations quantified on their lattice in the case of 
wedge disclinations, as shown in figure 2.21. In this figure, we have represented two wedge 
disclinations with Frank vectors  in a simple cubic lattice, and we have also 
reported the curvature vector  due to the charge .

We can then imagine that there could be different families of quantified wedge disclinations 
by considering solid media with different arrangements of the particles in a secant plane of the 
disclination line. For the example, we will consider here simple arrangements like the 
arrangement on a quadratic network. But we could obviously also consider more complex 
arrangements, such as three-dimensional centered cubic, hexagonal or face centered cubic 
structures.

In the case of a quadratic arrangement, there can exist at most 3 different quantified wedge 
disclinations, which will be called ,  and , with angles of rotation  of + 90 °, + 
180 ° and + 270 °, to which correspond 3 quantified wedge anti-disclinations, ,  and

, with rotation angles of  -90 °, -180 ° and -270 ° (figure 2.22).
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In the case of figures 2.22, we have reported the disclinations with a calculated size so that 
the volume expansion   is identical in all the figures. Note also that the tilt of + 270 ° in the 
quadratic arrangement could exist or not exist depending on the imaginary medium considered, 
because their existence is linked to the possibility of connecting two bonds of the same 
"particle" in the solid structured medium that we consider.

It has been shown that there cannot be isolated disclinations with non-zero Frank vector. 
Consequently, it is necessary to combine several disclinations close to one another so that the 
Frank vector obtained on a contour surrounding all these disclinations is zero.

The example shown in figure 2.23 illustrates this fact perfectly: by coupling two quantified 
wedge disclinations of type  and  in a simple cubic structure, the total Frank vector 
becomes zero, and a virtual edge dislocation ribbon appears between the two disclinations, of 
non-zero global Burgers vector . The edge-type dislocation ribbon is similar to that shown in 
figure 2.19a and therefore contains a vector surface charge  of flexion. But this real flexion 
charge  is not associated with real quantized dislocations of the lattice, but with a virtual 
ribbon of edge dislocation. In the case of this wedge disclination doublet, it is fairly easy to 
imagine that the distortion energy increases extremely quickly if the two disclinations are moved 
away, so that these two disclinations can be considered to be linked by a "strong force", that is 
to say an attractive force which increases when an attempt is made to distance the two 
disclination.

We can find the multiplets of zero Frank vector disclinations which it is possible to construct 
on the basis of the quantified wedge disclinations that we have described in the case of the 
simple quadratic lattice. The basic zero vector Frank multiplets, i.e. those which can no longer 
be further decomposed into two or more zero Frank vector multiplets, are shown in figure 2.24. 
We note that, in a simple quadratic lattice, there can exist 3 doublets, 4 triplets and 2 
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quadruplets.
In table 2.24, the multiplets composed with disclinations  of + 270 °  are grayed out, 

because they might not exist, for example in structured media which do not allow two bonds of 
the same "particle" to be connected together.

Solid lattices with axial symmetry

Mixed strings resulting from the combination of a string or a line of disclination with a string 
or a line of dislocation are called strings or lines of dispiration, or simply dispirations. Note that 
the term "dispiration" is an Anglicism and that there is no French translation of this term.

One can imagine lattices which have a certain axial symmetry of the particles composing it, 
like the cubic networks (a) and (b) illustrated in figure 2.25. This axial symmetry of the particles 
can simply present a privileged direction of the particles in the planes of the structure, as in case 
(a), which has an alternating structure of successive layers a, b, a, b, a, b,… The axial 
symmetry can also have a preferential direction and way as in case (b) which has an alternating 
structure of successive layers a, b, c, d, a, b, c, d, ...

Moreover, in case (b), the direction of rotation of the axes of the particles along the vertical 
axis produces an oriented medium, which is qualified as right-handed (clockwise) in case (b) 
illustrated in figure and left-handed (counter-clockwise) in the case where the planes rotate in 
the opposite direction.

If it is forbidden to break the axial orientation of the particles in a plane, it is not possible to 
introduce a vertically oriented screw dislocation with any Burgers vector. Indeed, if the distance 
between the horizontal planes is worth , in order to ensure the continuity of the orientation of 
the particles, and also of their direction in the case (b), it is necessary that the length of the 
vector of Burgers  of the dislocation vis is equal to  in case (a), and  in case (b).

In media with axial symmetry such as those shown in figure 2.25, we have just explained 
that the screw dislocations must have Burgers vectors  whose lengths are multiples of the 
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length of the lattice pitch. In this case, the screw dislocations may have an interest in splitting 
into partial with Burgers vectors of length , forming respectively 2 or 4 partial in cases (a) and 
(b) respectively. Between the partial dislocations, ribbons of connection faults are formed 
between axial planes ab, bc, cd, etc. The partial separation distance then depends on the 
energy  per unit area of the connection fault.

If the connection fault ribbon has an energy  per unit area, the total energy  per unit 
length of a dissociated screw dislocation over distances  is written:
-  in case (a), where  is the energy of the two partials as a function 
of the distance  separating them, which is a monotonic function decreasing from  for 

 to  for ,
- in case (b), where  is the energy of the four partials as a function 
of the distance  separating them, which is a monotonic function decreasing from  for 

 to  for .
The energy  therefore has a minimum similar to that shown in figure 2.16 for the 

distance , which is the equilibrium distance between the two or the four partial, controlled 
by the competition between the decrease in energy associated with the increase in distance 
between the partials and the increase in energy due to the formation of an energy ribbon due to 
lack of connection between the partials. This behavior of the energy  induces a force of 
interaction between the partials which one can quite qualify as strong force, in the sense that 
the energy of the triplet of partials will increase if one tries to increase the distance of separation 
beyond . This strong force therefore presents in its behavior an interesting analogy with the 
strong force acting between quarks in the Standard Model of elementary particles.

We can immediately imagine that there must also be connection conditions ensuring the 
continuity of the axial symmetry if we want to introduce a disclination in such a network. In fact, 
to ensure this continuity, it will necessarily be associated with the disclination a screw 
dislocation with the correct Burgers vector . It therefore appears here a structural necessity to 
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introduce dispirations in such environments.

Figure 2.26 illustrates this point perfectly. Indeed, to introduce an disclination  =+90 ° in 
the medium represented in figure 2.25(b), it is necessary to add to it a correctly oriented screw 
dislocation, of Burgers vector  and of length , which ensures the continuity of the axial 
orientation of the particles on the planes of the medium.

Note that screw dislocation of Burgers vector of opposite direction and length  could also 
have ensured the continuity of the axial orientation of the particles on the planes of the medium, 
so that there are two different dispitations with rotations =+90 °, both with a linear charge of 
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curvature of , but differentiated by their Burgers vector  associated with a linear 
charge of rotation  being equal to  or .

It is not too difficult to find out which linear torsion charges  should be associated with the 
different wedge dispirations of linear charge of curvature  that can be introduced into the 
cubic structures shown in figure 2.25.

In Table 2.27, these loads are reported for the cubic structures of figures 2.25(a) and (b). In 
case (a), the structure shows no difference between a righthanded orientation and a lefthanded 
orientation of the particles in the lattice. On the other hand, there appears to be a difference 
between these two orientations in case (b), which implies a change in sign of the charge  
between the righthanded and lefthanded environments.

Quantified dislocation and disclination loops in a lattice

To satisfy the conservation equation , a dislocation or a disclination string cannot 
be abruptly interrupted within the medium. On the other hand, such a string closing on itself to 
form a localized loop always satisfies the conservation equation. In this section, we will 
therefore present this type of loops as well as their properties in a solid lattice.

For a circular dislocation loop of radius , the tensor linear charge  of the dislocation 
can be related to its Burgers vector using the relation  where  represents the unit 
vector tangent to the dislocation line.

Three types of dislocation loops then appear according to the orientation of the Burgers 
vector with respect to the normal  to the surface of the loop, as shown in Figure 2.28:
- the slip loops (figure 2.28a) when , having both edge portions (where )), screw 
portions (where ) and mixed portions. Their Burgers vector can take any orientation in the 
plane perpendicular to . They are obtained by the process described in figure 2.4b,
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- the prismatic loops (figure 2.28) when , which have their Burgers vector in the imposed 
direction of the unit vector  perpendicular to the plane of the loop, and which are obtained by 
the process described in figure 2.4c and d.
- the mixed loops when  has a component in the direction of  and a component in the plane 
of the loop.

We will see later that it is useful to introduce the notions of global scalar charges of rotation 
 and global scalar charges of curvature , which will in fact be very important for 

characterizing the topological effects at long distance of topological singularities. These global 
scalar charges are perfectly analogous to the electrical charge of an electron, for example.

We can define a global scalar charge  of rotation of a dislocation loop as the integral (the 
sum) of its scalar linear density  of torsion charge taken on the contour of the loop:
- in the case of the prismatic loop (figure 2.28b), the global scalar charge  is null because the 
linear density  of torsion load is null everywhere on the contour of the loop.
- in the case of the slip loop (figure 2.28a), the linear density  of torsion charge evolves along 
the loop according to the cosine of the angle  , becoming positive, null, negative and null on a 
complete turn, so that the global scalar charge  of rotation is also zero ( ) for this type 
of loop. On the other hand, as the linear density  of torsion charge is positive for  and 
negative for  in the case of the slip dislocation loop shown in figure 2.28a, we deduce 
that the slip dislocation loops have a dipolar momentum of rotation charges.

We can also define a global scalar charge  of curvature of a dislocation loop as the 
integral (the sum) of its scalar linear density  of curvature charge taken on the contour of the 
loop:
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- in the case of the slip loop (figure 2.28a), as the linear density  of curvature charge is null all 
along the loop, its total scalar charge  of curvature is null.
- in the case of the prismatic loop (figure 2.28b), the linear density  of curvature charge is not 
zero and is worth , so that the total scalar charge  of curvature of the prismatic 
loop is worth 

At the microscopic scale of a solid lattice, the Burgers vector of dislocation loops are 
quantified, as shown schematically in figure 2.29 for two prismatic loops and for one slip loop 
within a cubic network. In this figure, we also clearly observe the following facts:
- the prismatic dislocation loops are obtained by adding or removing a plane of particles within 
the loop (translation perpendicular to the plane of the loop), so that the network presents "extra-
matter" on the plane of the loop; note that the overall scalar charge  of divergent curvature of 
the prismatic loop is directly linked to the existence of this "extra-matter",
- the slip dislocation loops are obtained by sliding (translation parallel to the plane of the loop) in 
the direction of the Burgers vector, so that the lattice does not present any "extra-matter" in this 
case. On the other hand, the presence of a screw component in the regions where  
induces a dipolar field of rotation in the vicinity of the slip loop.

In Figure 2.9, we have shown the macroscopic realization of a screw disclination loop. But 
what are its main characteristics? For this, consider a loop consisting of a screw disclination 
generated by a rotation  of the upper plane by an angle  relative to the lower plane, as 
shown in figure 2.30. The fact that two planes which have been displaced relative to one 
another are glued together within the loop must show on the plane of the loop a surface charge 

 of dislocation. On the contour of this surface charge, a twist disclination loop appears, the 
Frank vector of which is directly linked to the surface charge  of dislocation because 

, which is itself linked to the angle of rotation  imposed on the two 
jaws.

The surface charge  of rotation rotation can be integrated (summed) on the surface of the 
loop, and there then appears a global charge of  rotation of such a loop, which is worth 
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. This global charge  is actually the rotation charge of the twist disclination loop 
as seen from a long distance from the loop. This means that such a loop can behave as the 
source of a divergent field  of rotation within the solid medium.

Note that it is possible to see a disclination loop somewhat differently. Indeed, the fact of 
carrying out the rotation of the two planes one with respect to the other induces a displacement 
along the string similar to that of a screw dislocation. The Burgers vector and the linear charge 
of this screw pseudo-dislocation would then be worth , so that the 
global charge of this pseudo-loop would be written . One thus obtains 
the same value of the global charge  as that obtained by considering the surface charge, 
which makes it possible to consider either this singularity as a twist disclination loop or as a 
pseudo-loop of screw dislocation.

In figure 2.9, we have shown the macroscopic realization of a wedge disclination loop. But 
what are its main characteristics? For this, we consider a loop consisting of a doublet of wedge 
disclinations linked by a virtual dislocation ribbon, as shown in figure 2.31, in particular in the 
illustration of a section along a plane perpendicular to the plane of the loops. The linear 
densities of scalar charge of curvature  and  of the two disclinations are given by 

 and .
We deduce that the existence of these two densities and  on either side of the 

dislocation ribbon generates a dipolar flexion field , located essentially in the vicinity of 
the two disclinations. This dipolar field is illustrated in figure 2.32 in the case of a doublet of 
quantized disclinations of  in a cubic structure. We can clearly see the positive and 
negative curvatures around the two disclinations.
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It is then interesting to see that the dislocation ribbon of surface flexion charge  can be 
reduced, by integration over the distance  separating the two disclinations, to a linear charge 

 of virtual edge dislocation distributed over a radius loop . Thus, this loop of a 
doublet of disclinations can be considered similar to a loop of of edge dislocation with a linear 
charge  such as .

Such a loop of doublets of disclinations then has a global scalar charge of curvature 
linked to the virtual edge dislocation ribbon which it contains, and its value is written

. We can still imagine that the diameter of the 
internal disclination loop tends towards zero and that only the external disclination loop, of linear 
charge  and radius  remains. In this case, the global charge of curvature  remains 
unchanged and is always given by the same relation. This global charge of curvature  is that 
which is due to the entire dislocation ribbon, and that which is seen at a sufficiently large 
distance from the loop so that it is no longer possible to distinguish this loop from a simple edge 
dislocation loop. The charge  is then responsible for the global flexion  of the lattice at 
long-distance, as illustrated in figure 2.32 in the case of a doublet of quantized disclinations of 

 in a cubic structure.

Clusters of dislocations, disclinations and dispirations

Since the dislocation, diclination and dispiration strings containing non-zero densities of 
tensor charges can be closed on themselves in the form of loops, it is quite possible to imagine 
the existence of small very localized clusters of such loops within a solid medium. Such clusters 
are in principle entirely characterized by their tensor density  of dislocation charges, which 
take a non-zero value within the strings, in the field of the cluster.

As the cluster is composed exclusively of loops closing in on themselves, there are no 
vectors  and / or with non-zero value on any contour surrounding the cluster without 
crossing it, which implies that there is no discontinuities of the virtual displacement field  nor 
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discontinuities of the local rotation field  in the part of the solid surrounding the cluster, and 
that, consequently, the solid remains perfect outside the cluster.

However, the presence of the cluster within the solid must certainly imply a field of elastic 
and anelastic distortions of the perfect solid surrounding the cluster and up to a certain distance 
from it, just like the presence of a density  of localized electric charges implies an electric 
displacement field  remote from these electric charges.

To find this field, it is necessary to bring into play here the fact that there is, apart from the 
conservation equation  of the tensorial charge, no restriction on the scalar densities 

 and  of charges of rotatio and flexion. Consequently, it is entirely possible that, depending 
on the nature of the charges making up the cluster, it may have non-zero global scalar charges 
of rotation  and curvature , defined by the sums on all the closed loops of the global 
charges  and  as defined above for each individual loop in the previous section. One 
can imagine, for example, that the charge of curvature of a cluster could be due to prismatic 
dislocation loops, of lacunar or interstitial nature (figure 2.29) and / or wedge disclinations loops 
(figure 2.31), and that the rotation charge could be due to twist disclination loop (figure 2.30).

These considerations then make it possible to find the fields of elastic and anelastic 
distortions implied at a great distance by the presence of a localized cluster of charges. The 
presence of a non-zero global scalar charge  of rotation in a localized cluster of charges 
behaves as the source of a divergent field of rotation  within the perfect solid surrounding the 
cluster of charges (figure 2.33). The field of rotation then presents a topological singularity at the 
place where the cluster of charge  is located, and its norm  presents a decrease in 

 at long distance from the cluster.
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Everything in fact happens exactly as in electromagnetism, where a localized density  of 
electric charges, leading to a localized macroscopic electric charge , behaves like a 
singularity responsible for a field of electric displacement  diverging in the surrounding space.

A macroscopic scalar load  of nonzero curvature behaves as the source of a divergent 
field  of flexion within the perfect solid surrounding the cluster of charges (figure 2.33). The 
bending field then presents a topological singularity at the place where the cluster of charges 

 is located, and its norm  also presents a decrease  at long distance from the 
cluster. In other words, in the vicinity of a global localized load  of curvature, the solid 
presents curvatures by bending of spherical symmetry around the singularity.

Let be a hypothetical solid in which the charges are confined in localized clusters, as 
illustrated for example in figure 2.34, and therefore in which there are no dislocation and 
disclination strings propagating over great distances compared to the scale at which solid is 
studied. It is clear that, depending on the complexity of the internal structure of these clusters, in 
other words the complexity of the entanglement of the loops making up these clusters, the 
description of the fields of distortion and contortion within the clusters themselves can be very 
complex. But if these clusters have stable internal structures and they can move individually 
within the solid, but without interacting enough between them to modify their internal structure, it 
is possible to greatly simplify the description of the distortion fields prevailing in this solid.

In this case indeed, and insofar one is essentially interested in describing the elastic and 
anelastic distortion and contortion fields in the domains of the perfect solid, that is to say at a 
certain distance from the outside the clusters of charges, the problem can be solved much more 
simply by considering only the scalar charge densities  and  inside the clusters, which can 
result at great distance by the existence of two macroscopic scalar charges  and  for 
each cluster number .
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In fact, the knowledge of the distribution of charge density  and  inside a cluster makes it 
possible to find purely topological conditions, and consequently independent of the elastic 
properties of the solid considered, which are imposed on the fields of rotation  and flexion  
reigning in the perfect solid outside the cluster. These conditions are simply expressed by the 
scalar equations of geometro-compatibility  and . Depending on the 
inhomogeneity of the internal distribution of charge densities  and  in the cluster, it can then 
appear dipolar or multipolar fields  and  at short and medium distance from each cluster.

On the other hand, at large distances from clusters of charges, it is essentially the presence 
of macroscopic scalar charges and  which are different from zero which will be 
responsible for the appearance of monopolar radial fields of rotation  and flexion , as 
already illustrated in figure 2.33.

Thus, in this particular case of charges located in clusters, it is the two invariant vector fields, 
namely the fields of rotation  and flexion , which are affected at a certain distance from the 
clusters of charges. And it is quite remarkable that each of these clusters can be individually and 
completely characterized, as for its long-range effects on the fields of distortion and contortion, 
by its only two macroscopic scalar charges  and , even so these clusters can have 
very complex core structures, of tensorial nature, therefore very strongly dependent on their 
spatial orientation in the local frame of reference.

In the analogy previously developed with electromagnetism, the field of rotation  is the 
analog of electric displacement , and the macroscopic charge of rotation  is the analog 
of the macroscopic electric charge  of a corpuscle in electromagnetism. But is there also a 
similar analogy for the flexion field  and the overall charge  of curvature?
A partially positive answer can be given here. Indeed, the presence of a cluster of macroscopic 
flexion charge  is responsible for a non-zero and divergent vector flexion field  in its 
vicinity, therefore for a spatial curvature of the solid lattice surrounding this cluster, which results 
in the appearance of non-zero shear strain fields and volume expansion fields. Thus, the 
presence of a cluster of charges such as  implies, vis-à-vis the solid lattice, a result 
presenting a certain analogy with that stipulated by the theory of general gravitation of Einstein 
vis-à-vis the space-time in the presence of matter, namely that a cluster of matter located in a 
place of space is directly responsible for a curvature of the neighboring space-time. We will 
come back to this analogy in detail later.

Flow of dislocation charges

 The macroscopic interpretation of the density tensors  of dislocation charges as well as 
the conservation equation  which these tensors satisfy have revealed the notion of 
strings and loops of dislocation, disclination and dispiration. It has also been shown that at large 
distances from clusters of plastic charges, it is essentially the two invariant vector fields, namely 
the fields of rotation  and curvature , which are affected by the scalar components  and 

 of charges. It now remains to make the link between these quantities and the charge flows 
 and  introduced into the geometro-kinetic equations of figure 2.5.
Let us therefore consider a tube filled with a density  of dislocation charges, which moves 

at relative velocity  with respect to the lattice, where the velocity is measured perpendicular to 
the direction of the tube. We can show that the relation existing between the tensor density of 
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charge  in motion at speed  with respect to the lattice and the tensorial flux  of charges 
which is associated with this movement is then written , from which we also deduce 
the vector flux of charges  and the scalar source of sites 

.
We can apply this relation to the case of dislocation lines. We consider a dislocation line like 

the one shown in figure 2.35, which moves to the velocity  relative to the lattice. It is clear 
that, in the case of a line, the velocity  can only be perpendicular at all points to the direction 
 of the line. In the case of a line, one can integrate (summate) the vectorial flow  of 

charges on the surface of the contour  surrounding the dislocation line and mobile with it. The 
integrations on the surface of the contour of the charge fluxes  and  will give the linear 
fluxes associated with the mobile dislocation, that is to say the total fluxes per length unit of 
dislocation, which will be represented by the symbols  and . As the flows  and  
have as dimension the inverse of a time (1/s), the linear flows  and  will have as 
dimension a surface per unit of time (m2/s). As for the source  of network sites, its 
integral will also represent a surface per unit of time (m2/s), and we will write it . It then 
comes the relations reported in figure 2.35, which connect the linear fluxes  and , as 
well as the linear source  of sites to the linear densities of charge ,  and  of 
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dislocations. We also deduce the relations directly linking the linear fluxes ,  and  to 
the Bürgers vector  of the dislocation.

If the dislocation has only one screw component, the flux  will be given by the relation 
reported in figure 2.36. This relation shows that, as the velocity  is always perpendicular to 
the direction  of the line, the purely screw dislocations can move in all the directions 
perpendicular to the direction . In this case we speak of a gliding movement of the screw 
dislocations, and the planes on which the screw dislocation moves are called gliding planes.

In the case of a purely edge dislocation, two possible types of movement appear, leading to 
linear flows   and   whose mathematical expressions are shown in figure 2.36:
- the movement for which  is perpendicular to , and which is responsible for a vector 
charge flow . This movement is shown in figure 2.36a. It corresponds to a conservative 
movement of gliding of the edge dislocation on its gliding plane, defined as the plane 
perpendicular to , therefore the plane which contains at the same time the Burgers vector

, the direction  of the line and the velocity vector .
- the movement for which  is parallel to , and which is responsible for a scalar charge 
flow . This movement is shown in figure 2.36b. It corresponds to a non-conservative 
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movement of climb of the edge dislocation perpendicular to its gliding plane. Dislocation «is 
climbing» in the lattice, creating or destroying a lattice plan. This movement is therefore non-
conservative in the sense that it destroys or builds the lattice, and it is this movement which is 
responsible for the existence of a source  of lattice sites in the geometro-kinetic equation of 
the volume expansion reported in figure 2.5, which is written as .

It is the movement of dislocation charges that is responsible for the macroscopic plastic 
deformation of a solid. From the knowledge of the dislocation charge flows , it is then 
possible to go back to the macroscopic plastic distortions  of the solid thanks to the 
famous Orowan relations. The total derivatives along the medium trajectory of the macroscopic 
plastic distortions , , ,  and  of the charged solid are reported in figure 2.37, 
as a function of the volume densities of charges ,  and , as a function of the linear 
densities of charges ,  and  associated with the movement of dislocation lines, and 
finally as a function of the Burgers vectors of dislocations in place of the linear densities of 
charge of the dislocation lines.
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Force of Peach and Kohler acting on a line of dislocation

By establishing the energy balance equation of a solid containing dislocations, a power term 
 appears which is nothing other than the power supplied to the 

charges by the stress fields  appearing within the deformable solid.In this term of 
power, it is possible to replace the fluxes ,  and  by their expressions according to 
the velocity  of the charges, taken from figure 2.35. There comes an expression of 
containing this time the charge densities ,  and . The power  supplied to the 
charges is therefore the product  of a velocity by a term which can only be a force 

 acting on the charge densities  per volume unit. The expression obtained for this 
force is shown in figure 2.38.

This force which depends on the stress tensors ,  and / or  is generally called the 
Peach and Koehler force. As the dimension of  is the inverse of a length (1/m) and 
since the dimension of the moment vector is a moment per unit of volume, namely (Nm/m3), the 
force has for dimension a force by volume unit (N/m3). The last term containing a vector  is 
added here because it is a force term which would not produce work, and therefore would not 
appear in the expression of power . We will see later that this term actually corresponds to 
a relativistic force analogous to the Lorentz force in electromagnetism.

The force of Peach and Koehler can also be written in the case of a dislocation, by 
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integrating the relation giving   on the surface of a section of the string. It then comes, 
neglecting for the moment the term containing the vector , the expressions of the Peach and 
Koehler force acting on a dislocation line which are shown in figure 2.38, expressed respectively 
from the linear charge densities ,  and  of the dislocations, and from the Bürgers vector 

 of the dislocation.
The dimension of the force  acting on the dislocation is a force per unit of length (N/m). 

This is actually the force per unit length of the line in the presence of the stress fields . 
The writing of the Peach and Koehler force  using the stress tensors  is very 
interesting, because it allows to make a much clearer representation than with the notation 
usually used in the literature which exclusively uses the symmetrical stress tensor . Indeed, 
suppose a solid in which the volume expansion is zero, and therefore which would have a 
negligible pressure . In this case, we know that we can replace the shear strain tensor  
with the rotation vector , so that the force becomes a gliding force which can be written 

, in which the term  is the force acting on the screw component 
of the dislocation and the term  is the force acting on the edge component of the 
dislocation. As the component  of the moment of rotation is associated with the components 

 and  of the shear strain tensor, one can immediately make a very clear 
representation of the forces acting on a dislocation. The same goes for the pressure force , 
which acts only on the edge component  of the dislocations and which corresponds, given 
its direction (figure 2.36), to a climbing force on the dislocations.

In the case of a localized charge  of rotation, one obtains the force of Peach and 
Koehler by integrating the force on all the volume of the localized charge. The result is shown in 
figure 2.38. In this case, the dimension of  is that of a pure force, expressed in (N), 
and which is the analog of the electric force  acting on a localized electric charge 
in electromagnetism.

Potentialities of the Eulerian representation of charged lattices

The tensor density  and the tensor flux  of dislocation charges defined in this chapter 
make it possible to find the set of fundamental and phenomenological equations of spatio-
temporal evolution which must be satisfied by an anelastic and self-diffusing solid lattice 
containing dislocation charges. This development is done with many details in my first book. We 
will only describe here very briefly two important aspects which can be treated in the context of 
the Eulerian representation of solid media containing plastic charges.

It is possible to combine all the results described so far to obtain the complete space-time 
evolution equations of a solid self-diffusing lattice, presenting phenomenological behaviors of 
elasticity and anelasticity, and containing dislocation charge densities and flows. As figure 2.39 
shows, this system of equations is quite complex, especially at the level of the large number of 
phenomenological state equations and phenomenological dissipation equations necessary for a 
complete description of all possible phenomena in such an environment, and which we will not 
tackle in this book.

The concepts of densities and flow of dislocation charges make it possible to describe the 
phenomena of plasticity and anelasticity at the microscopic level of the discrete solid lattice, by 
introducing into it an evolutionary microstructure of plastic charges which should make it 
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possible to translate the non-Markovian behaviors of plasticity. In addition, the approach using 
plastic charges at the microscopic level of the discrete solid lattice also makes it possible in 
principle to find exact local expressions for the dissipative equations linked to plastic charges.

By introducing the simplest solid which it is possible to consider, namely the isotropic perfect 
solid, one can obtain the Newton's equation of this solid. We can then show that this solid is 
perfectly described by equations similar to Maxwell's equations when the volume expansion is 
homogeneous within the solid.

One can also calculate the fields of distortions, the energies and the interactions of the 
dislocations in this perfect solid. In the case of stationary dislocations in the solid lattice, the 
static distortions of the lattice induced by them store elastic energy within the lattice. This stored 
energy can then be considered as the rest energy of the dislocations. In the case where the 
dislocations are mobile in the lattice, the displacements of the lattice induced by the movement 
of the dislocations are associated with kinetic energy. At low speed, this kinetic energy is directly 
linked to the rest energy of these dislocations via relations similar to the famous expression of 
Einstein , which makes it possible to introduce in a completely classic way the 
concept of mass of inertia of the dislocations.

From the distortion fields induced by the dislocations and from the Peach and Koehler force, 
we can also describe the interactions that can occur between dislocations.

Finally, we can also introduce the string model, which will allow us to deal with the dynamics 
of a dislocation that moves in the lattice while being deformed. The string model has proven to 
be extremely useful and efficient in dealing with plasticity and anelasticity problems due to the 
movement of dislocations and occurring in common solids, such as metals for example. But it is 
not within the purview of this book to deal in detail with the problem of these phenomena, which 
can be addressed in many books dealing with this particular subject. However, to arouse the 
interest of the reader, we have plotted the equation of the string of a dislocation in figure 2.40a, 
and, by way of example, two typical applications:
- the thermally activated interaction of a dislocation with a field of punctual obstacles: to 
introduce this type of interactions into the string model, it is necessary to know the spatial 
distribution of obstacles in the solid, as well as the internal stress fields generated by them. 
These stress fields due to obstacles can be expressed and visualized at the level of the gliding 
plane of the dislocation, as illustrated in figure 2.40b, where it appears many Peach and Koehler 
forces  combining to act on the dislocation. But the string equation in figure 
2.40b in the presence of interactions with obstacles is a purely mechanical equation, which 
cannot take into account temperature effects, such as the migration of obstacles by diffusion or 
the crossing of obstacles by thermal activation. Introducing the effects of temperature into the 
string equation is theoretically possible by developing a “Brownian” image of the dislocation, that 
is, by introducing a term of local thermal fluctuations  into the string 
equation, as illustrated in figure 2.40c, modeled on the term of thermal fluctuations in the model 
of the Langevin equation. It is clear that such an approach to the dynamics of dislocation quickly 
proves to be very complex.

In general, these problems of dislocation interactions with obstacles are approached in a 
much more pragmatic way, by developing, on the basis of the string model, simplified models 
judiciously adapted to the problem to be treated. To deepen this subject, one will find examples 
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of mechanisms of interaction of dislocations with obstacles, illustrated by experimental results 
and theoretical models, in many books dealing with dislocations, or in a more summarized way 
in review articles such as "Dislocation-point defect interactions"  and "dislocation-lattice 11

interactions» .12

- the source of Frank-Read dislocations: we now suppose a dislocation segment of length  
anchored on its gliding plane at two points  and  located on the axis  in  and 

, as illustrated in figure 2.40d. Such anchoring points can be due to the existence of 
strong and localized interactions of the dislocation with obstacles (other dislocations, 
precipitates, etc.). Using the string equation in the static case, it is fairly easy to show that the 
deformation of the dislocation segment under the effect of a static stress is a portion of a circle 
whose radius depends on the stress  applied to the solid. In fact, the radius of curvature of 

L
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the segment is inversely proportional to the static shear stress , which means that the latter 
decreases as  increases. However, it is clear that there is a minimum limit for the radius of 
curvature, which intervenes for a critical stress  such that the radius of curvature becomes 
equal to . For any value  greater than , there can be no static solution for the 
deformation of the string segment. There then appears a complex dynamic solution to the 
equation of the string, which in fact corresponds to a Frank-Read source mechanism.
The initial straight segment shown by (1) in Figure 2.40d curves between the two anchor points 
until it forms a semicircle (2). Then it continues to extend beyond the anchoring points, steps 
(3), (4) and (5), until the strand of the segment leaving from  joins the strand of segment 
leaving from  (6) . At this point, as the two strands have the same Burgers vector, they bind 
together by forming on the one hand a new segment (1) growing between the anchoring points 

and , and on the other hand a closed loop (6) which will not stop growing. This 
mechanism therefore constitutes a phenomenon of uninterrupted source of dislocation loops. It 
is essentially this phenomenon, which is very well observed by electron microscopy, which 
explains why it is possible to carry out significant plastic deformations of certain solids such as 
metals. And it is indeed this type of phenomenon which can be responsible for the existence of 
a non-zero source of dislocation charges in the equation of continuity of the density of 
dislocation charges in Figure 2.5, which induces a non-commutativity of the operator of material 
derivative with the operators of space.
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Chapter 3 

The «Cosmological Lattice» and its properties

By the introduction of an elastic strain energy of the lattice, called the elastic internal energy, 
expressed per unit volume of the lattice and dependent at the same time on the volume 
expansion, the shear strains and especially on the local rotations within the lattice, we obtain an 
imaginary lattice, which we will call "cosmological lattice". This lattice has a very particular 
Newton's equation, in which appears in particular a new term of force, which is directly related 
to the energy of distortion due to the topological singularities contained in the lattice, and which 
will be called thereafter to play a fundamental role in analogies with Gravitation and with 
Quantum Physics.

The propagation of waves in the cosmological lattice presents very interesting features. The 
propagation of transverse waves with linear polarization is always associated with longitudinal 
wavelets, and the propagation of pure transverse waves can only be done by waves with 
circular polarization, which will then have a direct link with the existence of photons. On the 
other hand, the propagation of longitudinal waves can disappear in favor of the appearance of 
localized modes of longitudinal vibration in the case where the volume expansion of the lattice is 
less than a certain critical value, which will subsequently have a direct link with quantum 
physics.
 A curvature of the wave rays also appears in the vicinity of a singularity of the volume 
expansion of the lattice. This phenomenon makes it possible to find the conditions which the 
expansion field associated with a topological singularity must satisfy so that a trap appears 
which captures all the transverse waves, in other words a "black hole».

A finite cosmological lattice in absolute space can exhibit a dynamic volume expansion and / 
or contraction, provided that it contains a certain amount of kinetic energy, a phenomenon quite 
similar to the cosmological expansion of the Universe. According to the signs and the values of 
the elastic modules, several types of cosmological behaviors of the lattice are possible, some of 
which present the phenomena of big bang, rapid inflation and acceleration of the speed of 
expansion, and which can be followed in some cases of a re-contraction of the lattice leading to 
a big-bounce phenomenon. We deduce that it is the elastic energy contained in the lattice and 
due to the expansion which is responsible for these phenomena, and in particular for the 
increase in the speed of expansion, phenomenon which is observed on the current Universe by 
astrophysicists and which is attributed by them to a hypothetical "dark energy".

The «cosmological lattice» and its Newton’s equation

Let us introduce an imaginary solid lattice, which will be arbitrarily called “cosmological 
lattice” and whose internal energy of distortion is expressed per volume unit in the form of a 
development of the volume expansion , the elastic and anelastic shears  and , but 
also directly from the vectors of elastic and anelastic rotation  and . Our initial 
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conjecture is therefore a priori the following: the internal energy of the "cosmological lattcie" is 
expressed as a function  of the state of 
distortion per unit volume of the lattice.

Such a lattice in fact corresponds to the most general isotropic perfect lattice that one can 
imagine if one makes his energy depend both linearly on the volume expansions and 
quadratically on the volume expansions, shear strains and rotations by torsional deformation. 
Still in the spirit of simplification, we can also assume that there is no elasticity by volume 
expansion in this lattcie. The state function per unit volume of this cosmological lattice is 
therefore written in the form of the expression presented in figure 3.1, in which appears four 
elastic constants  and two anelastic constants  which completely 
characterize the elasticity and the anelasticity of this lattice.

One then deduces from it five equations of state of elasticity and anelasticity, respectively for 
the scalar of pressure , the symmetrical transverse tensors of shear stresses  and  as 
well as the moment vectors   and , which are also reported in the figure 3.1. These 
state equations can be used to carry out a rather tedious computation which finally provides the 
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equation of Newton of the cosmological lattcie reported in figure 3.1. This equation is indeed a 
Newton's equation because it provides the temporal variation of the amount of momentum per 
lattice site, taken along the trajectory of the lattice, according to the spatial variations of the 
tensors of distortion, via the elastic and anelastic constants.

We will see later that this Newton's equation will play an absolutely central role on the 
behavior of the cosmological lattice. It is quite complicated, in particular by the presence of the 
density  of flexion charge, of terms related to the diffusion of intrinsic point defects and 
especially of the new term of force depending directly on the volume density of internal 
deformation energy , which is directly related to the energy of distortion due to the 
topological singularities contained in the lattice, and which will be called thereafter to play a 
fundamental role in the analogies with Gravitation and with Quantum Physics.

The fact of introducing a rotational energy with terms in  and  into the expression of 
the internal energy of the cosmological lattice, as well as the fact of developing its internal 
energy per unit of volume and not per site of lattice, are not not at all elementary to understand, 
and really make this lattice a perfectly imaginary lattice of which there is absolutely no 
equivalent among the usual solids.

Rather than embarking now on a superfluous search for interpretation of the “hidden face” of 
this imaginary lattice, it seems preferable to start by exploring in detail the consequences that 
this hidden face implies in terms of the behaviors that the cosmological lattice can present. It is 
therefore to this task that devolves the rest of this book, which will be devoted to extracting the 
substantial core from this hidden face. To do this, we will show that it is the Newton's equation 
that we have just deduced which has spectacular properties and which is at the heart of the very 
many analogies that we will develop in the following with the great theories of physics, namely 
Maxwell's Electromagnetism, Lorentz Transformation, Einstein's Special Relativity, Newton's 
Gravitation, Einstein’s General Relativity, and even Quantum Physics and the Standard Model 
of Elementary Particles.

Transverse and longitudinal perturbations in the cosmological lattice

We will first be interested in the transverse and longitudinal perturbations that can reign 
within the cosmological lattice. There are quite surprising vibrational phenomena (figure 3.2), 
such as the existence of a mode of propagation of linearly polarized transverse waves which are 
necessarily coupled to longitudinal wavelets, while circularly polarized transverse waves are 
free of these wavelets. There is also the possibility of propagation of longitudinal waves. But, 
under certain conditions which strongly depend on the elastic moduli and the state of expansion 
of rest of the lattice, the mode of longitudinal propagation can disappear and be replaced by a 
very astonishing mode of localized vibrations of expansion, which will play by thereafter a key 
role in analogies with gravitation and quantum physics.

To discuss these various modes of mechanical perturbations in the cosmological lattice, we 
will make simplifying hypotheses, namely that there are no anelastic perturbations, therefore 
that   and  , that there are no vacancies and self -interstitials, therefore that 

 and that there is no density  of flexion charges, therefore that .
We will further assume that the state of the background volume expansion of the lattice is a 
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constant , so that the total volume expansion of the lattice is written , in which 
 represents the mechanical perturbations of the expansion around the rest value . To 

calculate the various perturbation modes, we inject the expression of the momentum of the 
perturbations, that is  , into Newton's equation in figure 3.1. We can then describe 
four different perturbations modes:

- the propagation of a linearly polarized transverse wave in the cosmological lattice, that is to 
say of a wave for which the vibration of the particles of the lattice is perpendicular to the 
direction of propagation of the wave. Such a wave satisfies a completely conventional wave 
equation provided that its amplitude is not too strong. But it must be accompanied by a 
longitudinal wavelet which propagates in the same direction and at the same velocity as that of 
transverse perturbation. The frequency of this longitudinal wavelet is twice the frequency of the 
transverse perturbations, and its amplitude is proportional to the square of the amplitude of the 
transverse perturbations. It will also be noted that the speed of propagation of the transverse 
perturbations strongly depends on the background volume expansion  of the lattice since the 
value of the lattice site density  which appears in the expressions of the speed of the 
transverse waves is an exponential function   of the  background volume expansion 

 of the lattice.
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- the propagation of a circularly polarized transverse wave in the cosmological lattice, that is to 
say of a wave for which the vibration of the particles of the network rotates around the direction 
of propagation of the wave. It is said that such a wave has a positive or negative helicity 
depending on whether the direction of vibration of the particles rotates dextrorotatory or 
levorotatory at an angle of 360 ° over one wavelength. Circularly polarized transverse waves 
are pure, in the sense that they are not coupled to longitudinal wavelets.
- the propagation of a longitudinal wave in the cosmological lattice, that is to say of a wave for 
which the direction of vibration of the particles of the lattice is the same as the direction of 
propagation of the wave is quite complicated to compute, because the propagation equations 
are strongly non-linear and depend directly on the state of rest expansion  of the lattice. In 
this case, only very small perturbations  within the lattice are considered, which makes it 
possible to linearize the wave equations. The celerity  of longitudinal waves of small 
amplitude which appears in figure 3.2 is expressed with the square root of an argument which 
must be positive for it to exist. As this argument depends both on the elastic constants

 and on the state of rest volume expansion  of the latttice, directly and 
exponentially via the expression , the existence of a longitudinal wave propagation is 
subject to the condition .
- the longitudinal perturbations in the form of localized eigen modes of vibrations of the volume 
expansion. In the cosmological lattice, if the celerity  of the longitudinal waves becomes an 
imaginary number (this is what is called the square root of a negative number), there is no 
longer any propagation of longitudinal waves. In this case, we can rewrite the complex 
perturbation solution in the form shown in figure 3.2. There arises here a very surprising 
phenomenon, namely the appearance of localized eigen modes of longitudinal vibrations, which 
do not propagate at great distance, but which are on the contrary confined on distances of the 
order of . For high amplitudes of these localized modes of longitudinal perturbations, these 
will become non-linear and will therefore strongly depend on the amplitude  of the 
perturbations. The appearance of these "strange" modes is obviously subject to the condition 
that .

It is remarkable that in the cosmological lattice, the speed  of the transverse 
waves depend exponentially on the state of expansion  of the lattice via the value of a 
multiplicative term being worth . The same goes for the speed  of the longitudinal 
waves, although there is also a dependence on their speed through a term  within the 
argument of the root.

It is also remarkable that the linearly polarized transverse waves are necessarily coupled to 
longitudinal wavelets in the cosmological lattice, and that the only transverse waves which are 
pure, not coupled to longitudinal wavelets, are then the transverse waves with right or left 
circular polarization, that is to say transverse waves of positive or negative helicity. Strangely, 
there is already a property specific to photons in the real universe, namely that photons are 
necessarily of non-zero helicity. As photons are quantum objects, we find here an astonishing 
peculiarity to which we will return. 

The existence of domains of volume expansion of the cosmological lattice in which the 
propagation of longitudinal waves is not possible, when , 
corresponds well by analogy with the fact that there is no propagation of longitudinal waves in 
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thge theory of Einstein's General Relativity. Indeed, in the latter, the gravitational waves are 
transverse waves, defined as the propagation of perturbations of the space-time metric. These 
waves have a tensorial symmetry, with two independent polarizations perpendicular to the 
direction of propagation, contrary to the longitudinal perturbations which have a scalar 
symmetry.

The condition  that there are no longitudinal waves implies 
the existence of a critical background expansion  of the lattice, the limit between the 
expansion domains where it exists and where there are no longitudinal waves. In order for the 
cosmological lattice to present analogies with Einstein's General Gravitation, with 
electromagnetism and with the photons of quantum physics, it is necessary that there are no 
longitudinal waves, but that there are pure transverse waves of circular polarization. Hence the 
need to make a second conjecture which is shown in figure 3.3.

This conjecture implies, so that there are no longitudinal waves, that the volume 
expansion  of the cosmological lattice is smaller or greater than the value of the critical 
expansion  depending on whether the elastic modulus  is positive or negative.

In the absence of longitudinal waves, the cosmological lattice then presents localized eigen 
modes of longitudinal perturbations, therefore local vibrations of the scalar  of volume 
expansion. Such modes immediately make one think of the ideas of quantum fluctuations in 
gravitation on a very small scale since they affect the scalar  which undeniably has a link with 
the gravitational field. But these localized perturbations of the scalar of volume expansion also 
make one think of the quantum fluctuations of the vacuum described by quantum physics. We 
can therefore, on the basis of this analogy between  and the gravitational field, ask the 
following question: "is gravity that must be quantified on a very small scale, or is it gravitation, 
on a very small scale, responsible for quantum physics? ” We will try to provide some answers 
to this topical question of the most relevant.
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Curvature  of the wave rays by a singularity of expansion and black holes

Among the surprising behaviors that a cosmological lattice can exhibit with regard to wave 
propagation, there appears a non-dispersive curvature of the wave propagation rays by a 
gradient of volume expansion due to the presence of a strong topological singularity of the 
expansion . This curvature can go as far as the formation of "black holes" absorbing all the 
waves passing in its proximity, or of impenetrable "white holes" repelling all the waves passing 
in its proximity.

The fact that the celerities of the transverse and longitudinal waves increase non-linearly 
with the value of the static volume expansion  via the value of the site density  will 
cause a curvature of the rays of propagation of these waves if they pass in the direct vicinity 
from a singularity of volume expansion within the lattice, as illustrated in figure 3.4.

Indeed, imagine a motionless cosmological lattice in the absolute frame of reference of the 
GO observer and containing a singularity of volume expansion of spherical symmetry located at 
the center of the coordinate system . Let us also consider a longitudinal or transverse 
wave, initially planar, arriving towards this singularity in a given initial direction. The speed of 
propagation increases or decreases as it approaches singularity, under the effect of lattice 
density  . According to whether the singularity of  is "positive" (passes through a 
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maximum at the origin) or "negative" (passes through a minimum at the origin), there will appear 
a curvature of the rays of propagation of the waves, so that the wave seems repelled by a 
"positive singularity" or attracted by a "negative singularity».

This phenomenon does not depend on the shape of the field around the singularity, but only 
on its gradient, that is to say on the slope of the function . For a plane wave incident on the 
singularity, this phenomenon of acceleration or develeration of the wave will then cause a 
deformation of the wave planes similar to the effect of a diverging lens in the case of a "positive 
singularity" or a converging lens in the case of a "negative singularity». In addition, as this 
phenomenon does not depend on the frequency of the wave, the singularity behaves like a 
converging or diverging lens of a non-dispersive nature in the cosmological lattice, that is to say 
which does not depend on the frequency of the incident wave.

Now imagine that in a motionless cosmological lattice in the absolute frame of reference of 
the GO observer, and containing a "negative singularity" of the volume expansion, of spherical 
symmetry, located at the center of the coordinate system, it passes a transverse wave (  ) 
or a longitudinal wave ( ). In the vicinity of the singularity, at a distance   from the 
origin of the singularity, the wave planes are always parallel to a line passing through the origin 
of the singularity, so that the radius of the transverse or longitudinal wave located in  is in 
fact a circle centered on the origin, as illustrated in figure 3.5. The condition of existence of this 
sphere of perturbations around the singularity effectively depends on the slope of  as 
explained in figure 3.5.

Thus, if a transverse or longitudinal wave passes at a distance satisfying this relationship 
, it becomes impossible for it to escape from the virtual sphere of radius  . If the field of 

singularity has a monotonous gradient increasing from its origin, the curvature of the wave rays 
located inside this critical sphere will be further accentuated, so that all these waves will be 
definitively trapped by the singularity. By analogy with the “sphere of photons” surrounding a 
black hole in general relativity, one will call “sphere of transverse and longitudinal perturbations” 
the layer located at a distance  from the heart of the singularity. It is clear that the 
existence of such a sphere of perturbations is subject to the condition that it lies outside the 
"object" responsible for the negative singularity of the expansion field. If the radius of this 
"object" is , we deduce that the condition  must also be part of the conditions of 
existence of a "black hole».

We saw in the previous section that the propagation of longitudinal waves in the perfect 
lattice is subject to the condition that the expression  is positive. 
This condition takes the form of a condition on the background volume expansion  of the 
lattice, which must be greater or less than a critical value  given in figure 3.3. If the 
propagation of longitudinal waves is possible in the lattice, then the longitudinal waves will also 
undergo the phenomenon of trapping at the limit . In the event that , there is yet 
another phenomenon. Indeed, if the singularity presents a monotonic gradient increasing from 
its origin, there could exist a radius  surrounding it beyond which the value of 
becomes less than . In this case, any longitudinal wave initially trapped at the limit  
will then reach this second limit  beyond which it will not even be able to propagate, 
but will increase natural modes of longitudinal vibrations located inside this volume. In the case 
where , this same phenomenon does not exist since the existence of a propagation 
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implies that  in this case.
The cosmological lattice presents a very interesting analogy with the theory of General 

Gravitation of Einstein since one can find there, in the vicinity of singularities of the volume 
expansion, spheres of perturbations very similar to the sphere of photons surrounding a black 
hole. We therefore deduce from this non-dispersive effect of the curvature of the rays by the 
gradients of the volume expansion that the scalar of volume expansion undoubtedly has a 
strong analog relationship with the gravitational field in General Relativity.

It is also interesting to note that only a negative singularity of  has this property similar to 
that of a "black hole" capturing all the waves passing in its proximity, whereas a positive 
singularity of  would behave like a "white hole" that is to say as an entity which would repel 
the waves, and which therefore could not be penetrated by waves. Hence the third conjecture 
for our analogy with Gravitation, reported in figure 3.4.

It is quite remarkable to note that the curvature of the waves by a gradient of volume 
expansion and the existence of a sphere of perturbations around a localized singularity of 
volume expansion are exclusively due to the development of the internal energy per unit volume 
that we used for the cosmological lattice. Indeed, if we try to take a closer look at what would 
happen in the case of a perfect solid for which the internal energy would be written as a 
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development expressed by lattice site, we would see that the speed of the transverse waves 
would be " invariant” whatever the state of expansion of the lattice, which obviously cannot lead 
to a non-dispersive curvature of the wave rays nor to the appearance of a sphere of 
perturbations. This analogy therefore justifies a fortiori the conjecture 1 that we had posed in 
figure 3.1, since it is this conjecture which allows the existence of the curvature of the waves 
and the sphere of disturbances in the cosmological lattice.

Cosmological expansion-contraction of a sphere of perfect lattice and dark energy

By considering a finite imaginary sphere of cosmological lattice, one can introduce the 
concept of "cosmological evolution" of the lattice, supposing that a certain amount of kinetic 
energy is injected into it. In this case, the lattice presents strong temporal variations of its 
volume expansion, which one can model in a very simplistic way by supposing that the volume 
expansion remains perfectly homogeneous in all the lattice during its evolution.

Let us imagine that, in the absolute reference frame , the GO observes a solid, of 
spherical shape, of radius , made up of a lattice of cells (figure 3.6), and that this solid has a 
homogeneous background volume expansion which depends on time, but not on the position 
within the lattice, so that . In this case, the GO will observe that the 
radius  of this solid sphere depends on time  and therefore that this sphere will 
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tend to expand or contract. This behavior, which one could qualify as “cosmological” by analogy 
to the cosmological theories of expansion of the Universe, necessarily implies the conservation 
of energy, namely that the total energy  of the solid, composed of the elastic energy  
of expansion and the kinetic energy  of expansion, is a constant.

The total kinetic energy  of volume expansion is necessarily linked to the speed of 
expansion, which can be characterized by the velocity  of the surface of the sphere (figure 
3.6). The kinetic energy  can then be obtained by summing (by integration) over the whole 
sphere the kinetic energy of the lattice sites located in a spherical cap of radius  and thickness 

. The speed of expansion in the spherical cap is simply given by  since the 
volume expansion was assumed to be homogeneous. From the expression of the kinetic energy 

 thus obtained as a function of  and of the total number  of sites contained in the 
sphere, the dependence of  is deduced as a function of . On the other hand, like 

, we finally get the dependence of  as a function of . But the 
total elastic energy can be calculated quite easily from the state function   of the lattice 
since  is homogeneous in the space of the sphere and the other distortion tensors are zero. 
With the expression of  calculated and reported in figure 3.6, one can directly expressed 

 as a function of  and of the total energy  per lattice site. The expression shown 
in figure 3.6 shows that it is possible to plot   as a function of , for various values of . 
As this expression also depends on the two elastic constants  and , we will get eight 
different graphs, shown in figure 3.8, depending on whether these two elastic constants are 
positive, zero or negative, knowing that the graph in the case where the two constants were 
zero has no sense.

As an example, consider the case of the lattice for which  and . The relations 
of figure 3.6 allow to deduce its "cosmological behavior" as represented in figure 3.7:
- if , the lattice presents a single possible trajectory, entirely located in the domain , 
and which corresponds to expand and contract indefinitely between two extreme values of ,
- if , the network presents two possible trajectories: the first corresponds to 
expand and contract indefinitely between a positive value and a negative value of , and the 
second corresponds to oscillate indefinitely between a negative value of  and an expansion 
tending towards ,
- if , the lattice presents a single very interesting possible trajectory. It pulsates 
indefinitely from a big bang to a big crunch. The big bang is followed by a phase of rapid 
expansion, followed by a deceleration, then again an expansion at increasing speed, and 
suddenly a reversal of the speed of expansion, to contract again by following in opposite 
direction every stages traveled during expansion. The contraction ends with a big crunch, which 
can only be followed by a bigbang since the lattice has then accumulated a total kinetic energy 
equal to , phenomenon called "big bounce".

In the case of this lattice, one also notes the existence of domains of volume expansion 
presenting different behaviors concerning the longitudinal waves: a domain where it coexists 
transverse and longitudinal waves, for  , and a domain 
where there exists only transverse waves and localized longitudinal eigen vibration modes, for 

. And the area where there are no longitudinal waves 
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corresponds precisely to the area of big bang, inflation, slowing inflation, followed finally with an 
acceleration of expansion.

In Figure 3.8, we have reported the eight different behaviors that it is possible to obtain with 
a cosmological lattice, according to the values that the modules  and  can take. Also 
shown in this figure are the areas of expansion in which the longitudinal waves cannot exist.

We can see that there are four really different "cosmological behaviors", three of which have 
much more convincing analogies with what we know about the cosmology of the real Universe:
- the cosmological lattices with  which are shown in figures 3.8 (a), (c) and (d). These 
three types of lattices show a big bang followed by high-speed inflation, a slowdown in inflation 
and finally an expansion at increasing speed towards , stages which follow one 
another in perfect order. The disappearance of longitudinal waves occurs in these lattices for 
expansions greater than a critical value  which depends on the value of the shear modulus 
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,
 - the cosmological lattice of figure 3.8 (b), with  and , for which there never 
exists longitudinal waves provided that , which makes it a very simple and very 
interesting case to describe the cosmological behavior of the real Universe,
- the cosmological lattices with  or  and  which are shown in figures 3.8 
(e), (g) and (h). These three types of lattices go well through the four stages of the cosmology of 
the real Universe, in the absence of longitudinal waves (a “big-bang” starting from a singularity 
of space-time, followed by a period of very rapid inflation, then a slowdown in inflation, followed 
by an expansion whose speed seems to increase well over time), before entering a phase of 
expansion during which the longitudinal waves appear, and which precedes a symmetrical 
phase of contraction returning to the state of singularity  for  («big-crunch"). In this 
case, there is indeed a region of the diagram, for , which lies in the domain where there 
are no longitudinal waves, and in which the lattice is expanding at increasing speed. Note that 
the lattice in figure 3.8 (g) could be an excellent candidate to describe the cosmological 
behavior of the real Universe, because all of its elastic moduli are positive,
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- finally, the cosmological lattice of figure 3.8 (f), with  and , does not present the 
stages corresponding to the cosmological evolution of the real Universe, and it always presents 
longitudinal waves. It is not able to describe the cosmological behavior of the real Universe.

The “cosmological behavior” of a lattice can be illustrated even more clearly by calculating 
the speed  of the volume expansion as a function of the volume expansion , as 
shown for case (c) with  in figure 3.9, and for case (g) with  in figure 3.10. The 
behavior of the speed  of volume expansion as a function of  can be deduced from 
the knowledge of  as shown by the relation reported in figure 3.9.

Figures 3.9 and 3.10 are very interesting, because they clearly show the existence of an 
initial stage of extremely rapid inflation of volume expansion  in cosmological lattices since 

 for , just after the big-bang stage or just before the big-crunch stage, 
and that the speed of volume expansion or contraction goes through a minimum before 
accelerating again, just after the inflation stage or just after the re-contraction stage.

It goes without saying that the modeling used here to describe the "cosmological behaviors" 
of imaginary lattices is extremely simplified, and one could even qualify it as simplistic. In fact, it 
is essentially the initial hypothesis of a homogeneous volume expansion throughout the lattice 
that can be questioned, because with this hypothesis we eluded the two major problems which 
would lead in principle to much more complicated models: the fact that the solid is subjected to 
the Newtonian dynamics in the absolute space of the GO, and the fact that one should in 
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principle have placed a condition on the nullity of the pressure at the external limit of the solid. 
But despite the extreme simplifications of our modeling, the global behaviors predicted in figures 
3.8 to 3.10 must still remain fairly close to the behaviors that could have been obtained by a 
more realistic treatment of the problem.

It is obviously not possible to choose here the cosmological lattice which would come closest 
to the known cosmological evolution of the real Universe. But from a philosophical point of view 
and from a common sense point of view, the cosmological lattices of figures 3.8 (e) to (h), which 
present a big-bang followed by a big crunch, and therefore ultimately a big- bounce seem much 
more satisfactory for a Cartesian spirit than the lattices of figures 3.8 (a) to (d), which present an 
infinite and unique expansion. We can therefore make a “philosophical” conjecture here, shown 
in figure 3.11.

As for the value of , nothing currently allows us to propose a positive, zero or negative 
value, because the cases illustrated in Figures 3.8 (e), (g) and (h) are all three very interesting.

Note also that the elastic energy  contained in the cosmological lattice could well 
correspond to the famous "dark energy" of the astrophysicists, introduced to explain the 
increase in the speed of the expansion of the Universe recently observed experimentally, since 
it is this elastic energy which is entirely responsible for the increase in the speed of the volume 
expansion via the relation reported in figure 3.9.

It is again remarkable to note that these behaviors of the volume expansion of a sphere of 
cosmological lattice are exclusively due to the development of the internal energy per unit of 
volume which we used for this one. Indeed, if we try to look at what would happen in the case of 
a perfect solid for which the internal energy would be written as a development expressed by 
lattice site, we would see that the behavior of expansion is radically different like shown in figure 
3.12:
- if the modulus  of the imaginary perfect solid is positive, this can only oscillate indefinitely 
between a state of minimum volume expansion  and a state of maximum volume 
expansion , as illustrated by the first figure 3.12. If one reports in the diagrams  
and , the critical value  of  below which there are longitudinal 
waves in this perfect lattice, one notes that during its "cosmological evolution" the solid will pass 
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alternately from a domain ( ) where there coexist transverse and longitudinal waves, 
with another domain ( ) where there exist only transverse waves and localized modes of 
longitudinal vibrations. But in this domain without longitudinal waves, the speed of expansion 
can only slow down, which is in disagreement with the observations made on the current 
Universe.

- if the modulus   of the imaginary perfect solid is negative, depending on the value of the 
total energy , this solid could have several different "cosmological behaviors" as well 
illustrated by the second figure 3.12. If , it can contract and expand in a back and forth 
movement between  and , or then expand indefinitely from . Note that it is 
difficult to imagine a solid that would evolve by contracting since , which is why these 
behaviors are reported in a gray area. If , it can expand indefinitely from . In this 

τ ≤ τ 0cr
τ ≥ τ 0cr

k1
E

E ≤ 0
τ → −∞ τ1 τ =0

τ = ∞
E ≥ 0 τ → −∞



Chapter 398

case, the longitudinal waves appear in the domain .
The different "cosmological behaviors" deduced for an imaginary perfect solid can also be 

compared with the cosmological behavior which is currently attributed to our real Universe. 
Indeed, in the case of the real universe, we have a system which does not present longitudinal 
waves, as shown by the theory of general relativity, and which pursues, in the light of the last 
observations, a cosmological evolution in several stages: a “big-bang” based on a singularity of 
space-time, followed by a period of very rapid inflation, then a slowdown in inflation, followed, 
according to very recent experimental observations, by an expansion whose speed seems to 
increase over time. This last stage is the one that would correspond to the current state of our 
Universe.

Among the "cosmological behaviors" deduced from the perfect solid, only the perfect solid 
with  presents any analogy with the cosmological behavior of the real Universe. Indeed, 
the perfect solid with , in the case where  is greater than zero (second figure 3.12), 
traverses well the stages of big bang, inflation, slowing of inflation and expansion at increasing 
speed in the area where there are no longitudinal waves. But for this solid, the stage of 
expansion at increasing speed inevitably continues towards , which does not satisfy 
our fourth conjecture dictated by common sense.

These results in the case of the perfect solid whose internal energy would be written as a 
development expressed by lattice site are far from satisfactory if we compare them with the 
known expansion of the universe. This therefore justifies again the conjecture 1 that we had 
posed in figure 3.1, since it is this one which allows the existence of the cosmological behaviors 
reported in figures 3.7 to 3.10, and especially which allows the existence of the curvature of the 
wave rays by the volume expansion gradients of figures 3.4 and 3.5.
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Maxwell’s equations of electromagnetism

Maxwell's equations are the fundamental laws of electromagnetism formulated at the end of 
the 19th century by James Clerk Maxwell on the basis of the various theorems of Gauss, 
Ampère and Faraday which described electric and magnetic phenomena separately before 
Maxwell unified them. Maxwell's laws govern all classical phenomena related to electric and 
magnetic fields, and thereby represent one of the most beautiful applications of the concept of 
fields in physics. But Maxwell's equations of electromagnetism are a postulate deduced from 
experimental observations, and we admit them because they correspond to the experimental 
observations.

In this chapter, we theoretically demonstrate the existence of a set of equations to describe 
the rotations and shear strains of the cosmological lattice in the absence of variations in volume 
expansion, and we note that there is a complete and perfect analogy between this set of 
equations and Maxwell's set of equations. This analogy not only demonstrates that it is possible 
to theoretically deduce the set of these equations on the basis of some fundamental physical 
principles applied to the cosmological lattice, but it also makes it possible to consider the 
cosmological lattice as a physical support for the electromagnetic fields, and to give physical 
interpretations to the various physical quantities of electromagnetism.

We start by showing the separability of the volume expansion field from the other fields in 
Newton's equation of a cosmological lattice in the case where the concentrations of point 
defects are constants. Newton's equation can be separated into two parts, a so-called rotational 
part and a so-called divergent part.

In the case where the volume expansion field can be considered as quasi-constant, the 
rotational part then shows a set of equations for the field of macroscopic rotations and local 
rotations (associated with the shears of the lattice) perfectly identical to the set of Maxwell's 
equations of electromagnetism. This analogy with Maxwell's equations leaves no room for the 
existence of magnetic monopoles, but there is however the possibility of imagining the existence 
of vector electric charges.

Separability of Newton’s equation partly «rotational» and partly «divergent»

Suppose that the volume expansion field within a cosmological lattice has a homogeneous 
background field  with an elastic expansion field  superimposed on it, so that it can be 
written . Supposing further that the atomic concentrations of vacancies and auto-
interstitials are homogeneous constants throughout the lattice, and therefore that they do not 
depend on time ( ), we can write Newton's equation of the lattice under 
the shape shown in figure 4.1.

Thanks to the hypothesis of homogeneity of the concentrations of vacancies and auto-
interstitials, the linearity of the relationships in the various velocities shows that it is possible to 
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split them into two contributions by separating the speeds ,  and  into a component, 
indexed "rot”, associated with the deformations by shears and rotations on the one hand, and a 
component, indexed “div”, associated with the deformations by volume expansion on the other 
hand. There thus come two contributions to Newton's equation as shown in figure 4.1:

- a contribution managing the elastic fields of shears and rotation, via the vector field of rotation 
. This contribution only depends on the volume expansion  by the presence of the site 

density ,
- a contribution managing the perturbation field of volume expansion, which is dependent on the 
previous solution via the energy density  of deformation by elastic and anelastic shears 
and rotations.

The density of flexion charges has also been split into two parts: the “rotational” flexion 
charges and the “divergent” flexion charges, which satisfy two relationships also shown in figure 
4.1, and which allow the equation of Newton for expansion  to be related to the flexion 
charge density  within the lattice.

This splitting of Newton's equation in the case where the concentrations of vacancies and 
interstitials are homogeneous constants makes it possible to solve the problems of spatio-
temporal evolution of the cosmological lattice, by separating the resolution of the elastic fields of 
shears and rotation of that of the volume expansion field. But as the density of sites  
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 intervenes at the same time in the rotational and divergent parts, there exists a 
certain coupling between the results of the two partial equations of Newton. However, with 
additional simplifying assumptions, it may be possible to solve these two sets of equations 
completely independently. This is what we will show in the following, considering the specific 
case where the volume expansion field can be considered to be quasi-constant.

«Maxwellian» behavior of the rotational part of Newton’s equation

Let us now assume that the average value  of the volume expansion within 
the cosmological lattice can be considered as a first approximation as constant and 
homogeneous, so that the density  of sites can also be considered on average as a 
homogeneous constant. With this hypothesis, Newton's equation is reduced to its purely 
rotational part.

In this case, the torque vector  derives from a virtual equation of state, the virtual volume 
density of free energy of elastic rotation, linked to shear deformations and pure elastic rotations, 
without volume expansions, which is written . Still by 
assumption, we will also assume that the lattice anelasticity manifests itself only by shear and / 
or rotation, so that it can very well be represented here by an anelastic rotation vector .

The equations necessary for the complete description of the shears and elastic rotations of 
the cosmological lattice must still incorporate the topological equations for the elastic vector of 
rotation , namely the geometro-kinetic equation and the 
geometro-compatibility equation in the presence of dislocation 
charges. As the mass density  of inertia of the lattice is a 
constant , we 
deduce that . With all these 
considerations, we can finally deduce the complete set of 
equations reported in figure 4.2a, which describes the spatio-
temporal evolution of the cosmological lattice in the presence 
of pure shears and local rotations.

The relationships thus obtained for the cosmological lattice 
in the local frame of reference  mobile with the 
medium are then compared with the Maxwell equations of 
electromagnetism (figure 4.2b) in an electrically charged, 
conductive, magnetic and dielectric medium. We note that there is a very strong analogy 
between these two sets of equations, except for the fact that the evolution equations involve in 
principle the material derivative, while the Maxwell’s equations involve the partial derivative with 
respect to time. However, it should be noted here that the material derivative in a local 
referential mobile with the medium can be replaced by the time partial derivative if the 
deformations remain sufficiently weak and / or slow in the vicinity of the origin of the local 
referential, this that we assumed in the table in figure 4.2a.

The analogy between the equations of a cosmological lattice taken with almost constant and 
homogeneous volume expansion and the Maxwell’s equations of electromagnetism is quite 
remarkable, because it is absolutely complete, as the equations reported in the tables of figures 
4.2a and b. The Maxwell’s equations have a precise correspondence with the equations of the 
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rotations in the cosmological network: the Maxwell-Ampère equation corresponds to the 
geometro-kinetic equation, the Maxwell-Gauss equation to the geometro-compatibility equation, 
the equation of Maxwell-Faraday to the Newton's equation and finally the Maxwell-Thompson 
equation to the mass density conservation equation.
In fact, our equations contain an additional term for a "rotational" flexion charge density  in 
the second pair of equations, which has no counterpart in Maxwell's equations. Assuming then a 
cosmological lattice in which  can be neglected, namely that , the analogy between 
the equations of the cosmological lattice and the Maxwell’s equations becomes perfect, and 
deserves to be commented on in more detail.

Analogy between rotation charges and electric charges

The equations in tables 4.2a and b show a complete analogy between the density  of 
rotation charges and the density  of electric charges, which are involved in the geometro-
compatibility equation and in the Maxwell-Gauss equation, as well as between the vector flux  
of rotation charges and the electric current density , which are involved in the geometro-
kinetic equation and in the Maxwell-Ampère equation respectively.
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The equation of continuity of the rotation charges is written in these tables considering that the 
source of rotation charges  described in figure 2.5 is 
zero ( ), and it then corresponds to the equation of continuity of the electric charges when 
it is assumed the absence of creation and annihilation of electric charges. We immediately 
imagine that there is certainly a link between the source  of rotation charges due to the non-
commutation of the operators of time and space, and the phenomena of creation-annihilation of 
electric charges.

Analogy between anelasticity of the lattice and dielectricity of the matter

The phenomenon of anelasticity introduced here by the term  becomes, in comparison 
with Maxwell's equations of electromagnetism, the analog of dielectric polarization  in the 
relation , giving the electric displacement  according to the electric 
field  and the polarization  of matter. This analogy between the fields  and  is 
very strong since the possible phenomenological behaviors of these two quantities are 
completely similar, with in both cases relaxation, resonant or hysteretic behaviors described in 
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detail in the book . For example, in the case of pure relaxation, it is possible to link  to  via 1

a complex modulus, just as it is possible to link  to  via a complex dielectric coefficient in 
electromagnetism. In fact, a closer comparison would even show that the behaviors associated 
with thermal activation, and therefore temperature, also present analogies.

As for the term of homogeneous dielectric polarization  that we have introduced here, 
it is analogous to a term of global rotation  of the lattice, therefore of the local frame in 
the absolute referential of the GO. This term of analogy therefore disappears if the local 
coordinate system  is only in translation  with respect to the absolute referential.

Analogy between mass transport in the lattice and magnetism in the matter

As the quantity  represents both the average momentum per unit volume of the solid 
and the average mass flow within the solid, we deduce that the mass flow within the solid is due 
both to a mass transport  at velocity  by the movement of the lattice, to a mass 
transport  at velocity  by the driving movement of point defects by the 
lattice and to a mass transport  due to the phenomenon of self-diffusion of 
vacancies and interstitials.

Each of these mass transports has an analog in Maxwell's equations of electromagnetism. 
Mass transport  via the lattice is analogous to the basic term  of magnetic 
induction in the vacuum. The mass transport  by entrainment of point defects 
by the lattice corresponds perfectly to the term   of magnetism, in which the 
magnetic susceptibility consists of two parts: the positive paramagnetic susceptibility , 
which therefore becomes the analog of the concentration of interstitials, and the negative 
diamagnetic susceptibility , which is therefore analogous to the concentration of vacancies.

As for the phenomenon of self-diffusion by vacancies and interstitials, it appears in these 
equations by the term  connecting the 
last part of  to the velocities  and  of self-diffusion of point defects.

The term  associated with this mass transport by self-
diffusion of point defects becomes, in comparison with Maxwell's equations of 
electromagnetism, the perfect analogue of the magnetization  of matter in the relation giving 
magnetic induction . The analogy between the fields  and  is very 
strong since there are similar phenomenological behaviors of these two quantities, like 
relaxation behaviors described in the book1, which derive from transport equations and which 
implicitly assume that the self-diffusion processes are of Markovian type, therefore that they do 
not depend on history, that is to say on the previous transport processes, which is the case of 
usual solids.

But nothing precludes a priori from imagining solid lattices for which the transport processes 
would not be of the Markovian type. As an example, we can imagine a hypothetical lattice in 
which the vacancies are very strongly anchored in the lattice, while the interstitials are almost 
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free to move there. The momentum  within the solid would then be written
, and the mass transport  would now contain 

a term  associated with both the vacancies and the interstitials, whose 
coefficient  is analogous to magnetic susceptibility  in electromagnetism, and 
which can take a positive or negative value depending on concentrations  and  of point 
defects. It would also contain the term  associated with a mass transport by inertial 
conservative movement of interstitials, perfectly analogous to the permanent magnetization  
of ferromagnetic and antiferromagnetic materials in electromagnetism.

The presence of a constant term  in  would then correspond very clearly 
to a non-Markovian type process, since the value of  must essentially depend on the 
history of this hypothetical solid lattice. One could imagine for example that the movement of the 
interstitials is controlled by a dry type friction with the lattice, in which case there would exist a 
critical force of depinning of the interstitials, which would lead to the appearance of hysteresis 
cycles of  depending on , absolutely analogous to the hysteresis cycles of 
magnetization  as a function of the magnetic field  observed in ferromagnetic or 
antiferromagnetic materials.

The complete analogy with the physical quantities of the electromagnetism theory

The analogy reported in the tables of figures 4.2a and b between the equations of a 
cosmological lattice taken with almost constant and homogeneous volume expansion and the 
Maxwell’s equations of electromagnetism is quite remarkable, because it is absolutely complete, 
and it also calls upon very similar relaxation and hysteretic processes in the two systems. The 
complete analogy which exists between the physical quantities of our theory and the 
electromagnetic quantities of Maxwell's theory of electromagnetism can be reported in tables of 
figures 4.3a and b.

The effects of volume expansion of the lattice in the absolute frame of GO 

In this analogy, the existence of a uniform translation at non-zero velocity  of the 
lattice, therefore of the local frame  of reference with respect to the absolute frame 

 of reference of GO, would have for analogy, in Maxwell's equations, a homogeneous 
magnetic field  in space. This last remark implies that, if a solid lattice was expanding in 
the absolute frame of GO there should appear a field  in the local frames . This 
field  should have for analogous a locally homogeneous magnetic field  in space if 
the Universe was in expansion, and which would point in the direction of the movement of the 
local frame of reference of the observer compared to the absolute space.

About the highly improbable existence of magnetic monopoles in this analogy

The equation  reflects the fact that we consider a solid with a uniform and 
static volume expansion field. The existence of a non-zero and constant value of , 
such that would imply that 
there is a constant and divergent field of velocity  of the lattice sites, and therefore, with the 
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assumption that , a non-zero source  of lattice sites, or that there would be a 
constant and divergent flow of self-diffusion , which would necessarily require 
localized and non-zero sources of point defects  and / or , which is very difficult to 
imagine.

Within the framework of the analogy with electromagnetism, a relation  
would have for analogy the relation . However, this last relation reveals the 
well-known notion of magnetic monopoles, of particles of unipolar magnetic charge, proposed 
by certain theories, but never observed experimentally. According to our analogy with the 
cosmological lattice, magnetic monopoles could not be stable particles, but should correspond 
to localized and continuous sources of lattice sites or point defects, which is particularly difficult 
to imagine. We deduce that within the framework of our analogy, the existence of magnetic 
monopoles in electromagnetism is more than doubtful.

About the possible existence of "vector electric charges" in this analogy

One can legitimately wonder what the analogy of the density of "rotational" flexion charges 
 could be in Maxwell's equations. If there existed a quantity analogous to  in Maxwell's 
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equations, we could hypothetically qualify it as the density   of "vector electric charges" by 
making the following analogy  . Maxwell's equations would then be written a little 
differently from known equations, with an additional charge term not in the equation  
as suggested by magnetic monopole theories, but in the Maxwell-Faraday equation as follows 

, in which  is a new electrical coefficient, analogous to the module 
: .

In the static case, if such a vector charge really existed, the equation containing it would be 
written as follows , and would have the analogous equation  
in the cosmological lattice. It would therefore imply for the displacement field that 

, so that the density  of “vector electric charges” would be a source of a 
rotational electric field  and of a rotational electric displacement field , just as the scalar 
density  of electric charges is a source of a divergent electric displacement field  by the 
relation . If we now compare the coefficients of the two theories, we obtain, from the 
analogies  and , that there is the following analogy 

 between the coefficients of the two theories.
But experimental observations have never revealed the existence of such "vector electric 
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charges". In fact, two reasons can be invoked to explain this state of affairs: either that the 
"vector electric charges" simply do not exist, or that the coefficient  is low enough to 
completely hide the presence of these "vector electric charges", therefore than 

 in our analogy. Starting from the famous adage that 
"everything that is not prohibited must exist", we can deduce here a new conjecture for our 
theory, reported in figure 4.4, which gives conditions to be respected on the elastic constants, 
deduced from the experimental non-observation of vector electric charges. We will return to this 
conjecture later, which is in fact called upon to play a considerable role too.

The importance of this analogy

In fact, the existence of an analogy between two theories is always very fruitful in physics, by 
the reciprocal contribution of each of the theories. In our case, it is clear that this analogy with 
the theory of electromagnetic fields will allow us in the following to use for the description of a 
lattice all the arsenal of theoretical tools developed since a very long time in field theory, such as  
for example the Lorentz transformation or the theory of delayed potentials.

In the other sense, the theory developed here is in fact a much more complex theory than 
classical electromagnetism, since it follows from a tensor theory which can be reduced to a 
vector theory by contraction on the tensor indices, and moreover, by choosing particular 
“restrained” cases of behavior of the solid lattice, such as the constancy and the homogeneity of 
the volume expansion. By taking into account the tensorial aspect of the theory of solid lattices 
and by renouncing to the "clamping" of the behaviors of these, the analogy will become 
particularly interesting and fruitful, as we will see later.

ε0κ

ε0κ <<1⇔ 2K2 /(K2 +K3) <<1
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Topological singularities within the cosmological lattice

Newton's equation can also be separated differently into two partial Newton's equations 
which allow on the one hand to calculate the elastic distortion fields associated with the 
topological singularities contained in the lattice, and on the other hand to calculate the 
perturbations of the volume expansion associated with the elastic distortion energies of these 
topological singularities. Using Newton's first partial equation, we can then describe the elastic 
distortion fields and energies of topological singularities within a cosmological lattcie. It is thus 
possible to find conditions on the elastic modules of this lattice such that it is possible to 
attribute in a completely classic way a mass of inertia to the topological singularities, which 
always satisfies the famous «Einstein's formula"  .

Separability of Newton’s equation in three partial equations
in the presence of a topological singularity 

Suppose the existence of a localized singularity of dislocation charges of spherical, tubular 
or membrane shape, containing charge densities ,  and / or , and suppose that one 
can neglect the anelasticity and the self-diffusion in the lattice , by assuming that 

 and that . The presence of a localized singularity of 
dislocation charges can be introduced into this equation by considering that the fields prevailing 
in the lattice are of three different natures: the elastic fields due to the charges of the singularity, 
which will be indexed (ch), the fields independent of the singularity within the lattice, which are 
due for example to the other singularities, and which will be indexed (ext), the background field 

 of the volume expansion of the lattice and finally a perturbation field  of the volume 
expansion due to the energy of distortion  stored in the lattice by the elastic fields of the 
considered singularity. These fields represented in figure 5.1 can be introduced into Newton's 
equation, which can be developed by judiciously grouping the different terms, and we note that 
the Newton equation is in fact composed of three coupled equations which manage the different 
fields prevailing in the lattice, and which we have reported in figure 5.1.

Newton's third partial equation deals with fields external to the singularity associated with thw 
velocity . But this Newton's equation is not in fact perfectly independent of the other fields, 
due to the presence of  in the expression of the 
momentum associated with . One can suppose, to simplify the problem of the treatment of 
the fields specific to the singularity, that the external field  can be regarded as constant, that 
is to say   and , in which case the equation put in its static form becomes 
perfectly independent of fields   and .

As for the fields ,  and , which are associated with the singularity, they then 
satisfy two other strongly coupled partial Newton's equations, which we will discuss now.
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Newton's first partial equation is concerned with the fields of elastic distortions  and 
associated with the charges contained in the singularity. This equation is coupled to the fields 

 andt  by the value  appearing in the expression 
of the momentum associated with . In the static case, this coupling disappears, so that it 
makes it possible to deduce the static fields of elastic distortions  and  generated by the 
topological singularity in a completely independent way from the fields  and .

One notes also that this first partial equation of Newton depends on the density  of 
flexion charges of the singularity. The divergence of this equation in its static form then provides 
a static equation depending on the density  of curvature charges of the singularity, since the 
divergence of the density  of flexion charges is equal to the density  of curvature 
charges of the singularity, which is also shown in figure 5.1.

The second partial Newton's equation which can be extracted deals with the problem of the 
perturbations  of the expansion field by the elastic energy stored in the lattice by the 
singularity. It is clear that this last equation is very strongly coupled to the fields , ,  
and  deduced from the two other Newton's equations. First, there is a dynamic coupling via 
the term  appearing in the expression of the momentum 
associated with . There also appears a coupling term associated with the module  in the 
form . But the main coupling terms are those due to the elastic energy 
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of the singularity and to the coupling energy of the singularity with the external fields, which 
appear in two particular contributions which have very precise meanings:
- the density of elastic energy   stored in the lattice by the elastic fields due to the 
singularity, in other words the energy density of distortion of the singularity,
- the energy density  of coupling of the singularity with the external fields, in other words the 
potential energy density of the singularity.

These two terms  and  are obtained by solving the first partial equation 
and the third partial equation. In the static case, if we have solved these two equations taken in 
the static state, and we therefore know the equilibrium values of the fields , , 

 and , the second partial equation becomes an equilibrium equation for the static 
field of perturbation whose solution is an equation of the second degree in , which is 
also reported in figure 5.1. The constant  was introduced when passing from the gradient to 
the gradient argument. However, as  must necessarily be identically zero if the energy 

 is zero, this constant can only be zero.

Applications and potentialities of the separability of Newton’s equation

The decomposition of Newton's equation into three partial equations that we have just 
presented reveals a partial equation (the 3rd) for the external fields, a partial equation (the 1st) 
for the elastic distortion fields associated with the presence of a topological singularity and a 
partial equation (the 2nd) for the expansion perturbation fields due to the elastic distortion 
energies associated with the topological singularity. The methodology to be used to solve the 
problem of fields associated with a topological singularity is then the following:
- in a first step, we must independently solve the first partial Newton's equation, in order to find 
the elastic distortion fields  and  generated by the singularity, without taking into account 
the expansion perturbations due to energies  and  of the singularity,
- then, starting from the elastic fields  and  obtained previously by the first partial 
Newton's equation, the additional perturbations of the expansion field due to the 
elastic energies  and  of the singularity are calculated using the second 
partial equation, or using the second degree equation in the static case.

At first glance this process seems quite complex, but it contains enormous potential with 
regard to the description and interpretation of the behaviors of topological singularities within the 
cosmological lattice. Indeed, we will show in the following that it becomes possible to deal with 
the following themes:
- the existing link between the "first partial Newton equation" for elastic distortion fields and 
Einstein's Special Relativity: the first partial Newton equation allowing to find the elastic 
distortion fields associated with topological singularities will allow us to calculate the fields and 
energies associated with screw dislocations, edge dislocations, screw dislocation loops, edge 
dislocation loops and mixed dislocation loops, and to show that these fields are subject to a 
relativistic dynamic, which will lead us to discuss the "ether role" that the cosmological lattice 
plays with respect to topological singularities, as well as analogies and differences with 
Einstein's Special Relativity.
- the link existing between Newton's second partial equation for fields of expansion 
perturbations and Einstein's General Relativity as well as Quantum Physics: Newton's second 
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partial equation allowing to find associated volume expansion perturbations is very important 
too. Indeed, we will see that this, in its static form applied to macroscopic clusters of 
singularities, allows to find the gravitational effects, and to discuss the analogies and differences 
of our theory with Newton's Gravitation, General Relativity of Einstein and Modern Cosmology 
of the Universe. Then we will also see that this partial equation, in its dynamic form applied to 
microscopic singularities, makes it possible to rediscover Quantum Physics, and to discuss the 
analogies and the differences with Schrödinger's equations, the concepts of fermions and 
bosons, the principles of Heisenberg’s  uncertainty and of Pauli’s exclusion, and the notions of 
spin and magnetic moment of elementary particles.

Elastic energy, kinetic energy and inertial mass of a dislocation

It is possible to calculate the distortion energy and the kinetic energy of a dislocation string in 
the cosmological lattice. The distortion energy is obtained by calculating the lattice distortions 
associated with the presence of the dislocation and by summing the elastic energy due to these 



Topological singularities within the cosmological lattice                    113

distortions in the whole lattice. Similarly, the kinetic energy associated with the movement of a 
dislocation moving at low velocity  compared to the celerity  of the transverse waves is 
obtained by calculating the velocities of all the points of the lattice associated with the 
movement of the dislocation and by summing the kinetic energy which is associated with these 
movements in the whole lattice. If these calculations are easy enough to do in the case of a 
screw dislocation, they become very difficult in the case of an edge dislocation. We will not dwell 
on it here and will give the results obtained in the cosmological lattice in figure 5.2. These 
complete calculations can be found in the theoretical book «Universe and Matter conjectured as 
a 3-dimensional Lattice with Topological Singularities» published in 2016.

In these relations, we note that the elastic and kinetic energies depend on the proper 
dimensions of the cosmological lattice, via the expression , in which  is the 
external dimension of the cosmological lattice and  is the step of the cosmological lattice, with 
obviously . These energies also depend on the squares  and  of the linear 
densities of charges of the screw and edge dislocations respectively.
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By comparing the kinetic energy  stored in the lattice by the movement of the line of 
screw dislocation with the elastic potential energy  stored in the lattice by the presence of 
this same line, one finds the famous expression of Einstein  connecting the mass 
of inertia to the rest energy of the dislocation via the celerity of the transverse waves. But this 
relation is found here without in any way calling upon a relativistic dynamic of the line, because 
it is due to the fact that the rest energy and the kinetic energy are nothing other than elastic 
potential energy (of shear and local rotation) and kinetic energy stored within the lattice by the 
dynamic deformation imposed on this lattice by the elastic distortion fields (shear and local 
rotation) of the mobile screw dislocation.

In the case of edge dislocation, it is very different. It is observed in fact that the energy of rest 
depends in a rather complicated way on the four elastic modules , in particular via 
a parameter , and that it also appears a parameter  which depends in fact on the boundary 
conditions of the lattice which are used to carry out the computations of energies. Likewise, the 
relation between the energy of distortion and the mass of inertia of an edge dislocation differs 
quite strongly from Einstein's relation via the term reported between braces, which depends on 
the parameter  and the modules , in particular via the module  .

To ensure a complete analogy between the topological singularities of our theory and the 
particles of the real universe, it would be desirable that the edge dislocations also exactly satisfy 
Einstein's relation. However, for an edge dislocation satisfies this relation, the term between 
braces in the relation between the energy of distortion and the mass of inertia of the edge 
dislocation must be equal to 1.

As the considered lattice is finished, the boundary conditions of the lattice are free. We can 
then show that the value of the parameter  is that which will minimize the distortion energy of 
the edge dislocation, and this condition implies that . Suppose moreover, a priori, that not 
only the conjecture 5, namely  to be satisfied, but moreover the norm of the module 

 is also much smaller than the norm of the module , therefore that the relation 
 is satisfied. In this case, the relation giving the mass of inertia of the edge 

dislocation is already greatly simplified, since it is then written . 
For Einstein's relation to be satisfied for an edge dislocation, it would now suffice that 

, which would imply that . By using conjecture 2, namely that  
, as well as conjecture 5, namely that , we deduce that the condition of 

existence of transverse waves is reduced so that the modulus  is positive.
By still emitting a priori a new hypothesis (which will be verified moreover later), namely that the 
module  is positive, the only possible solution for the relation of the mass of inertia is then 
that , from which we deduce that . This set of hypotheses will allow us to 
make a sixth conjecture, reported in figure 5.3, which will ensure that the screw and edge 
dislocations both satisfy real Einstein’s relations, which are deduced in a purely classical 
manner, without making appeal to a principle of special relativity, which are written 

 and  respectively. The cosmological lattice thus obtained will 
be qualified as a perfect cosmological lattice.

We note that the potential energy and the non-relativistic kinetic energy of an edge 
dislocation in the perfect cosmological lattice are both extremely weaker than the potential 
energy and the non-relativistic kinetic energy of a screw dislocation since, for a screw 
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dislocation and an edge dislocation of Burgers vectors of the same norm , we 
have the relations  and . We 
will see later what important role can be attributed, in our analogy with the physical theories of 
the Universe, to the facts that edge dislocations exactly follow Einstein's relation and that they 
also present much weaker energies than screw dislocations in a perfect cosmological lattice 
satisfying the relationships of conjecture 6.

Spherical singularities of rotation and curvature charges

Imagine the existence within a perfect cosmological lattice of a localized macroscopic cluster 
of topological singularities, in the form of a sphere of radius  containing a uniform density 

 of rotation charges, as shown in figure 5.4. It is possible and quite simple to calculate the 
elastic rotation field  associated with this charge, both inside and outside the singularity. 
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Let’s introduce the global charge  given by the integration of the density  in the volume of 
the cluster, or given by the sum of the elementary charges  within the cluster, and the 
vector  which represents the vector normal to the spherical surface. The result of these 
calculations is shown in figure 5.4. Outside the cluster, that is to say for , the external 
field of rotation  due to the cluster of charges is independent of the radius  of the 
cluster. But the field  inside the cluster, that is to say for , depends on .

To calculate the elastic energy stored in the lattice by the presence of the field of rotation 
 of the singularity, in other words the energy of elastic distortion  of the lattice due to 

the charge of the cluster, one should in principle calculate the energy associated with the field of 
rotation, increased by the energy of the shear strain fields associated with the field of rotation. 
But in the case of a perfect cosmological lattice, we have the relationship  between 
the rotation and shear moduli, so that in principle we can neglect the energy associated with 
shear strain. The calculation provides the distortion energy  stored outside the singularity 
in a quasi-infinite medium, that is to say a medium for which  and the elastic 
distortion energy  stored inside the singularity. The rest elastic energy  of the 
spherical cluster of rotational charge  and radius  can therefore be written as the sum 
of the energies stored outside and inside the singularity. We see that it is finished and depends 
essentially on the radius  and the charge   of the cluster.

A localized macroscopic topological singularity of radius , apart from having a global 
charge  of rotation, can also have a global charge  of curvature. Indeed, such a 
singularity can be formed of a cluster of elementary topological singularities of the lattice, such 
as prismatic dislocation loops which each have an elementary charge  of curvature. If 

, we are talking about a cluster of vacancy nature because lattice sites are missing 
within the cluster, and if , we are talking about a cluster of interstitial nature, because 
there is then an excess of lattice sites within the cluster.

A localized curvature singularity is responsible for a non-zero and divergent flexion field in its 
vicinity. Indeed, if we know the density  of curvature charges within the singularity, we 
can easily calculate the divergent flexion field outside the singularity, linked to a spatial 
curvature of the lattice. The result of the calculation is shown in figure 5.4.

The vectors of this flexion field converge towards the singularity if this is of interstitial nature 
(excess of lattice sites within the singularity), and diverge from the singularity if it is of interstitial 
nature (depletion of lattice sites within the singularity). On the other hand, we also note that the 
flexion field due to the cluster of curvature charges does not depend on the radius  of the 
cluster apart from the cluster.

Charge, fields, energies and mass of a twist disclination loop (BV)

The simplest topological singularity of a lattice which can have a localized charge  of 
rotation, among all the topological singularities described above on the scale of a solid lattice, is 
obviously the twist diclination loop (BV = Boucle Vis in French) described in figure 2.30. Recall 
that such a loop is generated by a rotation  of the upper plane of a circular cut in the middle 
of an angle  relative to the lower plane (figure 5.5). The fact that two planes which have 
been displaced with respect to each other by rotation are glued together, is the cause of the 
appearance of a surface charge  of rotation on the plane of the loop. We then have 
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, which implies that . This charge  is 
in fact the global rotation charge of the twist disclination loop as seen from a long distance from 
the loop. This means that such a loop can effectively behave as the source of a divergent field 
of rotation  within the solid medium. Such a loop can also be seen a little differently. Indeed, 
the fact of carrying out the rotation of the two planes one relative to the other induces a 
curvilinear displacement  along the loop similar to that of a screw dislocation. The 
curvilinear Burgers vector  and the linear charge  of this screw pseudo-dislocation 
loop then has a value , which leads to a linear pseudo-charge of the loop with a 
value  and to a global charge  of the loop. 
The same global charge value is obtained as that obtained by considering the surface charge 

, which makes it possible to consider this topological singularity indifferently as a twist 
disclination loop or as a screw pseudo-dislocation loop. Considering the loop as a screw 
pseudo-dislocation loop then makes it possible to show, in a rather complicated way, that there 
is a local rotation field of toric shape around the loop, which is confined up to a distance of the 
order  relative to the center of the loop, where  is the radius of the loop. Outside 
this toric confinement space, the far field becomes equal to the divergent field of rotation due to 
the global charge  of rotation of the loop.

The distortion energy of a twist disclination loop is the energy which is stored by the rotations 
generated by the screw pseudo-dislocation of radius  in a torus whose central fiber is the 
disclination loop and whose radius of the section roughly corresponds to , to which is added 
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the energy of the external field of rotation of spherical symmetry for distances greater than 
. The calculation of the exact value of this energy is obviously very complex, in 

particular because the field of rotation cancels out exactly in the center of the loop. However, we 
can try to approximate the actual distortion energy of the loop, using the energy of a straight 
dislocation to calculate the energy of the curved dislocation. In the case where the radius  
of the loop is enormously larger than the core radius  of the screw pseudo-dislocation vis 
( ), this approximation must approach the real value of the energy of distortion within 
the torus surrounding the loop, and we can correct it by introducing a constant  correcting 
the value of the external radius of the torus to best approach the real value of the energy. We 
will therefore write the energy of distortion  of the toric field from the energy of a screw 
dislocation per unit of length, like the energy contained in the torus surrounding the twist 
disclination loop. This value is reported in figure 5.5, in which  is the core radius of the screw 
pseudo-dislocation, of the order of magnitude of the step of the cosmological lattice in the 
presence of any expansion field ,  is the range of the toric field of the loop and  
is a constant which can only be obtained by the exact calculation of the energy of the loop, but 
which must be very close to unity according to our previous discussion. To simplify the rest of 
our presentation, as the ratio  does not depend almost on the background 
expansion, we will consider it to be approximately constant, and introduce a constant  
specific to the twist disclination loop, and being equal to   with 

 so to be able to write the energy of the toric field in the form shown in figure 5.5.
We can then compare this energy of the toric field of the loop with the energy associated 

with the spherical field of rotation at great distance from the loop, which occurs beyond the 
distance  of the loop, which is due to its rotation charge  , and which is simply worth 

. By comparing this value with the energy of the toric field reported in 
figure 5.5, we obtain the ratio . If we admit here a new 
and seventh conjecture, reported in figure 5.5, namely that the radius of a twist disclination loop 
is much larger than the step of the cosmological lattice, therefore that , the 
energy associated with the spherical external field of rotation becomes perfectly negligible with 
respect to the energy of the toric field of the loop. Therefore, the energy  of the twist 
disclination loop is essentially contained in the toroidal field of the loop, and we can write that 

.
The non-relativistic kinetic energy of a moving twist disclination loop is the energy that is 

stored by the lattice movements generated by the moving screw pseudo-dislocation. Using the 
relation obtained in the case of a screw dislocation, and admitting the seventh conjecture, the 
kinetic energy  of the loop is fairly easily calculated, which is shown in figure 5.5. Again, the 
kinetic energy of the external rotational field is negligible compared to this kinetic energy, so we 
can consider that the kinetic energy of the loop is essentially confined to the toric field of the 
loop. We therefore deduce that Einstein's relation applies perfectly to the twist disclination loop 
in the form .

We know from the separability of Newton's equation described at the beginning of this 
chapter that the existence of elastic distortion fields induces, via their energy, a perturbation field 
of expansion. We will return later in detail to this expansion perturbation field associated with the 
twist disclination loop.

r ≥ 2RBV

RBV

a
RBV >> a

ABV

Edist tore
BV

a

τ ABVRBV ABV

ABVRBV / a
ζ BV

ζ BV = ln ABVRBV / a( ) ≅ cste
ABV ≈1

2RBV qλ BV
Edist ext
BV ≅πK3RBV

!
⌢BBV /4

Edist tore
BV /Edist extBV ≅2ln ABVRBV /a( )/π

ln ABVRBV / a( ) >>1

Edist
BV

Edist
BV ≅ Edist tore

BV

Ecin
BV

M0
BV = Edist

BV /ct2



Topological singularities within the cosmological lattice                    119

“Coulomb-type” interaction between localized topological singularities
with rotation charges

Assume first of all two loops of twist disclinations with rotation charges  and . 
There is an interaction force between these two loops, of electric type, and this interaction force 
can be deduced very generally using the Peach and Koehler force.

Indeed, the spherical external field of rotation generated by a charge  located at the 
center of the coordinate system is given by the relation of figure 5.5. If a twist disclination of 
rotation charge  is then at the position marked by a vector  in the coordinate 
system, the interaction force acting on this charge on the part of the charge  is the 
Peach and Koehler force, which is exerted in the direction of the vector  and whose intensity 
is worth .

Thus, the reciprocal force between the two charges is repulsive if  and 
attractive if . This force of interaction between the rotation charges of twist 
disclination loops is the perfect analog of the force of interaction  
between two electric charges   and  in electromagnetism, and thus fits perfectly with the 
analogy developed in the previous chapter with the equations of Maxwell. As the previous 
relation of the force of Peach and Koehler is perfectly independent of the size of the loops, it 
can be generalized without problem to two macroscopic clusters of topological singularities 
which would have macroscopic charges of rotation  and  which would be distant 
from , under the form . In this case of two macroscopic 
clusters, the "electrical" interaction force between them therefore does not depend on the 
respective radii  and  of the two clusters.

Charge, fields, energies and mass of a loop of prismatic edge dislocation (BC)

If we consider a prismatic loop of edge dislocation (BC = Boucle Coin in French) with a 
radius  (figure 2.28), the distortions induced in the lattice are those of an edge dislocation. 
We can therefore calculate approximately the elastic distortion energy of this loop as the energy 
which is stored in the lattice by the elastic distortions generated by the edge dislocation in a 
torus centered on the loop.

By using the same arguments as for the twist disclination loop, we deduce that, in a perfect 
cosmological lattice, the elastic energy of distortion of a prismatic loop is essentially contained in 
the toric fields surrounding the loop, and reported in the figure 5.6, in which  is a constant 
close to unity, which should be calculated exactly by the exact integration of the energy of the 
fields within the torus, and where  is a constant proper to the edge 
dislocation loop.

Outside the loop, the fields due to the edge dislocation loop are reduced to a divergent 
flexion field of spherical symmetry. It is clear that this flexion field must be associated with a 
perturbation in the volume expansion field which must have a certain energy. We will come back 
to this problem later, and we will show that the energy associated with this flexion field is 
perfectly negligible compared to the distortion energy reported in figure 5.6, so that the energy 
of the edge dislocation loop is essentially contained in the toric fields in the immediate vicinity of 
the loop.
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The non-relativistic kinetic energy of this loop is essentially the kinetic energy stored in the 
lattice by the dynamic distortions generated by the edge dislocation in the torus centered on the 
loop. Using the relations deduced previously for the edge dislocation, we deduce the 
approximate value of this kinetic energy, and we note that Einstein's relation applies perfectly to 
the non-relativistic kinetic energy of the prismatic dislocation loop since . As for 
the expansion perturbation field associated with this loop, we will come back to this in detail 
later.

Charge, fields, energies and mass of a slip loop of dislocatiopn (BM)

The slip loop of mixed dislocation (BC = Boucle Mixte in French) with a radius  (figure 
2.28), of a “vector” nature, is obtained by gliding (parallel translation to the plane of the loop) in 
the direction of the Burgers vector, so that the lattice does not present any "extra-matter" in this 
case (figure 2.28). On the other hand, the presence of a screw component in the regions where 

 induce a dipolar rotational field  in the vicinity of the slip loop.
If we consider a slip loop with a radius , the distortions induced in the short distance 

lattice are those of a screw dislocation for the angles  and , and those of an edge 
dislocation for the angles  and . We can therefore consider that we pass 
continuously as a function of the angle  from a screw dislocation to an edge dislocation via 
mixed intermediate states. The distortion energy associated with the bent string is stored mainly 
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in the torus centered on the loop. However, since the two edge parts and the two screw parts of 
the loop are respectively of opposite charges, the fields associated with the edge parts and the 
screw parts of the loop decrease very quickly at great distance from the loop. For example, the 
modulus of the rotation field in the plane of the loop and over a diameter passing through the 
screw parts of the loop behaves approximately as follows  at great 
distance . If the radius  of the loop is very much greater than the step of the 
lattice, we can roughly take into account this rapid decrease in the dipole field by imagining that 
the field in the vicinity of the string is that of a dislocation. We can thus roughly calculate the rest 
energy of such a loop by integrating the energies per unit length of string within the torus for the 
screw and edge components of the string as a function of the angle . It therefore comes 
approximately, in the perfect cosmological lattice, the expression of the energy reported in figure 
5.7. An exact calculation of the energy should lead to the value  of the constant proper to 
the geometry of the mixed loop, and which must approach the value 1.

It would also be necessary to take into account the energy of distortion associated with the 
dipolar field of rotation outside the loop. However, this is obviously lower than the distortion 
energy associated with the external field of rotation of a twist disclination loop, so that this 
energy can be perfectly neglected in comparison with the distortion energy contained in the 
torus. This again means that the energy of the mixed dislocation loop is essentially contained in 
the immediate vicinity of the dislocation loop.
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The non-relativistic kinetic energy of the slip loop of dislocation is calculated approximately in 
the same way as its elastic distortion energy.

It can be seen that the energies  and  are in fact those supplied by the screw parts 
of the slip loop, and that these are essentially contained in the immediate vicinity of the 
dislocation loop. Einstein's relation therefore applies perfectly to the slip dislocation loop since 

. As for the expansion perturbation field associated with this loop, we will come 
back to this later in detail in chapter 24, where we will see that the energy associated with this 
field is negligible compared to the distortion energy contained in the torus.

"Topological bricks" to build the world of elementary particles

In Figures 5.4 to 5.7, we have reported all the results obtained for the three most basic types 
of loops that can be found in the perfect cosmological lattice. In our analogy with the real world, 
the three loops of disclination and dislocation which appear there could well constitute the most 
elementary topological bricks of the cosmological lattice, which could make it possible to work 
out loops of more complex structures which could be analogues of elementary particles of the 
Standard Model.

The twist disclination loop is the most basic topological singularity at the origin of an 
electrical charge. At a certain distance from the center of a twist disclination loop, greater than 
approximately , the external rotation field of the disclination loop behaves exactly like the 
external field of a spherical charge of value .
One can then wonder what should be the radius  of the spherical charge so that it has an 
elastic energy of global distortion equal to the energy of distortion of the loop. With the charge 
value  ensuring a long distance field similar to that of the twist disclination loop, the energy 
of a spherical charge of radius  is worth . For this global energy 
of the spherical charge to be equal to that of the distortion loop of radius  and linear charge 

, that is to say that , the radius  of the charge must satisfy the following 
relation , obtained by recalling that in the perfect cosmological 
lattice .

By using conjecture 7, we note that the radius of a spherical charge which would have an 
energy of the rotation field equal to the energy of the toric field of a twist disclination loop should 
be considerably smaller than the radius of the twist disclination loop. As the twist disclination 
loop is the most basic microscopic lattice singularity that it is possible to find which has a non-
zero rotation charge , the twist disclination loop therefore corresponds to the most 
elementary structure of an electric charge in our analogy with the real world.

The prismatic dislocation loop is the most basic topological singularity responsible for a 
spatial curvature charge. When we compare the elastic distortion energy of a prismatic loop with 
the elastic distortion energy of a twist disclination loop, with the same radii and the same 
modules of their Burgers vector, we see that in the perfect cosmological lattice with , 
we have . Thus, the mass of inertia of the prismatic edge 
dislocation loop is considerably lower than the mass of inertia of the twist disclination loop.

On the other hand, as the prismatic dislocation loop has a nonzero charge of curvature 
, which can be positive (loop of the lacunar type) or negative (loop of the 

interstitial type), it is necessarily associated with a flexion field  at long distance by lattice 
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curvature, given by . Thus, the prismatic dislocation loop is the most basic 
microscopic lattice singularity which is the source of spatial curvature of the lattice by the 
divergent flexion field which is associated with it, while the twist disclination loop is the most 
basic microscopic lattice singularity which is a source of spatial torsion of the lattice by the 
divergent field of rotation associated with it.

As one tried at first sight an analogy between the rotation charge of the twist disclination loop 
and the electric charge of the electron of the physics of particles, then the loop of prismatic edge 
dislocation, which does not present a field of rotation and which is of rest mass much weaker 
than the twist disclination loop, could very well, at first glance, be identified by analogy with the 
real-world neutrino, which is actually an electrically neutral particle and of much lower mass 
than the electron.

If we accept this analogy, the neutrino would in this case be the source of a spatial curvature 
by flexion of the perfect cosmological lattice, in other words the source of a field of curvature of 
space, while the charge of the electron would be the source of a spatial torsion by rotation of the 
perfect cosmological lattice, corresponding to the electric field of electromagnetism. This 
analogy with the two basic leptons of particle physics is obviously very sketchy at the moment, 
and it could very well intervene in fact more complex combinations of these elementary loops in 
the form of loops of dispiration of complex structures to explain the different elementary particles 
of the real world.

The slip dislocation loop is the most basic topological singularity at the origin of an electric 
dipolar moment. Unlike the twist disclination loop and the prismatic dislocation loop, the slip 
dislocation loop has no field at a long distance like a divergent rotation field or a divergent 
flexion field. However, this loop has a dipolar moment of rotation  in its vicinity, 
linked to the two opposite rotation charges located on either side of the loop. Thus, the slip 
dislocation loop is the most basic microscopic lattice singularity that can be the source of a 
dipolar moment of rotation.

In our analogy with the real world, a slip dislocation loop in the perfect cosmological lattice 
could correspond to the most elementary structure which could generate an electric dipolar 
moment for an elementary particle. However, it turns out that the research and measurement of 
an electrical dipole moment of elementary particles is currently an important research subject of 
the Physics of elementary particles.

The various physical properties transported by loop singularities

From the previous discussion, it would therefore seem that the twist disclination loop could 
transport the electric charge, the prismatic edge dislocation loop the curvature charge and the 
slip mixed dislocation loop the electric dipolar moment. We can add to these three properties 
another property which could be of enormous interest. In our analogy with the real world, it is 
quite difficult to imagine, to find the analog of the spin of a charged particle and the magnetic 
moment associated with it, that a symmetrical spherical singularity of rotation charge like that 
described in figure 5.4 can turn on itself. However, if we consider that the analog of an electrical 
charge is indeed the twist disclination loop shown in figure 5.5, the topology of this singularity, 
consisting of a screw pseudo-dislocation, makes it possible to imagine very naively that it can 
rotate around one of its diameters. In this case, the distribution of the rotation charge, 
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analogous to a distribution of the electric charge in the form of a ring along the perimeter of the 
twist disclination loop, would necessarily impose the appearance of a magnetic moment of the 
loop associated with this real movement of rotation. We will come back to this subject later.

There is still a fifth fundamental and very important property of elementary particles which 
could be explained with our analogy. It is the fact of being able to calculate the elastic distortion 
energies  and the kinetic energies  of the loops, and to be able to deduce 
therefrom their inertia masses , and that these are contained essentially in the 
immediate vicinity of the loops. But it is also and above all the fact that they all satisfy, in the 
perfect cosmological lattice, the famous relation of Einstein, which is a fundamental property of 
these loops which has been demonstrated without in any way appealing to a principle of special 
relativity.

On the other hand, the mass of inertia of the loops is a property linked to the mass of inertia 
of the cosmological lattice in the absolute reference frame of the external observer GO. In an 
analogy with the real world, the mass of inertia of the topological lattice would then correspond 
to the famous Higgs field that had to be introduced into the Standard Model to explain the mass 
of elementary particles, and the Higgs particle would then be the only one real particle of the 
real world since it would correspond to a constituent particle of the perfect cosmological lattice, 
while the other elementary particles of the Standard Model would correspond to topological 
singularities of the perfect cosmological lattice.

There is certainly still a huge way to go to find an analogy which would provide, by judicious 
combination of the different elementary topological loops in the form of different dispirations of 
more or less complex structures, the set of elementary particles of the Standard Model and their 
physical properties. But the major problem that we will address in the following will be above all 
to find the analogies which explain the gravitational behavior of real world objects on a 
macroscopic scale (Newton's gravitation, General Relativity), as well as the quantum behavior 
of the real world at the microscopic scale (Quantum Physics).

We will retain for the moment in this chapter that several of the fundamental properties of 
elementary particles in our real world find a very simple and perfectly classic explanation using 
the analogy with the elementary loop singularities of a perfect cosmological lattice.
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Lorentz transformation and special relativity

We have deduced the kinetic energy associated with the movement of a dislocation or of a 
dislocation or disclination loop within the perfect cosmological lattice, by implicitly supposing that 
the distortion perturbations due to the moving charge are transmitted within the lattice with 
almost infinite speed compared to the speed of the charge within the lattice. However, it is well 
known that perturbations within a solid lattice are actually transmitted at the finite speeds of 
transverse or longitudinal perturbations. To take into account the propagation effects of 
perturbations with finite speed within the solid lattice when the speed of displacement of the 
charge becomes significant in comparison with the speed of propagation of transverse and / or 
longitudinal waves, we demonstrate here the Lorentz transformation to go from a stationary 
reference frame in the lattice to the mobile reference frame associated with the moving charge. 
This transformation is then applied to the singularities in movement at relativistic speed within a 
perfect topological lattice, namely the screw and edge dislocations, the localized charge of 
rotation, the twist disclination loop, the prismatic dislocation loop and the slip dislocation loop. 
We calculate their total energy, due to the sum of the potential energy stored by the lattice 
distortions generated by the presence of the charge and the kinetic energy stored in the lattice 
by the movement of their charge, and we show that those satisfy a relativistic dynamic. In 
addition, there is a very elegant explanation of the famous «electron energy paradox» which 
says that the mass associated with the electromagnetic fields of the electron does not satisfy 
the principles of special relativity.

We then show that the Lorentz transformation also reveals a term of relativistic force acting 
on the rotation charges in motion, a term which is perfectly analogous to the Lorentz force in 
electromagnetism.

On these bases, we discuss the analogy between our theory and the theory of Special 
Relativity. We note that the cosmological lattice behaves in fact like an ether, in which the 
topological singularities satisfy exactly the same properties as those of Special Relativity, not 
only concerning the contraction of the measuring rods and the dilation of time, but also 
concerning the Michelson-Morley experience and the Doppler-Fizeau effect. The existence of 
the cosmological lattice then makes it possible to explain very simply some somewhat obscure 
sides of special relativity, like the famous "paradox of twins".

Mobile charges and Lorentz transformations

When topological singularities of charge densities ,  or  move in the frame  
fixed to the solid lattice at significant speeds compared to the celerities of propagation of 
transverse and / or longitudinal waves, it would obviously be very useful to be able to find the 
dynamic fields ,  and  generated by these singularities in the frame 

. Finding a solution of differential equations for singularities moving in the reference 
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frame  is not at all easy. On the other hand, using a mobile 
referential with the singularities, in which the singularities seem 
immobile, should allow us to calculate the static fields in 

 much more simply, then to obtain the dynamic fields in 
 using transformation laws which have yet to be defined.

Consider for example an infinite screw dislocation along the axis 
 and suppose that it moves at velocity  in the direction of the 

axis . The choice of screw dislocation is not free, because it 
turns out that it is the only singularity which does not induce lattice 
distortions by volume expansion, but only a divergent field of 
rotation, which must greatly simplify the calculations. In the 
reference frame  moving with the dislocation string, the 
displacement field  must be that of a static screw dislocation, 
as shown in figure 6.1.

In order to transform this static field in  into a dynamic field associated with the 
mobile screw dislocation in , we must establish the transformation laws which will 
provide us with the dynamic fields in . And the dynamic fields thus obtained must 
satisfy the space-time evolution equations in . As there is translation of the coordinate 
system  with respect to the coordinate system , the transformation laws 
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must transform the coordinate  of  into a coordinate which must depend on 
speed and time, in the form , in the coordinate system . We can a priori 
hypothesize that the transformation laws are written ,  and 

 according to the three respective axes. With these transformation laws, the static 
displacement field  becomes a dynamic field  which depends on the factor 

 and the constants  and  in .
From the dynamic field  thus obtained in  , one can directly calculate the 

fields of rotation  and speed  in   via the rotational and the time 
derivative of . But in the reference frame , the fields thus obtained must 
satisfy the spatio-temporal evolution equations, namely the second pair of Maxwell's equations. 
For this requirement to be satisfied, the parameter  introduced into the transformation laws 
must necessarily be written , in which it appears the well-known 
factor  of Lorentz transformations. By introducing this relation for  in the 
expressions obtained for  and , we obtain the expressions of the fields of the 
screw dislocation in , as represented in figure 6.1. It is then remarkable that these 
fields, which perfectly satisfy the equations of spatio-temporal evolution in the reference frame 

, do not depend absolutely on the parameter , but only on the parameter  of the 
Lorentz transformations, so that the parameter  can be chosen freely, and we will admit here 
the value of 1, so that it is shown that the laws of spatial transformation are indeed the Lorentz 
laws represented in figure 6.1.

Contraction of lengths in the direction of movement

The expressions in figure 6.1 for dynamic fields ,  and  are 
effective solutions of topological equations and Newton's equation for a screw dislocation 
moving in the reference frame . It is interesting to take a look at the behavior of these 
fields as a function of the velocity  of the dislocation. One can take for example the projection 

of the external vector field of rotation in the direction of the movement of the dislocation, and 
report its value , taken at the instant  and for the coordinate , as a 
function of  for different values of the ratio , as illustrated in the figure 6.2. We then 
observe that the horizontal component of the rotation field seems to contract along the axis 

. It is easy to calculate that a certain value of  is observed at a distance
 from the origin which depends on the velocity  of the dislocation, given by

, so that the field of rotation of the moving screw 
dislocation is effectively contracted along the axis  of a factor .

Now imagine a cluster of rotation singularities which are linked to each other via their fields 
of rotation (it should be recalled here that the field of rotation corresponds to the electric field in 
our analogy with the real world). If the cluster moves along the axis  in the reference frame

 of the GO, the fields of rotation associated with this cluster must contract along the 
axis  with a factor  in order to satisfy the topological equations and the Newton equation 
of the lattice. The consequence is then that the cluster itself, which is linked by these fields of 
rotation, must contract along the axis . If this cluster represents an “object” for the great 
observer GO located outside the lattice, this “object” will contract along the axis . But if it is 
observed in its own frame of reference by a hypothetical observer who would be located inside 
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the lattice, this “object” will remain exactly the same as it is at rest in the absolute frame of 
reference , and its shape will not change in the reference frame  
regardless of the speed of this “object” in .

Time dilation of a mobile cluster of topological singularities

Now imagine that the observer measures the time  it takes for a transversal wave to travel 
the distance  in the absolute frame of reference , be reflected on a mirror and return 
to its point of emission. It is clear that the observer measures a time equal to . 
Such a time measurement system based on an “object” constituted by a cluster of singularities 
linked by the fields of rotation can be used by the observer GO as a time base, a clock giving 
the basic time lapse .

Imagine that the clock system, based on the same "object", but now moving at a velocity  
along the axis  in the base reference frame , is observed by the GO. If the 
transverse wave is emitted in the mobile reference frame  in the vertical direction 
within this frame of reference, this same wave is seen by the GO as a non-vertical wave in its 
frame of reference , as illustrated in figure 6.3 (a). For the GO observer, the time  it 
takes for the wave to travel at celerity  , via the reflection on the mirror of the moving “object” 
is easily calculated using the triangle in the plane , and we just gets that . This 
means that the base time of the mobile clock in the reference frame , measured by 
the GO in its own reference frame  seems dilated as a function of the velocity  with a 
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factor , and therefore that the clock of the mobile “object” slows down compared to the 
GO's absolute clock.

One can still wonder if the time in the reference frame  of the "object" remains 
isotropic in this reference frame, in other words if a clock based on a horizontal trajectory of the 
transverse wave, gives the same time as the vertical clock. If the horizontal clock is observed by 
the GO in its frame , the wave path can be illustrated by the path diagram in figure 6.3 
(b). In this diagram, the trajectories of the moving mirrors are represented by two lines with a 
slope , separated by a distance  in the direction . The trajectories of the transverse 
wave lines are represented by two lines with slopes  and  respectively, for the two 
directions of propagation of the wave.

In this trajectory diagram, we can again geometrically calculate the time  required for the 
wave to travel a round-trip path via a reflection on a mirror of the mobile “object”, knowing that 
the distance  between the two mirrors associated with the mobile “object” is contracted by a 

1/γ t
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factor  as we have seen previously, which provides the following relationship
 between the distance  and the distance  at rest which 

separate the two mirrors, and we then obtain again  as result of this calculation.
The two diagrams in figure 6.3 clearly show that the two mobile clocks, operating 

respectively with a vertical and horizontal wave propagation in the frame  provide 
exactly the same local time, meaning that there is indeed a local time  and that this local time  

remains isotropic in the mobile frame of reference , regardless of the direction of 
movement of the "object" in the lattice.

In the mobile frame , the length the wave has to travel along  or  
inside the clock system is measured as a length , and the local time to go back and forth via 
reflection on a mirror is measured as being  both in the case of a wave propagating vertically 
as horizontally. This means that the speed of the wave measured by an observer linked to the 
mobile frame of reference  has exactly the same value  as that measured in the 
frame of reference , regardless of the velocity  of the frame of reference 

 relative to the frame of reference .
Imagine then that a transverse wave  propagates along  
in the frame of reference  moving at speed  in the direction  relative to the 
frame of reference . To express this wave in the frame of reference  , we use 
the space transformation  already obtained before and a new time 
transformation relation , in which the parameters  and  have yet to be 
determined. By introducing these two relations in the expression of the wave in the frame 

, this one must obligatorily take the simple form  in 
the frame , which implies that the constants must take the values  and 

, and that consequently the law of Lorentz for the transformation of time is written
, as it has already been reported in figure 6.1.

Lorentz transformation for a mobile “object” linked by the rotation fields

The fact that the fields of rotation, and therefore the mobile “objects” linked by the fields of 
rotation, are actually contracted in the direction of movement by a factor , 
that the isotropic time measured by the clocks of the mobile “object” is really dilated by a factor 

 and that the velocities of the transverse waves measured in  and in  
 have exactly the same values , mean that the transformation laws reported in 

figure 6.1, allowing to pass from one referential to the other, are the same as the well-known 
Lorentz transformations of electromagnetism.

It should be noted here that these transformations were used initially as simple mathematical 
tools making it possible to calculate with Maxwell's equations the electromagnetic fields 
generated by mobile electric charges. Later, these transformations were used in special 
relativity by Einstein, by postulating that Lorentz relations are applicable to any frame of 
reference moving at speed  relative to another, hence the term "relativity" which corresponds 
in fact to axiomatically admitting the constancy of the speed of light in any frame of reference.
 Here, in the case of a solid lattice, the Lorentz transformation is obtained by a quite different 
approach based on the existence of a solid lattice in the absolute frame of reference  of 
GO, which is the support (we then speak of ether) for the propagation of transverse waves. This 
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approach makes it possible to demonstrate the reality of the physical consequences of the 
Lorentz transformation, such as the spatial contraction and the dilation of time measured in 

 for mobile “objects” made up of topological singularities linked by fields of rotation. And 
this demonstration is based on the initial assumption that the GO can introduce a relative frame 
of reference  associated with the mobile "object" into its absolute frame of 
reference . The use of the Lorentz transformation in the case of the cosmological 
lattice is therefore limited only to transforming the fields between a mobile relative reference 
frame  with respect to the lattrice and the absolute GO reference frame , 
which is fixed to the lattice. Consequently, there is absolutely no axiomatic hypothesis of 
"relativity" here stipulating that the Lorentz transformation is applicable to any referential moving 
relative to another. We will see that this remark is very important, because it implies a point of 
view radically different from that of Einstein's special relativity.

Uniqueness of the Lorentz transformation according to the background expansion 

 In conjecture 6, we stipulated that the module  must be necessarily positive for the edge 
dislocations to satisfy the same Einstein relation as the screw dislocations in the cosmological 
Lattice. This conjecture therefore implies that the existence of longitudinal waves is subject to 
the fact that the background expansion of the cosmological lattice satisfies the hypothesis 

. In this particular case, as transverse and longitudinal waves can propagate within the 
lattice with different celerities  and  respectively, the fields associated with a mobile 
“object” which would be made up of topological singularities like edge dislocations which are 
linked both by fields of rotation and expansion, would become immensely more complicated to 
calculate. Indeed, supposing that the displacement of the linked charges in the reference frame 

 takes place at velocity  in the direction , one should define two mobile reference 
frames  and  which move with the charges, by assigning to each of 
these reference frames the Lorentz transformation laws with velocities  and  respectively, 
therefore with two Lorentz factors  and .

We can imagine quite easily that the complete resolution of this type of problem for any 
density  of mobile charges in  can prove to be extremely complex, especially if 
there is still a non-homogeneous expansion field within the lattice, and especially as longitudinal 
perturbations can propagate like waves.

This is why we will treat in the following only the particular case, which is in fact the really 
interesting case for our analogy with the universe, of topological singularities which move in the 
perfect cosmological lattice presenting a homogeneous and constant background volume 
expansion which satisfies the relationship . In this case, we know that the longitudinal 
waves do not exist, meaning that any disturbance of the distortion fields can only propagate at 
the speed of the transverse waves, and that the problem of determining the fields generated by 
mobile singularities can be solved by applying the unique Lorentz transformation for the frame 
of reference , the one shown in figure 6.1. The problem of expansion perturbation 
fields linked to topological singularities will be dealt with later, in the chapters dealing, on the 
one hand, with “gravitational fields” namely static perturbations of the expansion field due to 
topological singularities, and on the other hand “quantum fields” namely the dynamic 
perturbations of the expansion field due to mobile topological singularities when .
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If we now consider mobile rotation charges, of charge density , which move within the 
lattice with velocity   along the axis , the fields  generated by these charges will be 
dynamic fields which will evolve according to the movements of the charges. As the 
transmission of information of the mobile charges at any point of the solid lattice is done in this 
case at the speed  of the transverse waves, one can use the transformation of Lorentz 
deferred to figure 6.1 by associating a mobile reference frame  with the charges. It 
is interesting to show here the transformation relations concerning the pair of Maxwell equations 
managing the dynamics within the lattice, outside the charges, in the case where the volume 
expansion is homogeneous and constant ( ).

These relations of transformation of the fields of momentum  and torque  in the 
frame of reference  in the fields  and  in the frame of reference 

 are obtained by fairly simple calculation, and are reported in figure 6.4. Thanks to 
these transformation relationships, we will be able to calculate the fields associated with 
movement within a solid lattice of different types of rotation charges, as well as their total 
energy, composed of their elastic potential energy and their kinetic energy.

Relativistic energies of the screw and edge dislocations

Let us consider an infinite cylindrical screw string and suppose that it moves at velocity  in 
the direction of the axis . In the reference framel  in movement with the string, 
we can apply the transformation relations of figure 6.4 to find, from the expression of the static 
field  of rotation of the dislocation as well as from the Lorentz transformation relations, the 
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dynamic fields  and  expressed in the reference frame . We then deduce directly 
from these expressions the elastic energy density  of distortion and the kinetic energy 
density  in the frame of reference . The total energy  per unit length of the 
dislocation is obtained by integration of these energy densities in . The total energy of 
the screw dislocation thus obtained is shown in figure 6.4, and its expression deserves a few 
comments:
- in fact, this expression is quite remarkable, because not only does it appear there the mass of 
inertia  at rest of the screw dislocation that we had already obtained in a 
completely classic manner, but also it allows better understand the true physical origins of the 
relativistic terms of distortion energy  and kinetic energy  which appear there. Indeed, 
in this form, the term  corresponds to the relativistic correction of the elastic distortion 
energy  at rest, while the term  corresponds to the relativistic correction of the non-
relativistic kinetic energy ,
- in this case of screw dislocation, that is to say when the density  of scalar charge is 
distributed in an infinite rectilinear string, the behavior of the total energy  is a pure 
relativistic behavior, satisfying very exactly the famous relation of special relativity , 
whereas a localized scalar load of rotation does not satisfy such a relation as we will see in the 
continuation,
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- the total energy associated with the moving charge tends to an infinite value when the speed 
 tends to the celerity  of the transverse waves as shown in figure 6.5. This behavior is 

generated by the presence of the term  in the expression of energy, term 
which is due to the relativistic contraction of the field of rotation in the direction of the movement, 
imposed by the Lorentz transformation,
- the total energy  associated with the moving charge is not at all energy stored in the 
singularity itself, but it is the movement of the singularity in the lattice which stores both potential 
energy  of elastic distortion of the lattice and of the Newtonian kinetic energy  of 
movement of the lattice in its vicinity,
- the fractions of the total energy being found in the form of potential elastic energy of rotation of 
the lattice and in the form of kinetic energy of the cells of the lattice depend on the value of the 
ratio  as shown in figure 6.6. We see, among other things, that the energy fractions in 
potential form and in kinetic form become perfectly equal when the speed  of a charge tends 
towards the celerity  of the transverse waves,

- the fact of obtaining exactly a relativistic behavior is due to the particularity that the term of 
kinetic energy  is precisely compensated by an additional negative term in the potential 
energy  in the case of a screw dislocation. We will see later that this compensation effect is 
not systematic, and that it essentially depends on the topology of the considered charge. We 
therefore have here a somewhat paradoxical situation, namely that the relativistic dynamics of 
screw dislocations is a direct consequence of the purely Newtonian dynamics of the lattice in 
the absolute space of GO, because it is the exact compensation of the term of Newtonian 
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kinetic energy  of the lattice by the additional negative term in the elastic potential energy 
 which is responsible for it.

With regard to rectilinear edge dislocations, the supposition that the lattice is a perfect 
cosmological lattice satisfying conjecture 6, namely that , that  and that 

, and also satisfying the hypothesis , implies that edge dislocations in a 
perfect cosmological lattice are subject exactly to the same relativistic behaviors as screw 
dislocations. So we have in particular that  where the energy of distortion also 
satisfies a real Einstein relation  as we have shown previously in a purely 
classical way. We thus obtain for the edge dislocation a completely similar expression of its total 
relativistic energy  as in the case of the screw dislocation, as shown in figure 6.4.

Equations of the relativistic dynamics of a screw or edge dislocation

Suppose that a rectilinear screw or edge dislocation, which moves at high velocity  in the 
perfect cosmological lattice, is subjected to a Peach and Koehler force  per unit of length. 
Due to the rectilinear geometry of the dislocation, the vectors  and  can only be 
perpendicular to the line of dislocation. The power transmitted to the dislocation by the force 

 is obviously written , and this power comes to increase the total energy  of the 
dislocation, so that the relativistic dynamic equation of the dislocation corresponds to equal the 
temporal variation of the total energy  taken along the trajectory with the power   
supplied to the dislocation by the Peach and Kohler force, as shown in figure 6.7. But in the 
case of a rectilinear dislocation, the vectors  and  are parallel, so that we can write a 
vector equation for the relativistic dynamics of the dislocation directly involving the acceleration 
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 of the dislocation. Note that the time derivative of the total energy, namely 
, must take into account the fact 

that the Lorentz factor  also depends on the norm of . By introducing the relativistic 
momentume  per unit length of the screw or edge dislocation, we can still write the 
relativistic dynamic equation in a different way which is shown in figure 6.7. The expression of 
the relativistic momentum  allows us to introduce a generalized relativistic mass  
of the dislocation in motion, which we can use to write the total energy  and the 
momentum  of the dislocation. The relationships in figure 6.7 are perfectly identical to the 
dynamic relationships obtained in special relativity. We can also verify that the classical relation

 which is very known in special relativity also has its analog under the form 
.

A very interesting remark stands out here: the total relativistic energy  associated with 
the movement of the dislocation is the sum of the potential energy  of elastic deformation 
of the lattice and the Newtonian kinetic energy  of movement of the lattice.
But by associating the total relativistic energy  with this moving string, and knowing that 
the energy at rest of this string is given by , we could also consider that the energy of the 
moving string is equal to the sum of its rest energy  and an energy of movement 
which corresponds to the additional energy generated by its displacement within the medium, 
namely .

In special relativity, this motion energy  is often called the kinetic energy  of the 
particle. But in the case of the dislocation considered here, we know that it is not really a kinetic 
energy since  is in fact a 
combination of real kinetic energy  and potential energy  of 
the dislocation.

Finally, if we calculate the total energy for low speeds ( ), we obtain the relation 
 and we find the classical kinetic energy linked to the mass of 

inertia at rest  of the dislocation.

Relativistic energies of loop singularities and spherical charges of rotation

We saw in the previous chapter that the topological singularities in loops in a perfect 
cosmological lattice also all satisfy Einstein's relation  which was obtained 
from a classical calculation of their elastic energy of distortion and their kinetic energy. This 
implies that the relativistic energy of the singularities in loops is deduced in an identical way that 
we deduced the relativistic energy of an edge dislocation above. Consequently, one deduces 
the relativistic energies indicated in figure 6.8 for the singularities in loops in a perfect 
cosmological lattice, namely the twist disclination loop, the prismatic edge dislocation loop and 
the slip mixed dislocation loop.

We also deduce that, in a perfect cosmological lattice, the relativistic dynamic equation of a 
loop singularity is perfectly identical to that of a screw or edge dislocation, as shown in figure 
6.7, namely  in which  is the force acting globally on the loop and 

 is the amount of relativistic momentum of the loop, given by .
Let us now consider a localized spherical charge of rotation, like that described in figure 5.4, 

which moves along the axis  at velocity . In the mobile frame of reference  
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with the charge, we can use the relativistic transformation relationships of momentum  and 
torque  of figure 6.4, as well as the Lorentz transformation relationships of figure 6.1 to 
deduce the potential energy density  and the kinetic energy density  in . The 
total relativistic energy  is then calculated by integration over the entire lattice volume, and 
we obtain the energy reported in figure 6.8, which again consists of a relativistic potential energy 

 and a relativistic kinetic energy .

By the term  in the denominator, we find here a behavior of the total energy  of the 
charge similar to that of a relativistic behavior since it tends towards an infinite value when the 
speed  tends towards the celerity  of the transverse waves as shown well by figure 6.5 in 
which one carried over  according to .

As in the case of a screw or edge dislocation, the total energy is found in the form of 
relativistic elastic potential energy  of rotation of the lattice and in the form of relativistic 
kinetic energy  of the cells of the lattice, and the fractions of each of these energies 
depend on the value of the ratio  as shown in figure 6.6. It can be seen that these 
fractions of energy in potential form and in kinetic form here also become perfectly equal when 
the speed  of the localized charge tends towards the celerity  of the transverse waves.
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However, the expression of total energy  is not this time in perfect agreement with 
classic relativistic behavior because . This disagreement is to be associated 
with the fact that the additional negative term in potential energy no longer exactly compensates 
for the kinetic energy term, since the kinetic energy term is twice greater than the absolute value 
of the additional term in potential energy. If we calculate the total energy  for low speeds 
( ) by developing the term  in the denominator, we obtain the following relation 

 In this case, the energy 
of the moving charge is therefore equal to its rest energy and to a second energy term 
proportional to the speed of the charge squared, and which can be assimilated to a kinetic 
energy term of the charge. One can consequently allot a mass of inertia at rest  to the 
spherical charge of rotation, and the relation of Einstein is written . It can 
therefore be seen that the relationship between energy at rest and mass of inertia for a 
spherical rotation charge  deviates somewhat from Einstein's famous relation of special 
relativity, which states that .

About the probable explanation of the paradox of the electron energy

We find with the relation  for a localized singularity of rotation a famous 
paradox of classical electromagnetism. Indeed, the same type of calculation carried out in 
classical electromagnetism to find the energy stored by the electric field of a moving electron 
gives a result quite similar to this one, namely that , and 
therefore that the mass associated with the electromagnetic fields of the electron does not 
satisfy the principles of special relativity. This famous result in electromagnetism has caused a 
lot of ink to flow and has been the subject of much discussion. Several models have been 
proposed to explain it, without much success elsewhere. We can consider in fact that it was 
never really understood within the framework of the classical theory of electromagnetism and 
special relativity. A detailed discussion of this subject can be found in the famous physics lesson 
of R. P. Feynman .1

This famous paradox of the electrical energy of the electron could find here a simple 
explanation, if we suppose that the electron also has an annular structure  similar to a loop of 2

twist disclination, or to a loop of screw pseudo-dislocation and that the electric field of the 
electron is the analog of the field of rotation. In fact, the expression of the relativistic energy of a 
twist disclination loop perfectly satisfies Einstein's expression , so that if the 
electron presented the topological structure of the twist disclination loop in a cosmological 
lattice, we would have a localized charge  of rotation which would present a divergent field 

 of rotation at a great distance just as the electron presents a divergent electric field , 
and which would satisfy at low speed ( ) the relation of the special relativity since for a 
screw loop one has well the relation .

Ev
Qλ

Ev
Qλ ≠ Edist

Qλ /γ t

Ev
Qλ

v << ct γ t

Ev
Qλ ≅ Edist

Qλ 1+v 2 / 2ct
2 + ...( ) 1+v 2 / 3ct

2( ) ≅ Edist
Qλ + 5Edist

Qλv 2 / 6ct
2 + ...

M 0

Edist
Qλ ≅3M0ct

2 /5

Qλ

E0 = M 0c
2

Edist
Qλ ≅3M0ct

2 /5

Eélectromagnétique
relativiste ≠ Echamp  électrique

repos / γ

Ev ≅ E0 /γ t

qλ
 
!
ω él

 
!
Eél

v << ct
Edist

BV = M 0
BVct

2

 Richard P. Feynman, The Feynman Lectures on Physics, Addison-Wesly Publ. Company, 1970, chap. 281

 The idea of a ring-shaped electron was first proposed in 1915 by Parson (Smithsonian miscellaneous 2

collections, nov. 1915) and then developed by Webster (Amer. Acad., janv. 1915) and Allen (Phil. Mag., 4, 
1921, p. 113), and the proposal that an electron could be similar to a twist disclination loop was proposed 
in 1996 by Unziker (arXiv:gr-qc/9612061v2). 
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Peach and Koehler force and relativistic force of Lorentz 

In Chapter 2, we introduced the Peach and Koehler force  which acts 
through the field  on the unit of volume of rotation charges with charge density . In this 
relation, the term  is the analog of the electric force  acting per unit of volume on a 
density  of electric charge in the Maxwell equations of electromagnetism, whereas the term 

 had been introduced to take account of the forces which do not produce work. For a 
density  of charges moving at velocity  along the axis , the force density acting in the 
frame  linked to the charge is therefore written, since the charge is immobile in this 
frame and that, consequently,  in this frame, under the form . We can 
therefore find the force per unit of volume acting on the same charge density which moves at 
velocity  in the stationary frame of reference , using the relativistic transformation 
relations of momentum  and torque , and we obtain quite easily the next expression 

 for this force. In the case where 
,  becomes close to unity and the force per unit of volume in the stationary frame 
 simply becomes equal to , which is the perfect analog of the 

electromagnetic force of Lorentz . The term  in 
force  is nothing other than the term  we introduced in figure 2.38 to account for non-
working forces, so that the vector  now has a known value, which is worth .

We can then apply the relation giving   to the various topological singularities of the 
cosmological lattice:
- in the case of a rectilinear screw dislocation, the integration of the relation on the unit of length 
of the dislocation gives the force  acting on the unit of length of 
dislocation. However, if a rectilinear screw dislocation moves in a solid, its velocity  is 
necessarily perpendicular to the line of dislocation, and the force  will have action only if it is 
also perpendicular to the line, so that only the component  in the direction of the string can 
give a force  capable of acting on the dislocation.
- in the case of a spherical rotation charge , the relationship giving   can be integrated 
on the volume of the charge, and we obtain the total force acting on the rotation charge which is 
worth .
- in the case of a twist disclination loop of charge , we can apply 
the relation giving , which allows us to write  for the force 
acting on the loop.

The last two relationships correspond directly to the expression of the electromagnetic force 
 acting on a moving electric charge .

About the role of «ether» played by the cosmological lattice

We have seen that the displacement of a topological singularity in the frame of reference 
 of a perfect cosmological lattcie, at velocity  in the direction of the axis , can be 

described in a frame  mobile with the singularity thanks to the Lorentz 
transformation. At constant volume expansion, a cluster of mobile singularities within the lattice, 
formed for example by a set of localized singularities like dislocation and disclination loops 
interacting with each other via their fields of rotation, is subjected to exactly the same Lorentz 
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transformation, with all the properties which are allotted to it like the dilation of time and the 
contraction of the lengths, since the field of rotation which provides the interactions between the 
singularities satisfies this transformation.

There is obviously a strong mathematical analogy between the Lorentz transformation 
applied here for the transmission of information and interactions via transverse waves within the 
cosmological lattice and the Lorentz transformation of the special relativity applied to describe 
the relativistic dynamics of moving objects in the Universe in relation to the speed of light. But 
there is also a very serious physical difference between these two theories, linked above all to 
the existence of an "ether" for topological singularities, which is in fact the lattice and which 
gives a privileged status to fixed singularities in the lattice comparatively to mobile singularities 
inside the network, whereas in theory of special relativity, all mobile objects have the same 
status, hence the famous name of "relativity". This essential difference makes it possible to 
shed entirely new and original light on the phenomena of relativity. This is what we will discuss 
later.

The dynamics of singularities within a cosmological lattice differs from special relativity by 
the very existence of the lattice which acts as an absolute reference for the movement of 
singularities and as an ether for the propagation of transverse and longitudinal waves. Unlike 
special relativity, the lattice can be described from the outside by a GO observer (Imaginary 
Great Observer) which has a universal clock and universal rulers in the absolute frame of 
reference . This observer outside the lattice is not subject to any speed of information 
propagation constraint, so that he is the only one able to observe qualitatively, quantitatively and 
exactly the notion of instantaneous events occurring within the lattice.

We can also imagine a completely different type of observer. These are the local observers 
HS (Homo Sapiens), which are an integral part of the lattice and which would themselves 
consist of topological singularities of the lattice. These particular observers then have a very 
different status from the GO observer since they are an integral part of the lattice and that they 
can move around there. But these observers are required to transmit information from one point 
to another on the lattice at the finite speed of transverse waves or longitudinal waves. A HS 
observer therefore has no access to an absolute definition of the simultaneity of events such as 
that of the GO, but only has a relativistic definition of simultaneity, which depends in particular 
on its velocity  of movement relative to the lattice and the local value of the volume expansion 
of the lattice.

For reasons of convenience, the external observer GO can obviously choose, as universal 
rulers and universal clock, the rulers and the clock of an HS observer stationary with respect to 
the lattice, and which would be located at a place on the lattice which would be stationary and of 
zero volume expansion ( ).

All HS observers are provided with a local reference frame which has rulers and its own 
clock, which seem immutable for this HS, while the length of its rulers and the speed of counting 
the time of its clock actually vary in the absolute reference frame of the GO  as a function of the 
volume expansion of the lattice at the location where it is located (we will come back to this 
point in detail later) and its velocity   relative to the lattice. Consequently, the HS does not 
have direct access to the value of the local volume expansion of the lattice or to its own velocity 

 of displacement relative to the lattice. Only the GO has direct access to this type of 
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information.
The Lorentz transformations that we have defined are therefore in reality tools of the GO, 

which can be used without problem to determine the rulers and local clocks of all the HSs 
attached to the lattice, or simply to calculate the various fields associated with topological 
singularities in motion within the lattice. And it can apply these transformations to any place on 
the lattice where it is possible to find a state of homogeneous and constant expansion, which 
may very well be different from zero expansion since the Lorentz transformations are based on 
the transmission speed of transverse waves, which is perfectly determined whatever the state of 
expansion of the lattice ( ). From this point of view, our interpretation of Lorentz 
transformations is quite far from the interpretation of sepcial relativity, for which these 
transformations are tools that any HS observer can use to move from one referential to another 
referential in motion by compared to the first, and for which the speed of light is an absolute 
constant. The main consequences of these essential differences will be analyzed in detail later 
in this chapter.

The Lorentz transformations imply that, for singularities moving at velocity  in the direction 
, the ruler according to the direction  is shortened by a factor , so that . To 

interpret this shortening of the ruler in the direction of movement, we have to imagine the 
architecture of the cluster as a set of topological singularities linked together by their interactions 
via their respective fields of rotation (figure 6.9). These singularities of the lattice move relative 
to the lattice at velocity  in the direction , and the finiteness of the speed  of their 
interactions via the rotation field requires that the complete architecture of the cluster of 
singularity contracts in the direction .

But this contraction does not affect the lattice, which retains its original volume expansion 
state, which is shown in figure 6.9 for the case of two clusters of identical singularities which 
move at two different velocities,  and , measured compared to the lattice by the GO 
observer. Thus, the relativistic effects on the rulers of observers HS’ and HS'', associated with 
the collective movement of singularities with respect to the lattice, have nothing to do with 
effects of volume expansion of the lattice, for which the modifications of the lengths observer 
rulers HS’ and HS’' will be associated with real variations in the cell parameter of the 
cosmological lattice as we will see later.

Note also that these two effects are cumulative, namely that the rulers of an HS observer 
can be contracted or expanded by variations in volume expansion of the lattice and still 
contracted by a movement of the cluster of singularities with respect to the lattice. In this way, 
the contraction-expansion of the rulers and the clock of an HS observer depends on both the 
local expansion of the lattice and the velocity  of HS relative to the lattice.
In addition, in the Lorentz transformation applied by the GO observer, the value of

  is not only related to the velocity  of HS with respect to the lattice, but 
also to the local celerity  of the transverse waves, which depends on the volume expansion 
of the cosmological lattice, since .

The phenomenon of slowing down of the clock of the observer HS which moves relative to 
the lattice has already been explained, with figures 6.3 (a) and (b). Imagine that there is an 
observer HS’ who builds his own clocks in his reference frame , by fixing two 
mirrors facing each other at a distance  from each other, mirrors which have the property of 
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reflecting transverse waves. By sending a transverse wave between the two mirrors, HS’  can 
perfectly use, as a time base, the period of time  that elapses between a round trip 
of the wave between the two mirrors, because the distance  and the celerity  of transverse 
waves are for him constants. If the HS’ observer is initially at rest relative to the lattice, the GO 
can consider the time lapse  as its own time base in .

Now imagine that the observer HS’ moves relative to the lattice with velocity  in the 
direction , and that he places two clocks in quadrature, that is to say a clock having its two 
mirrors in the direction  and a second clock having its two mirrors along the axis  (or

). In principle, in its frame , the time span  measured by HS’ 
with its two clocks is exactly the same.

Now let's take the GO point of view. We have shown that the base time of the mobile clock of 
the observer HS’  in , measured by the observer GO in its absolute frame of 
reference , appears dilated as a function of the velocity  of a factor , in an 
identical manner for the two clocks in quadrature, so that . This means that a local 
time  actually exists for the observer HS’, that this local time elapses more slowly for an 
observer HS’ in movement relative to the lattice, and that this local time  remains isotropic in 

T0 = 2d0 / ct
d0 ct

T0 = 2d0 / ct Ox1x2x3
 
!
v

Ox1
Ox1 ' Ox3 '

Ox2 ' O 'x '1 x '2 x '3 T0 = 2d0 / ct

O'x1 'x2 'x3 '
Ox1x2x3  

!
v 1/γ t

T =T0 /γ t
t '

t '



Lorentz transformation and special relativity                                      143

, regardless of the direction of movement of the observer HS’  within the lattice.
Concerning the dilation or contraction of time, there can also be coupling between the 

relativistic effects and the effects of volume expansion. We will see for example later that, in the 
case of a cosmological lattice, an observer HS’ which would be placed in a zone of strong 
volume contraction ( ) would present a proper time very strongly slowed compared to the 
proper time of the GO. In addition, if it were still moving at a speed  close to  with regard to 
the lattice, its proper time would be even more significantly slowed down compared to the GO's 
proper time.

Experiment of Michelson-Morley in the cosmological lattice

The network plays the same role vis-à-vis the singularities and the propagation of transverse 
waves as the famous "ether" supposedly propagating light waves and so much discussed at the 
beginning of the XXth century. The Michelson-Morley experiment, which consisted in trying to 
measure, using an interferometer, a difference in the speed of propagation of light waves in the 
direction of a displacement of the interferometer at velocity  and transversely to the direction 
of this displacement, has gave negative results, and it was concluded at the time that there was 
no ether. But in the two examples above, the calculation proposed in the solid lattice with two 
local clocks in quadrature shows that the result is identical to that obtained by Michelson-Morley, 
namely that there is no time difference from travel in the two perpendicular directions, which the 
HS obviously interprets as the fact that the speed of propagation does not depend on the 
direction in which it is measured. But in the case that we have treated here, there is indeed an 
ether constituted by the lattice within which the singularities move, and which is perfectly known 
by the GO.

We deduce that, in the case of the solid lattice acting as an ether, the singularities which 
move at velocity  have effectively their own clock which slows down since the GO measures a 
clock time  with the HS clock stationary compared to the network, but a time  with 
the clock of an HS which moves at velocity  compared to the lattice.

On the other hand, if an HS’  measures the speed  of a transverse wave in its moving 
frame of reference , with its own rulers and clock, it finds exactly the same value 
as that measured by the GO in the lattice, since we have in the direction  that

.

The relativistic composition of velocities and the absence of an absolute notion
of simultaneity for the local observers HS

 In figure 6.9, two frames have been shown in translation along the axis  at velocities  
and  measured by the GO observer. One may wonder how translates the relativity of the 
velocities measured by the HS, and in particular what is the relative velocity   that the 
observer HS’ measures in his reference frame  for the displacement of the 
reference frame  of the observer HS’’. For GO, the point  of the frame of HS’’  
moves in  from  to   in a time lapse that goes from  to , so the norm of 
velocity  is worth .

If HS’ observes this same displacement, it finds a relative velocity  whose norm is worth
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. This expression can then be transformed using the Lorentz 
relations of figure 6.9, and there comes the expression of the relative velocity  of movement 
of the observer HS’’ as measured by the observer HS’ and expressed under the form 

 according exclusively to the velocities  and  measured 
by the GO. The relative velocity of the frame  measured by HS’ corresponds to 
what is called the classical relativistic composition of velocities. By symmetry, the relative 
velocity of the frame  measured by HS’’ will be given by exactly the same 
expression with a change of sign.

The observers linked to the lattice do not in fact have access to the absolute notion of 
simultaneity that the GO can have. To illustrate this point, we can imagine four very simple 
experiments:

1st experiment: let us consider two simultaneous events observed by GO in the frame of 
reference  at the time  at the coordinates  and , therefore 
distant from  (figure 6.10). These two simultaneous events are then observed by an HS’ in 
its reference frame  moving at velocity  in the direction  at the 
coordinates  and , obtained by 
the Lorentz transformations reported in figure 6.9. We therefore observe that the two events are 
not observed as simultaneous by the HS’, but separated by a non-zero time interval , 
and the distance measured by the HS’ between the two events is equal to 

 which is greater than the distance measured by the GO, and which is 
the consequence of the contraction of the ruler  of HS’  in the direction .

2nd experiment: consider an event occurring at the origin of the GO reference frame 
 and which extends from   to  , therefore over an absolute period of 
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time  (figure 6.10). This event is then observed by an HS’  in its coordinate system moving 
at velocity  in the direction  at the coordinates  and

, obtained using the Lorentz relations of figure 6.9. We note 
that the event seems to move in the frame of HS’ over a distance , 
longer than the absolute course  of the frame  in the lattice, due to the 
contraction of the ruler  used by HS', and that the lapse of time that the event lasts for HS 
'is worth, and therefore seems longer for HS’ than for GO, which is at first sight rather strange 
since the clock of HS’ rotates more slowly than that of GO. This phenomenon is due to the flight 
times taken by the transverse waves to reach the HS’ in movement relative to the lattice. This 
last experiment clearly shows that the time intervals measured by HS’ are relative intervals 
since they depend on the finite speed of propagation of information within the lattice.

3rd experiment: let us now consider two simultaneous events in the mobile coordinate 
system   of HS’’, at the coordinates   and  , and 
occurring at the moment  (figure 6.11). In the stationary frame of reference  
with respect to the lattice, the coordinates of these two events become two distinct events in 
time, the intervals between them being written  and . 
These relations can be used now to obtain the coordinates of the two events in the reference 
frame of HS’, which can then be clarified in the form of a spatial distance  and a time 
interval  between the two events, represented in the figure 6.11. The two simultaneous 
events distant from  in the frame  of HS’’ become two non-simultaneous 
events in the frame  of HS’.

4th experiment: let us now consider two successive events in the mobile coordinate system 
, occurring at the same place at the coordinate  and occurring at times 
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 and  (figure 6.11). In the motionless frame of reference , the 
coordinates of these two events become two distinct events in space which can be used to 
obtain the coordinates of the two events in the reference frame  of HS’, which can 
be clarified in the form of a spatial distance  and a time interval  between the two 
events as shown in Figure 6.11. The two events occurring at the origin of the HS’’ frame

 therefore become two separate events in the space of the HS’ frame
 .

Doppler-Fizeau effects between moving singularities in the cosmological lattice

In figures 6.12 and 6.13, we have reported several experiments of exchanging signals at a 
given frequency between singularities in motion within the lattice via transverse waves. By 
taking the GO point of view, it is possible to easily describe these experiments which reveal the 
Doppler-Fizeau phenomenon. It is obviously assumed that all these experiments take place in a 
lattice with a homogeneous and constant value of the volume expansion, without which the 
description of these experiments would become much more complex.

1st experiment: an observer HS’ in the reference frame  moving at velocity  
relative to the lattice in the direction  emits a wave at the frequency , measured with his 
own clock, towards an observer HS in a stationary frame of reference  relative to the 
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lattice (figure 6.12a ). The transverse wave emitted in  is written simply

  with  and . In the reference frame , 
the same wave is obtained by replacing the coordinates  and  of HS’ by the coordinates 
and  of HS, using the Lorentz transformations of figure 6.9, and identifying the wave vector 
and the pulsation obtained with those of the expression of the wave  in 
the frame of reference  , and we find the relations giving  and  from the values of 

 and  in the frame of reference , in the form  and 
. As  and , we deduce the relationship 

between the frequency  of the signal sent by HS’ and the frequency  of the received 
signal measured by HS with its own clock, as shown in figure 6.12a.

For , that is to say when HS’ approaches HS, the frequency  of the signal received 
by HS is higher than the frequency  of the signal transmitted by HS’. This is the Doppler-
Fizeau effect, and in the usual jargon of physicists, we speak of a "signal shifted towards blue". 
Otherwise, if HS’ moves away from HS ( ), the received signal is of frequency  lower 
than the frequency  of the transmitted signal, and one speaks about a "signal shifted 
towards red". In the form shown in figure 6.12a, the relation shows the term  of 
the purely classical Doppler effect, but which applies to a transmitted frequency , which is 
nothing other than the frequency of the signal transmitted by HS’, but measured by HS with its 
own clock, or by GO with the universal clock.

2nd experiment: an HS observer in the reference frame  at rest with respect to the 
lattice transmits a signal with a frequency , measured with his own clock, to an HS’’ observer 
which moves at velocity  in the direction  relative to the lattice (figure 6.12b) . With the 
same type of calculation as in the case of the 1st experiment, it is possible to verify that the 
frequency  of the signal received by HS’’ and measured with its own clock takes the value 
shown in figure 6.12b.

For , that is to say when HS’’ moves away from HS, the frequency  of the signal 
received by HS" is lower than the frequency  of the signal transmitted by HS. Again, this is 
the Doppler-Fizeau effect. In this form, the expression of  makes appear the term 

 of the classic Doppler effect, but which applies to a frequency , which is 
nothing other than the frequency of the signal emitted by HS, but as measured with the HS’’ 
clock.

3rd experiment: an observer HS’ in the reference frame  moving at velocity 
 in the direction  relative to the lattice emits a wave at the frequency , measured with 

its own clock, towards an observer HS’' which moves at velocity  in the direction  
relative to the lattice (figure 6.12c). The frequency  of the signal received by HS’'  and 
measured by him with his own clock is easily obtained by combining the two relations (6.12 a) 
and (6.12b) obtained previously. In this form, the expression of  shows in fact in 
parentheses the classic Doppler effect due to the movements of the two observers relative to 
the lattice, as well as the frequency   which is nothing other than the frequency of the 
signal emitted by HS’, but measured with the HS’' clock.

4th experiment: an observer HS’ in the reference frame  moving at velocity  
in the direction  relative to the lattice emits a wave at the frequency , measured with its 
own clock, which is reflected on a mirror associated with a fixed reference frame with respect to 

O 'x '1 x '2 x '3
 
!
ω =

!
ω0 sin ω 't '− k 'x1 '( ) fe ' =ω '/ 2π k ' =ω '/ ct Ox1x2x3

t ' x1 ' t
x1 !ω =

!ω0 sin ωt −kx1( )
Ox1x2x3 ω k

ω ' k ' O 'x '1 x '2 x '3 ω = ω '+k 'v'( )/γ t '
k = k '+ω 'v' /ct2( )/γ t ' k ' =ω '/ ct fe ' =ω '/ 2π

fe ' fr

v' > 0 fr
fe '

v' < 0 fr
fe '

(1−v' / ct )
−1

γ t ' fe '

Ox1x2x3
fe

 
!
v'' Ox1

fr ''

v'' > 0 fr ''
fe

fr ''
(1−v'' / ct ) fe / γ t ''

O 'x '1 x '2 x '3
 
!
v' Ox1 fe '

 
!
v'' Ox1

fr ''

fr ''

γ t ' fe '/ γ t ''

O 'x '1 x '2 x '3  
!
v'

Ox1 fe '



Chapter 6148

the lattice, and receives the echo of this wave whose he measures the frequency , always 
with its own clock (figure 6.13a). It is easy to find the value of  using the relations (6.12a) 
and (6.12b) previously obtained in which we introduce the frequency  received and re-emitted 
by the mirror in the HS reference frame. The combination of these two relationships then shows 
us that, in this case, the effect measured by HS’ is a pure classic Doppler effect, which is 
perfectly logical since HS’ uses its own clock to measure  and .

5th experiment: an observer HS in the fixed reference  with respect to the lattice 
emits a wave at the frequency , measured with his own clock, which is reflected on a mirror 
associated with a reference frame  in movement in the direction  at velocity 

 compared to the fixed lattice, and receives the echo of this wave whose he measures the 
frequency , always with its own clock (figure 6.13b). It is easy to find the value of  by again 
using the relations previously obtained in which the frequency  received and re-emitted by 
the mirror is introduced into the reference frame of HS’’. The combination of the two relations 
(6.12a) and (6.12b) again shows us that, in this case, the effect measured by HS is a pure 
classic Doppler effect, since HS uses its own clock to measure  and .

6th experiment: an observer HS’ in the reference frame  in movement relative 
to the lattice at velocity  in the directionn  emits a wave at the frequency , measured 
with its own clock, which is reflected on a mirror associated with a reference frame 

 in movement relative to the lattice at velocity  in the direction , and 
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receives the echo of this wave whose he measures the frequency , always with its own clock 
(figure 6.13c). Again, it is easy to find the value of  by using twice the relationship (6.12c). 
We find again that, in this case, the effect measured by HS’ is a pure classic Doppler effect, 
since HS’ uses its own clock to measure  and .

About the famous paradox of the Twins of Special Relativity…
          ... which is only one in the minds of the HS observers

The existence of the lattice, therefore of an "ether", makes it possible to give a very simple 
and very elegant explanation to the famous paradox of the Twins of Special Relativity. We have 
already seen that a local observer HS'' in its mobile reference frame  at velocity   

 relative to the lattice in the direction  is in principle not able to measure this velocity 
since its clock and its own rulers do not change for him, which results also in the fact that 
Michelson-Morley type experiments do not provide useful informations to him. However, one 
may wonder whether Doppler-Fizeau type experiments with another HS’ observer moving at 
velocity  relative to the lattice in the direction  could provide him with more information. In 
relation to the HS’ observer, the observer HS’’ can perform 
three types of measurement:
- he can measure the relative speed  of HS’ with respect to 
it, given by the formula in figure 6.9, with a changed sign,
- he can measure the frequency ratio  of a certain 
known event occurring in his reference frame and in the 
reference frame of HS’, given in figure 6.12c,
- he can measure the frequency ratio  of a signal 
which he has sent itself and which is reflected on a mirror in 
the frame of reference of  HS’ , given in figure 6.13c.

We can then show that these three experimental 
measurements do not allow HS’’ to determine unequivocally 

 and . Indeed, the last two relationships are absolutely equivalent and therefore do not 
solve the problem. As for the first two relations, it is easy to show that this system is also 
indeterminate, because it provides the relation , so that HS’’ 
ultimately has no way of finding his velocity  relative to the lattice using experiments of 
Doppler-Fizeau type.

This last relation is extremely interesting, because it shows that HS’’ can deduce the relative 
speed  of HS’ compared to him by measuring the frequency ratio  of a certain known 
event occurring in his reference frame and in the reference frame of HS’ and that for him, in his 
reference frame , this frequency ratio is of the relativistic type.
But the observer HS’, in his reference frame , could make the same measurement, 
and he would then obtain exactly the same result. Thus, for HS observers who do not have 
access to their absolute velocities relative to the lattice (therefore relative to «ether»), their 
principle of relativity is exactly the same principle as that of Special Relativity. In particular, by 
applying the Lorentz transformation, HS’’ will have the impression that HS’ ages slower than 
him, while HS’ will also have the impression that it is HS’’ who ages slower than him. This 
strange situation at first sight is called the paradox of twins in Special Relativity.
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But this paradox of twins is only one in the minds of the 
observers HS’  and HS’’ . Indeed, for the GO which has access 
to the relative speeds of the HS observers compared to the 
lattice, it is perfectly clear that it is the observer HS which moves 
compared to the lattice which ages less quickly than the 
observer HS which remains fixed compared to the lattice. Thus, 
if a pair of HS twins carry out the famous Langevin twin 
experiment, namely that one of the twins sets off in a rocket at 
subluminous speeds and then returns to his twin which has 
remained at the starting point, the GO will be able to say 
unequivocally that the HS who has traveled at very high speed 
compared to the lattice will be the youngest when they meet 

after the trip. And the GO knows perfectly well that this effect took 
place throughout the journey, even during periods when the speed of the traveling twin has 
been constant in relation to the lattice.

This interpretation of the paradox of twins based on the existence of the cosmological lattice, 
therefore of an ether, is entirely new and gives a very simple, logical and elegant answer to 
many questions and interpretations of the paradox of twins suggested by Special Relativity and 
by Einstein's General Relativity .3

 See for example:3

http://fr.wikipedia.org/wiki/Paradoxe_des_jumeaux
http://en.wikipedia.org/wiki/Twin_paradox

http://fr.wikipedia.org/wiki/Paradoxe_des_jumeaux
http://en.wikipedia.org/wiki/Twin_paradox


Chapter 7

Gravitational fields of the topological singularities

Thanks to Newton's second partial equation, one can obtain the external fields of expansion 
perturbations, i.e. the external fields of gravitation associated with a localized topological 
singularity. We find that these external gravitational fields can have three components, namely a 
generally dominant component associated with the elastic energy of distortion, that is to say 
with the mass of the singularity, and two components generally much weaker due respectively 
to the charge of curvature of the singularity and to the charge of rotation of the singularity.

In the process, we also come to show that the collapse of clusters of singularities of the 
vacancy type or of the interstitial type leads to fairly singular macroscopic topological 
singularities within the lattice: a hole in the lattice, a kind of macroscopic vacancy, in the case of 
the collapse of singularities of vacancy nature, or a piece of additional lattice, a kind of 
macroscopic interstitial within the lattice in the case of the collapse of singularities of interstitial 
nature. The description of the “gravitational” fields of these two types of macroscopic 
complementary singularities shows that the macroscopic vacancy singularity can behave like a 
real black hole, whereas the macroscopic interstitial singularity does not have this property. 
Subsequently, these macroscopic singularities will prove to be ideal candidates to explain the 
"black holes" of the Universe in the case of the macroscopic vacancies and the "neutron stars" 
of the Universe in the case of the macroscopic interstitials.

By applying the calculations of the external gravitational field of the topological singularities 
to the microscopic singularities in the form of twist disclination loops, prismatic edge dislocation 
loops or slip mixed dislocation loops, we deduce the set of gravitational properties of these 
loops. Several extremely interesting consequences will be deduced therefrom, in particular the 
existence, in the case of the prismatic edge dislocation loop, of an equivalent mass of 
gravitation different from the mass of inertia, which may even prove to be negative in the case of 
loops of an interstitial nature, a result which will have very significant consequences thereafter.

Expansion perturbations by a singularity with a given distorsion energy

Let us consider a singularity localized at rest, of volume  , consisting of a loop or a 
cluster of numerous loops of dislocations and / or of disclinations, and let us suppose known the 
densities of distortion energy  and potential energy  within this singularity. 
The equilibrium of the expansion perturbation field  within this singularity is given by the 
solution of the second degree equation deduced from Newton's second partial equation in figure 
5.1. We cannot do here an exact calculation of  since it would require dealing with a 
concrete case of singularity to know exactly the distributions of the densities of distortion energy 

 and potential energy  within this singularity. On the other hand, one can deal 
with this problem in an approximate way by introducing average values of the various fields 
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concerned. We can start by introducing the global energy at rest  of the 
topological singularity by summing the distributions of the densities of distortion energy 

 and potential energy  within this singularity, so that we can define an 
average value  of the internal field of expansion perturbations. It is clear that this mean field 
is purely virtual, in other words that it does not really exist, but that it represents in fact a form of 
mean value of all the accidents of the perturbation field within the singularity, accidents which 
must be extremely marked especially if we have to deal with a cluster of very many topological 
singularities. The exact calculation of the mean perturbation field  is quite complicated, 
since it is subject to various assumptions regarding its conditions of existence. We will not enter 
here into a detailed discussion of these conditions of existence, but we give in figure 7.1 the 
results obtained. Detailed calculations show that there are static or dynamic solutions for the 
expansion perturbation fields which are associated with the topological singularity, and that the 
background expansion domains of the lattice in which these solutions occur are given by 
conditions which are shown in figure 7.1.

In a small domain centered on , there can only exist a dynamic solution of 
Newton's equation for the expansion perturbation, dynamic solution which allows to pass from 
the static solution of the domain  to the static solution in the domain  and vice-
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versa.
In the domains outside this small domain of dynamic solutions, there are static solutions for 

the perturbations of the volume expansion fields caused by the singularity. But here too, the 
calculations and the results obtained are quite complicated. But there are areas of lattice 
background expansion  that present simple static solutions. These domains are reported in 
figure 7.1, with the expressions of the internal and external perturbation fields which correspond 
to them.
It is remarkable to note then that the average value  of the internal field of perturbation of 
the expansion depends on the global energy of rest  of the singularity and its 
volume  , while the field of external perturbations decreases in  with the distance from 
the cluster, that it only depends on the total energy  of it, and especially that it 
does not depend on the volume or the radius of it.
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These behaviors of the expansion perturbation field are reported in figure 7.2 as a function of 
the distance  from the center of the singularity, in both cases  and .

The total energy of the expansion field can also be calculated, and we see that it is positive, 
that it is proportional to the product of the volume of the singularity by the square of the internal 
field of expansion perturbations of the singularity, and that it depends only on the modulus of 
elasticity  which, as we recall, must be much smaller than the modules  and  in the 
perfect cosmological lattice.

It is interesting to compare the gravitational energy of the singularity with its elastic energy of 
distortion, by calculating the approximate value of the ratio of the two. The expression 

 comes for . Now, according to conjecture 
6, the ratio  is extremely small, so that the gravitational energy of the singularity is 
certainly extremely smaller than the elastic energy of distortion of the singularity in the domain 

. We will come back to this point later.
With the conjectures 6 of the perfect cosmological lattice, if we are in the expansion domain 

 in which there are no longitudinal waves, the mean virtual internal field  of the 
singularity is positive. As for the real external field  of the singularity, it is negative and 
therefore perfectly satisfies conjecture 3 of figure 3.4 deduced from the curvature of the wave 
rays in the vicinity of the singularity.

On the other hand, if one is in the domain of expansion  where there are 
longitudinal waves, the fields reported in figure 7.2 are reversed compared to the fields in the 
domain of expansion : the average virtual internal field  of the singularity becomes 
negative, and the real external field  becomes positive, so that it no longer satisfies 
conjecture 2 deduced from the curvature of the wave rays in the vicinity of the singularity.

Expansion perturbations by a singularity with a given curvature charge

 A localized singularity of radius, apart from having a given rest energy, can also have 
an overall charge of curvature . Indeed, such a singularity can consist of a cluster of discrete 
topological singularities of the lattice, such as prismatic dislocation loops which each have a n 
elementary charge of curvature . If , we will speak of a singularity of a vacancy 
nature because there are missing laattice sites within the cluster, and if , we will speak of 
a singularity of interstitial nature, because there is then excess of lattice sites within the cluster. 
A curvature singularity is responsible for a non-zero and divergent flexion field in its vicinity as 
we have shown in figure 2.33.

To find the perturbations of the expansion field due to this singularity, we start from the static 
equilibrium equation obtained by the divergence of Newton's first partial equation in figure 5.1. 
The equilibrium equation of the expansion field of such a singularity then requires knowing the 
density  of curvature charges within the singularity. Generally not knowing this density 
which is specific to a given singularity, we use to simplify the approximation of a homogeneous 
average curvature charge density within the singularity, such as . We 
then obtain a simplified equation of equilibrium for the virtual internal field whose solution 

 is of spherical symmetry. As before, the exact calculation of the perturbation fields is 
quite complicated, because it is subject to various assumptions concerning its conditions of 
existence, in particular the condition that the total internal and external perturbation field is of 
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zero mean value, so that the value of the mean field within the lattice is equal to the background 
expansion  of the lattice. Under these conditions, we obtain the internal and external fields 
reported in figure 7.3, as well as the energy associated with this expansion perturbation field.

These expressions imply that, if these fields exist, that is to say if , these present an 
infinite singularity when the background expansion  reaches the critical value  which 
cancels the denominator, and we can show that a singularity of curvature necessarily goes 
through a black hole stage, for  in the case of singularities of a vacancy nature and for 

 in the case of singularities of interstitial nature.
The signs of the term  and of the module  play an important 

role here. Using the conjectures 6 of the perfect cosmological lattice, we have that:
- if , that is to say if , only the singularities of a 
vacancy nature, with , satisfy the conjecture 3 of figure 3.4 concerning the curvature by 
attraction of the wave rays in the vicinity of the singularity, while the singularities of interstitial 
nature, with  repel the wave rays,
- if , that is to say if , only the singularities of 
interstitial nature, with , satisfy conjecture 3 concerning the curvature by attraction of the 
wave rays in the vicinity of the singularity, while the singularities of vacancy nature, with , 
repel the wave rays.

These behaviors of the expansion perturbation field are reported in figure 7.4 as a function of 
the distance  from the center of the vacancy or interstitial singularity, in the four possible 
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cases, namely for  and , and for   and  .

Expansion perturbations by a singularity with a given rotation charge

Now imagine the existence within the perfect lattice of a localized singularity of volume  
 and global rotation charge , composed of a cluster of elementary rotation charges 

 or containing a density  of rotation charges.
Such a singularity will therefore have an external field of expansion perturbations linked to 

the elastic energy of the singularity due to the field of internal rotation at the singularity, and 
which is deduced directly by the second relation of figure 7.1. This perturbation field therefore 
does not depend on the volume  or the radius  of the singularity with rotation charge.

But to this external field of expansion perturbation due to the internal energy of rotation of the 
singularity must also be added an external field of expansion perturbations which is generated 
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by the external field of rotation of the singularity, and which appears as a result of the distortion 
energy  associated with the external rotation field . The external rotation field of 
the singularity is given in figure 5.4, and it does not depend either on the volume  nor on 
the radius  of the rotation singularity. This external perturbation  of the 
volume expansion field is deduced using the static version of Newton's second partial equation 
of figure 5.1, in which the energy density is due to the external elastic energy of the rotation field 
of the singularity, and in which  and  are zero. The solution of the second degree 
equation thus obtained presents several solutions depending on the volume expansion domain 

 considered, as shown in figure 7.5

In a domain of volume expansion  centered on , there can only exist a dynamic 
solution of Newton's equation for the perturbation of external expansion associated with the 
singularity of rotation, which makes it possible to pass from the static solution of the domain 

 to the static solution in the domain  and vice versa. 
In the vicinity of this domain of dynamic solutions, there appear two domains of fairly 

complicated static solutions which will not be discussed here. Finally, it is for the extreme values 
of the background field  that fairly simple static solutions appear for the external field of 
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perturbations due to the singularity of rotation. Once again assuming that the mean value of the 
expansion taken outside and inside the singularity is equal to , we obtain the final expression 
of the external perturbation field  reported in figure 7.5.

It can therefore be seen that the total external field of expansion perturbations of a singularity 
of rotation has a long-range component in  associated with the internal and external elastic 
energy of rotation of the singularity and a short-range component in  associated directly 
with the energy of the external rotation field of the singularity. We superimposed very 
schematically the superposition of these two fields in figure 7.6, respectively in the cases where 

  and .

In both cases (spherical singularity of rotation or twist disclination loop), it can be shown that 
there is a critical distance  greater than the radius of the singularity  for which 
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the external expansion field is reversed. We also note that the perturbations of the expansion 
field at the interface of the singularity are positive in the expansion domain  and 
negative in the expansion domain .

On the other hand, as the energies of distortion (for example  in the case of a spherical 
load of rotation or  in the case of a twist disclination loop) are always positive, there is no 
asymmetry in the fields of expansion between charges and anti-charges of rotation. On the 
other hand, there appears to be an inversion of these fields when moving from the domain 

  to the domain .
In figure 7.5, one also reported the field of the internal perturbation of expansion, in the case 

of a spherical charge of rotation for which this field can be calculated in an exact way. We also 
reported the total energy of the gravitational perturbation field, also calculated in the case of a 
spherical charge of rotation.

About the gravitational fields of macroscopic singularities

Concerning the fields of "gravitational" nature of the macroscopic singularities which we have 
just described, it is very encouraging to note that there is a first field of expansion associated 
directly with the energy  of the cluster of topological singularities, in a similar way 
to the gravitational field of Einstein's General Relativity which is also an emanation of the 
energy-momentum tensor of matter.

But there still appear in our theory two other "gravitational" fields of expansion which are 
associated respectively with the global charge  of curvature and the global charge  of 
rotation of the cluster of topological singularities. These fields have in fact no equivalent in 
Einstein's General Relativity.

The existence of the second "gravitational" expansion field, due to the curvature charge , 
is subject to the condition that the shear modulus  of the perfect lattice is not zero. There is 
therefore still the possibility of discussing the existence or not of this field according to the value 
which must be attributed to the module   in our analogy with the real world, knowing that this 
module must in any case be very small vis-à-vis of the module , as already specified with 
conjecture 4.

The third "gravitational" expansion field is associated with the rotation charge  of the 
cluster of topological singularities considered. Within the framework of our analogy, this third 
expansion field must necessarily exist if the cluster has a non-zero charge  since the module 

 must exist to satisfy the analogy with Maxwell's equations. But this field has no direct 
analogy in Einstein's General Relativity and Particle Physics theories.

Note again that the three preceding "gravitational" fields have non-zero gravitational 
energies. As these depend on the coefficient , which must be very small in the 
perfect cosmological lattice, the gravitational energy of the singularities is certainly negligible 
compared to the elastic energy of distortion of the singularities.

The fact that there appear two "gravitational" fields of volume expansion which apparently 
have no analogues in the theories of General Relativity of Einstein and in Particle Physics is 
very interesting to test our theory. We will return in the following chapters to the roles that the 
three fields of volume expansion could play respectively associated with the energies 
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, the charge of curvature  and the charge of rotation  of a localized 
singularity or of a localized cluster of topological singularities.

If the background expansion field  of the lattice increases or decreases so as to pass 
through the critical value , there appears a domain where there can no longer exist a static 
solution to Newton's equation, which means that it must necessarily appear a dynamic solution 
which makes it possible to transform a static singularity of the domain  into a static 
singularity of the domain , and vice versa. The non-existence of a static solution to 
Newton's equation when the energy density and / or the rotational charge of the singularity 
becomes too large is mathematically a fact quite similar to what we already encountered in 
chapter 2 in the case of Frank-Read sources of dislocations, where there were no longer any 
static solutions to the deformation of an anchor dislocation string when the stress exceeded a 
certain critical limit value, and we will see below that the appearance of pure dynamic solutions 
for the expansion perturbation field have in fact a very close link with quantum physics.

Macroscopic vacancy located in the lattice, real gravitational black hole

Imagine that a cluster of vacancy type singularities, i.e. singularities carrying positive 
curvature charges, such as prismatic dislocation loops of the lacunar type for example, 
collapses on itself (under the effect for example of "gravitational attractive forces" which we will 
describe later). If the initial cluster is neutral vis-à-vis the rotation charges, the individual 
singularities of the cluster combine, losing their own identity (dislocation or disclination loops) to 
form a single macroscopic hole within the lattice, as a kind of macroscopic vacancy formed by 
individual vacancies, as shown in figures 7.7a to 7.7c. This means that there is a local lack of 

lattice sites. The radius of this macroscopic vacancy, assumed to be spherical, is then worth 
, in the imaginary case where the lattice presented a homogeneous 

expansion of .
Within the real lattice, the presence of this macroscopic vacancy will generate a spherical 

volume expansion field  that must be defined. On the surface of the singularity, the 
expansion field is equal to the sum of the field  generated by the singularity, the 
background expansion field  of the lattice and an external expansion field  due to 
the other singularities located in the vicinity of the macroscopic vacancy. On the other hand, on 
the surface of the singularity, the total field must be arranged so that the pressure at the 
interface of the hole is zero. To obtain the field of expansion  of the macroscopic 
vacancy as well as its real radius , the condition of zero pressure at the interface can be 
injected into the equation of state of the pressure in figure 3.1. We obtain a second degree 
equation, which, under the assumption   of conjecture 6, has only one valid solution 
which is shown in figure 7.7a. We can then show that the mean expansion field in the presence 
of this macroscopic singularity is indeed equal to the background expansion  of the lattice.

On the other hand, we note that the real radius  of the macroscopic vacancy is a quantity 
which depends only on the number  of missing lattice sites.

In figures 7.7a to 7.7c, the expansion field associated to a macroscopic vacancy of 
approximately 10,000 substitutional sites has been plotted graphically, for three different values 
of the background expansion  of the lattice, and trying to respect at best the scale of the 
drawing.
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The energy of a macroscopic vacancy associated with its field  of expansion 
perturbations is calculated quite easily, and we obtain the relation reported in figure 7.7a. It can 
be seen that the energy of formation of the macroscopic vacancy depends only on the 
background expansion  of the lattice and that it is canceled  for the values 

 and . Between these two values, namely in the 
interval , the energy of formation of the macroscopic 
vacancy is positive, whereas it becomes negative outside this interval. On the other hand, within 
the interval , the energy of formation of two macroscopic 
vacancies of  sites is higher than the energy of formation of a single macroscopic vacancy 
of  sites since , so that two macroscopic vacancies will 
have an energy advantage to merge when the background expansion field is in this interval.

In the presence of a macroscopic vacancy, the first condition reported in figure 3.5 for the 
appearance of a black hole implies that the critical radius to make a black hole with a 
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macrosopic vacancy is equal to . If we add the necessary 
condition that , there comes the condition  on the background 
expansion  of the lattice to form a black hole.

We conclude that a macroscopic vacancy, whatever its size and its energy, necessarily 
becomes a black hole as soon as the background volume expansion  exceeds the value of 

. This conclusion is extremely interesting insofar as we have here the 
macroscopic stable topological singularity which we can consider as the true black hole, 
analogous to the black hole of general relativity, when , represented in 
figure 7.7c. And this vacancy topological singularity behaves like a white hole which repels the 
wave rays when the condition  is satisfied, as in figure 7.7b.

Macroscopic interstitial located in the lattice, 
true anti-singularity of the macroscopic vacancy

Now imagine that a cluster of interstitial type singularities, i.e. singularities carrying negative 
curvature charges, such as interstitial type prismatic dislocation loops, collapses on itself under 
the effect of attractive gravitational forces described in the previous chapter. If the initial cluster 
is neutral vis-à-vis the rotation charges, the individual singularities of the cluster combine, losing 
their own identity (dislocation or disclination loops) to form a single piece of macroscopic local 
lattice embedded within the lattice, and formed of  sites, as shown in figure 7.8.

This means that there is an excess of  lattice sites locally forming a macroscopic 
interstitial. The radius of this macroscopic embedding, assumed to be spherical, then is worth 

 in the imaginary case where .
We can obviously consider that this macroscopic interstitial of  lattice sites corresponds in 

fact to the anti-singularity of the macroscopic vacancy of  sites, in the sense that the 
combination of these two singularities completely restores the original lattice, since the  
missing sites of the lattice are filled by the  interstitials.

In the presence of such an embedding of a piece of lattice within the lattice, there is 
obviously no coherence of the two lattices, and the condition of equilibrium amounts to the fact 
that the pressures at the interface are equal on the part and other of the interface, so that 

, which actually comes down to that . As the external field  
satisfies the divergence equation  drawn from Newton's first partial equation in 
figure 5.1, we deduce the solution for the external field, ensuring that the number of cells of 
lattices before introducing the singularity interstitial is equal to the number of cells of lattice after 
introduction of the singularity. Under this condition, one finds the fields of expansion 
perturbations outside and inside the macroscopic interstitial represented in figure 7.8.

Assuming that there exists in the vicinity of the macroscopic interstitial a field of expansion
 due to the other singularities located in its vicinity, the real radius of the 

macroscopic interstitial will depend on the background expansion  , on its own internal field of 
expansion internal and on the external field  by the relation also reported in figure 
7.8. We can use this expression of  to express the field of external perturbations a little 
differently, in a form which shows that the external field of expansion perturbations is simply 
proportional to the number of additional sites agglutinated in the lattice.

The "gravitational" energy of the expansion field associated with this macroscopic interstitial 
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is then written, taking into account the external and internal fields, in the form shown in figure 
7.8.

Although the macroscopic interstitial is the anti-singularity of the macroscopic vacancy, its 
formation energy is always positive as long as , and infinitely smaller than the 
formation energy of the macroscopic vacancy, which reveals a colossal asymmetry between the 
two complementary macroscopic singularities.

In the presence of a macroscopic lattice interstitial, the first condition in figure 3.5 for a 
macroscopic interstitial to form a black hole implies that the critical radius of formation would be 
given by , and the second condition, namely that , implies that 

. Obviously, we deduce that a macroscopic lattice interstitial, whatever its size and 
energy, can never behave like a black hole. This conclusion is extremely interesting insofar as 
we have here a topological object presenting a considerable asymmetry with its anti-singularity, 
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the macroscopic vacancy, which necessarily becomes a black hole as soon as 
.

About the possible analogy between vacancy singularities and black holes
and between interstitial singularities and neutron stars

The macroscopic interstitial is the perfect anti-singularity of the macroscopic vacancy if
 since the combination of the two singularities completely restores the perfect lattice. 

But there is a colossal difference between these two singularities, since their respective 
energies of formation are extremely different, and that the macroscopic vacancy becomes a 
black hole within the cosmological lattice as soon as  while the macroscopic interstitial 
can never become black hole.

If we consider that these two topological objects can be formed by gravitational collapse of 
clusters of singularities, of a lacunar nature for the macro vacancy (for example lacunar 
prismatic dislocation loops) and of interstitial type for the macro interstitial (for example 
interstitial prismatic dislocation loops), we find by analogy the formation of black holes and 
neutron stars by gravitational collapse in the theory of gravitation. But if a sufficient initial mass 
of the cluster is a condition for arriving at a gravitational collapse, it would not be the initial mass 
of the cluster which conditions the evolution towards a black hole or towards a neutron star, but 
the very natureof the initial cluster.

If we then accept the conjecture 8 plotted in the following figure 7.9, namely that the 
singularities of a vacancy nature correspond by analogy to anti-matter and the singularities of 
interstitial nature to matter, the black holes would then be residues of collapses of clusters of 
anti-matter of a lacunar nature and the neutron stars of the residues of collapsed clusters of 
matter of interstitial nature.

In this analogy, black holes, by virtue of their constitution of "vacancy holes" cannot keep any 
memory of the initial cluster of vacancy singularities from which they come, except the quantity 
of microscopic vacancies, that is to say the number of missing lattice sites in the initial vacancy 
singularities. On the other hand, neutron stars, by virtue of their constitution of "interstitial 
embedding" of pieces of lattice that are not coherent with the surrounding lattice, could 
conserve, apart from the quantity of microscopic interstitials, that is to say the number of excess 
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lattice sites in the initial interstitial singularities, at least also the memory of the kinetic moment 
of rotation of the initial cluster of interstitial singularities from which they originate, in the form of 
a very rapid rotation of the embedding, which would correspond well with the enormous 
rotational speeds observed in the case of neutron stars, also called pulsars because of the 
electromagnetic pulses which they emit at fixed frequency following their very fast rotation.

Perturbations of the expansion associated with the twist disclination loop (BV)

The twist disclination loop has already been described in detail in figure 5.5. Concerning its 
“gravitational” properties, namely its external fields with long and short range of perturbations of 
the expansion, one can directly deduce them using the relations of figure 7.5, and report them in 
figure 7.10, using elsewhere the mass of inertia  of the loop in place of its distortion 
energy  thanks to the expression of Einstein's relation. As these fields are perturbations of 
the volume expansion, they correspond in our analogy with the real world to gravitational fields, 
acting respectively at long distance (LD) and at short distance (CD). In this form, the field of long 
distance expansion perturbations (LD) depends exclusively on the mass of inertia of the loop, 
and does not depend on the size of the loop, which further confirms our analogy between this 
field of expansionperturbations and a gravitational field.

The expansion perturbation fields that we have just described obviously have an energy, 
which it would be desirable to compare with the elastic energy  of the screw loop. The total 
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energy of the expansion perturbation field due to the elastic energy of the loop is deduced by 
the relation of figure 7.5 and is reported in figure 7.10. We can compare this energy with elastic 
energy, by relating it, and we get approximately , 
because . It is therefore deduced that the "gravitational" energy  of the twist 
disclination loop due to its elastic energy  is perfectly negligible compared to its elastic 
energy in the perfect cosmological lattice.

In Figure 7.10, we have reported all of the important properties that we have deduced so far 
for a twist disclination loop in a perfect cosmological lattice, namely its charge, its mass of 
inertia, its fields of rotation and disturbances of the long distance expansion, its elastic and 
kinetic energies, and finally its relativistic behavior. We see, among other things, that the mass 
of inertia  of the loop does not only control the dynamic properties of the loop, like its 
kinetic energy , but that it is also it which generates the gravitational fields  and 

 of external perturbations of expansion.
As the “gravitational” energy  of the expansion perturbation fields due to the rotation 

charge  of the twist disclination loop is perfectly negligible compared to the elastic energy 
 of the loop, this “gravitational” energy is not listed in the essential properties table.

As for the field of perturbations of the expansion within the torus itself surrounding the loop, 
and of the energy which is associated with this internal field, we will come back to this in detail 
later, when we will deal with the problem of spin and magnetic moment of the twist disclination 
loop.

Perturbations of the expansion associated with the edge prismatic loop (BC)

The prismatic edge dislocation loop we described in figure 5.6 has a curvature charge , 
which makes it the elementary building block of the lattice curvature charge in our real world 
analogy. This charge is responsible for an external divergent flexion field, analogous to a 
geometric curvature field.

Knowing the elastic energy of the prismatic edge dislocation loop, we can use the relation of 
figure 7.1 to calculate the external field  of expansion perturbations associated with the 
elastic energy  of the edge dislocation loop, here neglecting its energy potential . One 
can also use the relation of figure 7.3 to calculate the external field  of expansion 
perturbations associated with the curvature charge  of the loop. But using conjecture 5, 
that is , one can show that the first term  is most likely far less than the 
second term . Thus, in the case of this loop, it is the expansion perturbation field due 
to the curvature charge which largely prevails over the expansion perturbation field due to the 
elastic distortion energy of the loop, unlike the twist disclination loop for which the energy of the 
perturbation field due to the distortion energy of the loop greatly outweighs the energy of the 
perturbation field due to the external field of rotation.

Apart from the mass of inertia  of the edge loop, one can also introduce an equivalent 
mass of curvature  defined in figure 7.11, and which can be positive or negative 
depending on whether the edge loop is of a lacunar or interstitial nature. This mass of curvature 
then allows the gravitational field  to be written in the form shown in figure 7.11. 
According to the hypothesis of conjecture 5 ( ), the equivalent mass of curvature in 
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the expression of the gravitational field satisfies the relationship . In addition, 
the equivalent mass of curvature can be positive or negative. These two facts will imply very 
surprising results as we will see later.

The expansion perturbation fields that we have just described obviously have an energy, 
which it would be desirable to compare with the elastic energy  of the edge loop. The 
energy  of the expansion perturbation field due to the elastic energy of the loop is deduced 
thanks to the relations of figure 7.1. This energy can be compared with elastic energy, and it 
then comes the ratio  as . We 
therefore deduce that the "gravitational" energy  of the edge dislocation loop due to its 
elastic energy  is perfectly negligible compared to its elastic energy in the perfect 
cosmological lattice.

Let’s take a look at the energy  associated with the expansion perturbation field due 
to the curvature charge of the edge loop. Using the relation of figure 7.3, one obtains the energy 
of the field of “gravitation” associated with the charge of curvature, which can be compared with 
the elastic energy , and one obtains the ratio as . 
We deduce again that the "gravitational" energy  of the dislocation edge loop due to its 
curvature charge  is perfectly negligible compared to its elastic energy  in the perfect 
cosmological lattice.

In figure 7.11, we have reported all the important properties that we have deduced so far for 
an edge dislocation loop in a perfect cosmological lattice, namely its curvature charge, its mass 
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of inertia, its equivalent gravitational mass, its fields of flexion and of perturbations of the 
expansion of the long distance, its elastic and kinetic energies, and finally its relativistic 
behavior. One notes there that it is its elastic energy  , and as a consequence its mass of 
inertia  which is deduced from it, which controls its dynamic properties, like its kinetic 
energy , but that it is its equivalent gravitational mass  of curvature which 
essentially controls its external gravitational field  of expansion perturbations at long-
distance.

As the “gravitational” energies  and of the fields of expansion perturbations due 
to the elastic energy  and to the curvature charge  of the dislocation edge loop are 
perfectly negligible compared to the elastic energy  of the loop, these “gravitational” 
energies do not appear in the table of essential properties.

On the other hand, the equivalent gravitational mass of curvature  is not only much 
greater than the mass of inertia , but it can even be negative in the case of edge loops of 
interstitial nature. This result turns out to be very surprising since it corresponds to the possible 
existence of a negative gravitational field, and it is in fact extremely promising by the novelty 
which it brings in our theory compared to the General Relativity of Einstein. The possible 
consequences of this astonishing result will be explored in detail in the rest of the book.

Perturbations of the expansion associated with the mixed slip dislocation loop (BM)

The mixed slip dislocation loop that we have described in figure 5.7 has neither rotation 
charge nor curvature charge, but on the other hand a dipolar moment of rotation field

, analogous to an electric dipolar moment. Knowing the elastic energy of 
distortion of the mixed slip dislocation loop in a perfect cosmological lattice, we can use the 
relation of figure 7.1 to calculate the external field  of expansion perturbations associated 
with this elastic energy , by neglecting here the potential energy  . On the other hand, 
it also becomes interesting here to replace in the expression  the distortion energy  
by the mass of inertia  of the loop using the relation . It comes the 
expression of  reported in figure 7.12.

The expansion perturbation fields we have just found obviously have an energy, which it 
would be desirable to compare with the elastic energy  of the loop. The energy  of 
the expansion perturbation field due to the elastic energy of the loop is deduced thanks to the 
relations of figure 7.1, and can be compared directly with the elastic energy  to derive the 
ratio  as . We therefore deduce that the 
"gravitational" energy  of the mixed dislocation loop due to its elastic energy  is 
perfectly negligible compared to its elastic energy in the perfect cosmological lattice.

In figure 7.12, we have plotted the set of properties of a mixed slip dislocation loop in the 
perfect cosmological lattice. If this loop has neither rotation charge nor curvature charge 
generating external fields of rotation or flexion at long range, it is provided with an external field 
of dipolar rotation  at short range, analogous to an electric dipolar field. The 
external field of expansion perturbations is due to the elastic distortion energy of the loop, and 
depends on its mass of inertia .

On the other hand, since the “gravitational” energy  of the expansion perturbation fields 
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due to the elastic energy  of the mixed dislocation loop is perfectly negligible compared to 
the elastic energy  of the loop, this “gravitational” energy is not included in the table of 
essential properties.

About the various properties of the elementary topological loops

We have demonstrated above all the essential properties of the three elementary loops that 
can be encountered in the perfect cosmological lattice, and we have notably established the 
expressions of the fields of perturbations of external expansion, which correspond to 
“gravitational fields” of expansion of the loops, and which will play a very important role 
thereafter.

We have shown that the energies  of the “gravitational” fields 
associated with the elastic energies, the rotation charges and the curvature charges of the 
elementary loops are perfectly negligible with respect to the elastic energies associated with 
these loops, and that we can therefore perfectly ignore them in our calculations.

One can wonder if the elementary topological loops can be black holes. To do this, we apply 
the conditions of the black holes of figure 3.5 to the expansion fields ,  and 

 respectively. By applying these conditions to the twist disclination loop in the case 
where , we obtain the following condition  so that this loop 
is a black hole, which would imply that the pseudo-vector of Burgers of the loop is of the order of 
magnitude of the radius of the lattice, which obviously makes no sense.

The same goes for the mixed slip dislocation loop, since the condition for it to be a black hole 
becomes . In the case of the prismatic edge dislocation loop, the 
condition is expressed differently since the gravitational mass is worth . Like 
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, we get . But since the module  must be much 
smaller than the module  according to conjecture 6, this condition can obviously never be 
satisfied. Consequently, it is clear that the three elementary loops forming the basis of the 
microscopic topological singularities cannot be black holes in the domain .

In the analogy between our theory and the major theories of physics, the three types of 
elementary loops that we have discussed in this chapter have a number of amazing and 
remarkable properties that we will list here:
- they are respectively the elementary bricks of the electric charge, the curvature charge and the 
electric dipolar moment, from which it might be possible to form dispirations, by more or less 
complicated combination of several loops, in order to find topological singularities which are 
analogues of the elementary particles of our real world,
- their rest energy and their kinetic energy are essentially confined in the toric field surrounding 
the loops,
- as the energy associated with the “gravitational” fields of expansion perturbations is perfectly 
negligible, they perfectly satisfy Einstein's relation, which is surprisingly obtained in our theory 
as a purely classical property of topological singularities within the lattice, without appeal to a 
principle of relativity,
- they perfectly satisfy special relativity, with a completely original explanation of relativistic 
energy  as the sum of a relativistic term of 
elastic distortion energy and a relativistic term of kinetic energy,
- they satisfy a relativistic dynamic equation reported in figure 6.7,
- the twist disclination loop, carrying a rotation load similar to the electric charge, satisfies 
Maxwell's equations and Lorentz force,
- the three types of loops present a long distance field of perturbations of the volume expansion, 
which is the analog of a gravitational field decreasing in  and which depends only on a 
gravitational mass  of the loops composed of the mass of inertia and of the 
equivalent curvature mass of the loop, without directly depending on the size  of the 
loops,
- the gravitational masses of the twist disclination loop and the mixed slip dislocation loop are 
strictly equal to their masses of inertia, while the gravitational mass of the prismatic edge 
dislocation loop consists of the mass of inertia and the mass of curvature of the loop, with a 
mass of curvature much higher than the mass of inertia, and which may even be negative in the 
case of loops of interstitial nature,
- the gravitational mass of the prismatic edge dislocation loop contains two terms: the first 
dominant term of mass of curvature  is positive or negative depending on whether the 
loop is of lacunar or interstitial type, and the second term of mass of inertia  is always 
positive. This means that the gravitational mass is not symmetrical between a loop of vacancy 
nature and a loop of interstitial nature. There appears here a weak asymmetry in the absolute 
value of the gravitational mass between an interstitial loop and its lacunar anti-loop, which is 
expressed by the following three relationships:

- all these properties are perfectly analogous to the fundamental properties of elementary 
particles in the real world, except for the gravitational mass of the prismatic edge dislocation 
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loops, loops which have in fact a strong analogy with neutrinos. This very special property of 
prismatic edge dislocation loops will be discussed in the following chapters, in which we will 
discuss the gravitational interaction between loops.



Chapter 8

Newtonian gravitation and general relativity

A detailed study of the gravitational interactions intervening between loops of twist 
disclination leads to a strong analogy with the gravitation of Newton, but presenting however 
some differences as regards the gravitational attraction at short range and especially the 
dependence of the constant of gravitation in the volume expansion of the lattice.

We are then interested in the Maxwellian formulation of the spatio-temporal evolution 
equations presented previously in chapter 4, which corresponded to the expression of local laws 
of physics, such as electromagnetism, as seen by the imaginary external observer GO (Great 
Observer). We show in this chapter that it is possible to imagine a local observer HS (Homo 
Sapiens) which would be intimately linked to the local coordinate system, because it itself 
consists of a cluster of topological singularities of the lattice. This observer can only know local 
rulers and clocks in his local coordinate system, which are influenced by the local expansion 
field so that they make Maxwell's equations invariant with respect to volume expansions. A 
relativistic notion of time then appears for the local observers HS, for whom the speed of the 
transverse waves is measured as a universal constant, whereas this depends very strongly on 
the local volume expansion if it is measured by the observer GO outside the lattice.

The gravitational interactions thus obtained have very strong analogies with Newton's 
Gravitation and with Einstein's General Relativity. Perfectly analogous points are discussed in 
detail, such as the perfect analogy with Schwarzschild's metric at a great distance from a 
massive object and the curvature of the wave rays by a massive object.

But we also show that our Eulerian theory of the cosmic lattice brings new elements to the 
theory of Gravitation, in particular modifications of the Schwarzschild metric at very short 
distance from a singularity, and a better understanding of the critical rays associated with black 
holes: the radii of the perturbation sphere and of the point of no return are both similar and 
equal to the Schwarzschild radius, while the limit radius for which the dilation of the observer's 
time would tend towards infinity becomes zero, so our theory is not limited to the description of a 
black hole beyond the Schwarzschild sphere.

While the clusters of singularities composed of loops of twist disclination satisfy Newton's 
gravitation, and most of the results of General Relativity, we will finally ask ourselves the 
question of how to behave, towards the gravitation, other topological singularities, such as edge 
dislocation loops, mixed dislocation loops, macroscopic vacancies and macroscopic interstitials. 
We will thus deduce all the long-range gravitational interaction forces between the various 
topological singularities and their behaviors.

Newtonian gravitational interaction of clusters of twist disclination loops

In the previous chapter, it was shown that the mass of inertia of twist disclintion loops is 
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extremely higher than the mass of inertia of edge and mixed dislocation loops, so that 
perturbations of the expansion field will be mainly caused by the twist disclination loops. This is 
why we will start by analyzing the long-range expansion perturbation fields due to them.

For a screw loop, the mass of inertia depends on the square of the rotation charge  
(see figure 7.10). If such a loop is in an expansion field , the dependence of the mass of 
inertia  and the charge of rotation  of this loop is related to the dependence

 and the dependence of  and  in the local expansion. One could think a 
priori that the radius of the loop is linked to the pitch of the lattice, so that , and 
that the angle of rotation  must correspond to an angle satisfying the symmetry of the 
lattice, namely for example a multiple of  for a cubic lattice, or a multiple of  for a 
hexagonal lattice, so that  should not depend on the background expansion of the lattice.

However, we do not know at all the exact nature of the cosmological lattice, so that, for the 
sake of generality, we will assume a priori an unknown dependence of  and  on the 
background expansion of the lattice, as if the loop could undergo an extension of its radius and / 
or a torsion dependent on the local volume expansion of the lattice, writing by assumption that 

 and , where   and  are constants which will have to 
be determined subsequently, as indicated in figure 8.1. On the basis of this assumption, one can 
deduce the dependencies in the lattice expansion  of the charge  and the mass of inertia 

 of a loop, then the dependencies in  of the charge , the mass of inertia  
and the energy   of a cluster of rotation charges.

Two clusters of loops located at a distance  from each other will interact with each other 
via their "gravitational" fields of long-range expansion perturbations (figure 8.1). We can 
calculate the energies of the clusters (1) and (2) from their mass of inertia, by introducing into 
the energy the total value of the expansion at the heart of each cluster. Indeed, the two clusters 
distant from the distance  are respectively immersed in the expansion perturbation field of the 
other cluster. As we know that the elastic energy of a loop is essentially located in the vicinity 
close to the loop, one is assured that the elastic energy of the cluster is essentially located in 
the core of the cluster, so that their respective energy is influenced by the presence of the other 
cluster and so that there appears an increase  in the energy of the two interacting 
clusters, which depends on the distance  separating the two clusters. The total interaction 
force between the two clusters is then given by the derivative with respect to of the energy 
variation  of the two clusters, which leads to an interaction force shown in figure 8.1. This 
expression shows the product of the gravitational masses divided by the squared distance 
separating the two clusters, which furiously recalls a term from Newton's law of gravitation. Let’s 
introduce a "gravitational constant"  function of the lattice constants and  and of 
lattice elastic constants, but also of the local volume expansion  of the lattice.

The total force  of gravitational interaction between the two clusters takes a form 
that we recognize even better if we develop the exponential terms that it still contains at the first 
order of development, since we see there appear the expression of the Newtonian gravitational 
force between the two loops, corrected as a first approximation by a second order term. For 
large distances  between loops, the second order term in the parenthesis can be neglected, 
so that we then find a perfect analogy with the Newton's gravitational interaction in the real 
world, with a very low "gravitational constant»  since it intervenes  in the denominator.
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What first appears when looking at the expression of the "constant" of gravitation is that it is 
in fact in no way a constant since it depends on the average state of expansion  of the lattice 
via the values of  and , as well as by the value of  intervening in the denominator in 
factor of the module , which makes the value of  positive if  and negative if 

. This strong dependence of  on the background expansion of the lattice should 
undoubtedly play a key role in the evolution of the Universe during its cosmological expansion. 
We will come back to this subject later.

At a shorter distance , there appears a correction to Newton's law expressed by a 
multiplicative term. This second-order term in the expression of the approximate law of 
gravitation will modify the interactions between two clusters when they are very close to each 
other. But unlike the results obtained in General Gravitation using the Schwarzschild metric, 
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which predicts a small increase in the force of attraction at very short distances, the second-
order corrective term in our theory leads to a small decrease in  of the attraction force at 
very short distances.

For example, in the case of the planet Mercury which is quite close to the Sun, the 
calculation of the corrective term provides the value  with

which gives for the period of revolution of Mercury 88 days (  seconds), an increase of 
2.128 seconds compared to the value calculated with Newton's law of gravitation.

The local rulers and clock of an HS observer

Consider a local reference frame  defined by the GO observer (the imaginary Great 
Observer) from its absolute frame of reference . This local coordinate system  
is in fact a convenience used by GO to solve the problems of local evolution of the solid lattice, 
in particular in regions of the solid having a non-zero volume expansion, but which can be 
considered as constant and homogeneous in the vicinity of the origin of the coordinate system

, for example using the Maxwellian formulation described in chapter 4.
But now imagine that there is indeed another category of local observer that we called 

observer HS (Homo Sapiens) and which is really found in the local coordinate system  
because it is itself constituted from the topological singularities of the lattice, and in particular 
from elementary loops of twist disclination which interact with each other via their rotation field 
generated by their own rotation charge. In his local frame, the HS obviously does not have 
access to the global view of the lattice in the absolute reference frame, since he only knows the 
conditions of the local lattice in which he lives. The HS observer can therefore only define his 
own rulers  in his coordinate system , by defining them from the linear dimensions of 
the objects contained in the lattice in which he lives. This is illustrated in figure 8.1 for two 
observers HS and HS’  living in two different locations of the lattice, where the respective 
volume expansions of the lattice  and  are different.

If the lattice locally exhibits a certain volume expansion , the HS rules should satisfy a 
relationship of the type  where the constant  is not defined a priori and must 
therefore be determined. This implies that the rulers of an HS will be of different length than 
those of the GO if the lattice is locally shrinking ( ) or expanding ( ). If a certain point 
in space, identified by the vector , is observed simultaneously by the GO and by HS, the 
vector will be written  in  and in  
respectively so that the coordinates of the point of the space is transformed by relationship 

.
On the other hand, the time measured in  at  must also be different from the 

time measured when , so that HS own clock in its frame  must indicate a time 
different from the absolute time  of the GO, but linked to it by the relationship . 
Regarding the HS clock, he will have to build it locally since it does not have access to the 
absolute time of the GO. It will then be logical for him to build a simplistic clock using one of his 
local rulers and the speed of the transverse waves which he can measure in the coordinate 
system of his own frame of reference. Consider a ruler of length rule  measured by GO in a 
lattice with zero volume expansion. The length of the same ruler placed in the HS frame and 
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measured by the GO becomes . To traverse the distance of this ruler, the transverse 
waves use a period of time measured by the GO, and given by . In the 
coordinate system , placed in a volume expansion region  other than zero, the initial 
length  of the ruler therefore becomes equal to , and the travel time of the ruler 
becomes ,  so that the speed of the transverse waves in the presence of the expansion 

 is equal  to . This implies that time will flow differently for HS 
in  if the lattice is contracting or expanding. We then have the following relationship 
between the values of  and  due to the operation of the HS clock: .

In figure 8.3, one deduces all the expressions making it possible to pass from the local 
reference frame  of the GO to the local reference frame  of the HS. On the 
basis of the assumptions for the rulers and the clock of HS, one expresses the formulas of 
passage of the operators of time and space, and one applies them to the equations of Maxwell 
expressed in  to obtain these same equations in . By making a change of 
variables in the fields of rotation, torque, velocity and momentum, as well as on the quantities 
associated with the densities and fluxes of rotation charges and the quantities associated with 
the concentrations of vacancies and of interstitial and to the fluxes of these defects, we obtain 
the Maxwell's equations as formulated by HS in his local frame of reference .

In these expressions of change of variables, it is perfectly logical to have posed  
and  since these quantities are associated with measurements of angles of rotation, 
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and to have chosen the relations   and , since these quantities 
are in fact associated with velocities. By this change in the variables, we then obtain a set of 
invariant Maxwell equations in the frame  of the observer HS as illustrated in figures 
8.2 and 8.3, i.e. equations which no longer depend on the local expansion . We note, among 
other things, that the speed of the transverse waves becomes an invariant constant for the HS 
observer, whatever the state of expansion of the lattice in which he lives. We also note that only 
the quantities associated with the densities and the flow of rotation charges are transformed in a 
dependent way in the parameter , while all the other quantities are transformed in a logical 
and predictable way.

The fact that the Maxwell equations of the HS observers are invariant (independent of local 
expansion ) implies that the local HS observers are perfectly incapable of measuring the local 
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state of expansion of the lattice in which they live on the sole basis of electromagnetic 
measurements based on Maxwell's equations. In particular, the measurement of the speed of 
the transverse waves by the HS observers always provides an invariant value, whatever the 
local state of expansion of the lattice. Thus, local observers HS are essentially subject to the 
physical laws corresponding to electromagnetism, and are only aware of the gravitational effects 
associated with the expansion field through indirect observations of their effects, such as the 
movement of the planets or the slowing down of their clocks in a gravitational field. This is why 
the HS will have to seek to explain the phenomena related to gravitation by ad-hoc theories 
(Newton's Gravitation, General Relativity) which seem a priori independent of the laws of 
electromagnetism, but which they will obviously seek to unify.

Figure 8.2 illustrates well here the existence of a strong analogy between our theory and 
Einstein's General Relativity Theory. Indeed, the rulers and the clock of an HS living in a certain 
place of the lattice depend on the local volume expansion  of the lattice, in a way analogous 
to what stipulates the General Relativity for the rulers and the clock of an observer located in a 
given gravitational field. In the case illustrated in figure 8.2, we understand that the lattice plays 
the role of an "ether" which imposes the size of the rulers of the HS observer, while it is the 
celerity of the transverse waves within the lattice (in fact the speed of information transport) 
which imposes the speed of the HS clock.

τ
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On the other hand, the existence of three degrees of freedom on the parameters , ,  
and  is quite surprising, because it implies that there is still a possible choice at this level, 
which cannot be determined on the basis of our knowledge of the cosmological lattice. In fact, 
an arbitrary choice of "free" values of ,  and  should not lead to inconsistencies in 
the system, and the resulting cosmological lattice could be perfectly viable. Consequently, we 
can consider that the parameters ,  and  are really properties specific to the 
cosmological lattice, in fact intrinsic constants of the lattice, in the same way as are the elastic 
modules  or the mass  of inertia per cell of the lattice. The determination of these 
constants therefore necessarily involves experimentation, in other words by measuring the real 
properties of the cosmological lattice associated with these two constants.

By combining the various relations obtained in figure 8.3, we can write the transformation 
rules to pass from the local reference frame  of the GO into the local reference frame 

 of an HS placed at a distance  in the gravity field of a cluster of mass , 
according to unknown parameters ,  and , as shown in figure 8.4. These 
transformation equations can, at a certain sufficient distance  from a cluster of mass , 
be written approximately by developpement of the exponentials.
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In General Relativity, the dependencies of the radial ruler and the clock of an observer 
subjected to the gravitational field of an object of mass  are deduced from the 
Schwarzschild metric. This is obtained in the case of a massive object with spherical symmetry 
by postulating an invariant metric with respect to the rotations, which is also shown in figure 8.4. 
From this Schwarzschild metric, we deduce that the radial ruler 
and the observer's clock depend symmetrically on the distance  
separating him from the object of mass , with expressions 
similar to the simplified expressions obtained in our theory, but 
with a coefficient 1 in front of . However, the 
dilation of time in a gravity field, represented by the second 
relation deduced from the metric of Schwarzschild, has been 
verified experimentally with very great precision , even on 1

elevation differences as small as 1 meter on the surface of the 
earth, and this effect is currently taken into account in very precise 
navigation systems, such as GPS. This experimentally verified 
effect can therefore be used to adjust the determination of the 
parameters ,  and , by ensuring that the long-distance 
relationships of our theory correspond to the relationships deduced 
f rom the Schwarzsch i ld met r ic . By mak ing th is compar ison, we get tha t 

.
We can still verify the analogy of our theory with Einstein's General Relativity, for example by 

calculating the curvature of the rays of transverse waves in the vicinity of a massive cluster, as 
illustrated in figure 8.5, since the measurement of this effect at the beginning of the 20th century 
was the first experimental verification of Einstein's General Relativity.

In the vicinity of a massive cluster, the celerity  of the transverse waves depends on 
the distance  to the center of the cluster. This implies that the directions of two radii of waves 
perpendicular to a straight line passing through the center of the cluster, and passing to the 
distances  and  from the cluster will have an infinitesimal angle . We can use 
the dependence of the celerity  in the gravitational field  to express . As 
the wave will travel the path shown in figure 8.5, the tangents to infinity of the incident wave and 
of the deflected wave form a total angle  depending on the minimum distance  of the 
wave from the center of the cluster. Half of the total angle  can then be deduced 
approximately by integrating  for distances  to the center of the cluster ranging from  
to , and the desired value of the deflection angle  is obtained. It turns out that this 
value is exactly the same as that obtained in general relativity, which is logical since we used 
Schwarzschild's metric to calibrate the constants of our theory. General Relativity provides for a 
curvature worth , and the calculation of this value in the case of a 
light ray with a grazing incidence with the sun gives a deflection angle of 1,75’’ of arc.

As for the experimental values of the deflection of light by the sun, measured by Eddington 
at the beginning of the 20th century (May 1919) during an eclipse of the sun, they gave 
approximately 1,98’’ 0,12’’ of arc (at Sobral in Brazil) and 1,61’’ 0.31'' of arc (in Sao Tomé-et-
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Principe in the Gulf of Guinea), which corresponds fairly well to the value calculated theoretically 
by General Relativity, despite the many difficulties of the experimental measurements.

During the Lorentz transformation described in chapter 6, the transformation laws are 
symmetrical with respect to time and space, just like the transformation laws in General 
Relativity in the case of the Schwarzschild metric. Among all the possible results that one could 
have imagined for the parameters , ,  and , the results obtained from the time 
dilation and the curvature of the wave rays in weak gravity field conveniently provide symmetric 
transformation laws, since we get that . We can therefore issue here a conjecture 9, which 
combines the effects of time dilation and curvature of the wave rays in a weak gravity field, and 
reported in figure 8.6

We still have a degree of freedom to choose the values of the parameters  and , 
which must be linked by expression . However, knowing exactly the values 
of  and  is not important with regard to the gravitational properties of the loop, since 
the fact that  implies that the mass of inertia  and the distortion 
energy  of a loop, as well than the quantities ,  and  do not explicitly 
depend on   and .

The exact choice of parameters  and  obviously depends on the deep nature of the 
cosmological lattice, which is beyond the scope of this treaty. But the simplest solution to 
imagine would be that   is equal to zero, because, in this case, the torsion  of the twist 
disclination loop would become a constant independent of the expansion of the lattice, for 
example a multiple of  for a cubic lattice, or a multiple of  for a hexagonal lattice, 
which obviously seems the most logical.

But a zero value of  would also imply that  would be worth 1/24, and therefore that 
the radius  of the loop would depend much less on the expansion of the lattice 
than the pitch  of the lattice or the length  of the HS observer ruler.
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Unable to make an explicit safe choice of the values of the parameters  and , we 
will leave this problem open, while remembering that there is this degree of freedom for the 
choice of their values, which must simply be linked by the expression .

Analogies and differences from general relativity

Let us assume that a twist disclination loop of inertia mass  is at the confines of the 
lattice, and that a cluster of singularities with an inertia mass  is at the center of 
the lattice. The gravitational force acting on the loop is therefore written approximately 

. Under the effect of this force, the twist disclination loop will 
undergo an acceleration in the direction of the cluster of singularities, and the potential 
gravitational energy of the loop will gradually transform into kinetic energy of the loop which will 
be worth , depending from its distance  from the cluster. But 
the kinetic energy of the loop is written  in the non-relativistic case so that 
the speed of the loop as a function of the distance  separating it from the cluster depends on 
the gravitational constant and the mass of inertia of the cluster:  . As 
the mass of inertia of the loop does not intervene in this relation, this relation remains valid even 
for relativistic speeds of the loop. However, we know that the total relativistic energy 

 of the loop wi l l tend towards infinity when i ts speed 
 will tend towards the celerity  of the transverse waves, so that the 

following condition  must be satisfied before reaching the speed limit. This condition 
implies the existence of a critical distance  for which the energy of the 
loop becomes infinite. This critical distance  only depends on the mass  of the cluster, 
and obviously only exists if the radius of the cluster is less than . It is called the 
Schwarzschild radius of the cluster and in fact corresponds to the limit beyond which the loop 
cannot irreversibly leave the cluster since it would then require infinite energy to do so. Thus, 
the mass  of the cluster whose radius  would satisfy the condition  
would in fact be a black hole which would irreparably absorb any singularity which would have 
the misfortune to approach it at a distance . This Schwarzschild radius  2

 is obtained in exactly the same way in Relativity, so that it is 
identical in our theory and in General Relativity.

In our theory, we have already approached the notion of black hole by defining in figure 3.5 
the conditions for a singularity of the gravitational field to behave like a black hole with respect 
to transverse waves, by defining the radius  of the sphere of perturbations around the 
singularity, namely the sphere beyond which any transverse wave is trapped by the singularity. 
By then applying these conditions to the cluster of mass  generating the gravitational field 

 of figure 8.1, one obtains the expression of the radius  of the sphere of 
perturbations of the cluster in the form , i.e. the same value than the 
radius of the Schwarzschild sphere. In General Relativity, we define the sphere of photons, i.e. 
the limit in the vicinity of a black hole from which no photon can escape from the black hole, 
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whose radius is equal to  , namely 3/2 of the Schwarzschild radius. We 
will come back to this disturbing difference with our theory.

In our theory, the proper time of an HS is actually written exactly as an exponential term 
proportional to . With this exponential expression, we see that the proper time of the 
observer HS  which approaches at very short distance from a cluster expands infinitely when 
the distance tends towards zero. In General Relativity, it is said that the proper time of the HS 
seems to expand infinitely when the HS approaches a critical limit distance  calculated on the 
basis of the Schwarzschild metric, when , which leads to the critical distance 

. This limit distance is therefore smaller than the radius of the 
Schwarzschild sphere, the point of no return for a black hole. Now, it seems rather difficult to 
imagine that the time of an HS seems to stop when the HS reaches this critical distance, and it 
is surprising that this critical distance is half the radius of Schwarzschild, and not simply the 
radius of Schwarzschild itself, or else the zero radius as in our theory.

In General Relativity, the simplest black holes are characterized by three critical radii: the 
radius of the photon sphere which is worth  , the radius of the horizon or 
point of no return, also called the Schwarzschild radius, which is given by 

, and the radius for which the dilation of the observer's time tends to 
infinity, which is approximately equal to . The fact that there are three 
different radii for black holes in General Relativity is quite intriguing, as is the existence of a 
nonzero radius for which the dilation of the observer's time tends to infinity. It is mainly for this 
reason that it is said that it is not possible to describe by General Relativity the physics of 
objects that fall into a black hole beyond the Schwarzschild sphere.
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In our theory, on the contrary, the radii of the perturbation sphere and of the point of no return 
are both similar to the Schwarzschild radius ( ), which is very satisfying for the mind, 
since it thus only exists a single boundary representing the horizon of a black hole. On the other 
hand, there is no limit radius in our theory for which the dilation of the observer's time would 
tend towards infinity, so that our theory is not limited to the description of a black hole beyond 
the Schwarzschild sphere. Now our theory is equivalent to General Relativity as long as the 
gravitational field is weak and satisfies the condition . The reason is that these are 
the two experimentally verified effects, namely the time dilation and the curvature of wave rays 
in weak fields which were chosen to make our theory identical to that of General Relativity in 
weak gravitational field. On the other hand, our theory becomes different for strong gravitational 
fields, as shown by the compared expressions of the transformation laws in figure 8.7, which 
explains the differences that we have just described with regard to the different characteristic 
radii of black holes. 

About the formal analogy between the 3D spatial curvature equation of the cosmological 
lattice and the Einstein’s equation of the 4D field of curvature in general relativity

The local spatial curvature of the cosmological lattice, as measured by the GO observer, is 
characterized by the curvature vector by flexion , perfectly described in figure 
2.6. It is remarkable to note that this flexion vector can be directly obtained from the Newton's 
equation of the cosmological lattice (figure 3.1). This gives the value of the flexion field in the 
cosmological lattice in the form shown in figure 8.7. We therefore deduce that the existence of a 
local topological curvature of the lattice seen by the GO via the flexion vector depends on three 
terms at the same time:
- the gradient of the local volume expansion, which is nothing other than the gradient of the 
"gravitational" field  within the lattice,
- the temporal variations of the local momentum of the lattice and the gradient of the density of 
elastic energy  stored in the lattice, term which one could qualify as "energy-momentum 
vector" due to the singularities present in the lattice,
- the density  of flexion charges within the lattice, which reflects the presence of topological 
singularities within the lattice, such as dislocations and / or disclinations.

On the other hand, for a local observer HS, both its rulers and its clock depend on the local 
volume expansion, so that an equation similar to the flexion field equation should necessarily 
become a four-dimensional equation of curvature of space-time, which we are obviously not 
going to try to establish here.

The operation of taking the divergence of the curvature field, i.e. , allows 
writing a second equation shown in figure 8.7. This relationship shows that the divergence of the 
flexion vector is equal to the density of curvature charges due to the topological singularities 
contained in the lattice, and is therefore zero if there are no curvature charges. Moreover, in the 
case where there are no curvature charges, the divergence of the bending vector is nothing 
other than the divergence of the Newton's equation of the lattice, i.e. the equation of motion for 
the divergent part of the distortions, namely the “gravitational” distortions by volume expansion.

The first relation giving the spatial curvature of the lattice from the Newton's equation of the 
lattice is the three-dimensional analog of the Einstein's four-dimensional field equation of 
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General Relativity , which is written , in which  is the famous curvature tensor of 3

Einstein (Einstein tensor), which is expressed in terms of the Ricci curvature tensor 
, corresponding to a certain part of the Riemann tensor which describes 

the curvatures of space-time. As for the tensor , it is a "geometric object" called the stress-
energy tensor, or the energy-momentum tensor, or the stress-energy-momentum tensor, which 
characterizes the matter contained in space.

This Einstein field equation shows how the energy-momentum tensor of matter generates an 
average curvature of space-time in its vicinity. Among other things, it allows you to calculate the 
static curvature field of a massive object, or the generation of gravitational waves by a massive 
mobile object. In addition, it also contains the equations of motion ("Newton's equations") for 
matter whose energy-momentum tensor generates the curvature of space-time.

In the case of Einstein's field equation, it should also be noted that the energy-momentum 
tensor is a tensor with zero divergence , which ensures that the laws of conservation 
of energy and angular momentum are respected . This equation  therefore represents 
in fact the equation of motion of matter in General Relativity.

There is very clearly a strong analogy between Einstein's field equation  and the 
equation giving the flexion field  in the case of the cosmological lattice, described in table 8.7, 
because the latter also connects a “geometric vector” of spatial curvature to a kind of “energy-
momentum vector” within the solid lattice, which contains at the same time the temporal 
variations of the local momentum of the lattice, the gradient of the local volume expansion, and 
the gradient of the density  of elastic energy stored in the lattice, quantities which are all 
influenced by the presence of torsion charges or flexion charges within the lattice. In addition, 
this equation for the field  of curvature by flexion derives directly from the Newton's equation 
of the lattice. However, unlike Einstein's field equation, which describes the curvatures of 4-
dimensional space-time, this equation is deduced by the GO which is lucky to have an absolute 
clock, so that there is no "curvature of time" for him, and that, consequently, his equation of 
curvature is purely spatial in 3 dimensions. On the other hand, if we considered the way that 
"homo sapiens" HS observers should have to describe the gravitational behavior they observe, 
they should take into account the "curvature of time" since their clocks depend on the local state 
of expansion of the lattice where they are.

In the case of Einstein's field equation, the equation of the divergence  of the 
energy-momentum tensor represents the equation of gravitational movements of matter in 
General Relativity, just like the equation  of the divergence of the 
curvature represents the divergence of the Newton's equation of motion of the lattice, that is to 
say the equation of motion for the "gravitational" distortions of the lattice by volume expansion.

But the most important difference between Einstein's field equations and cosmological lattice 
equations is that the concept of curvature charges associated with topological singularities does 
not exist in Einstein's equations, which appears in the fact that the divergence of the energy-
momentum tensor is always zero, so that there is no equation similar to the equation 

 in General Relativity. We will see later in this book that the concept of 
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curvature charges, absent in modern theories of relativity, quantum physics and particle physics, 
can explain a large number of facts misunderstood 
by modern theories of physics.

It is very tempting to say here that the concept 
of curvature charges, and that the pure geometric 
equation  answers the question 
that Einstein asked when he said that, in the field 
equation , the term on the left, the 
curvature tensor of Ricci , is made of fine marble, 
while the right term, the energy-momentum tensor 

, is made of poor quality wood, meaning that the 
right term is only a phenomenological representation 
of the matter injected into the field equation, which is 
not derived directly from a prime principle as is the 
term on the left. In our theory, on the other hand, the 

right term of the equation for the flexion field is made of fine marble, since it is derived directly 
from a prime principle which is the Newton's equation of the lattice.

About the dependence of the topological singularities on the expansion of the lattice

In the case of a twist disclination loop (BV), we have seen that the dependences in volume 
expansion of the radius of the loop, its angle of twist, its rotational charge and its mass of inertia 
can be written by introducing the constants  and , which makes it possible to deduce 
several important relationships for the twist disclination loop in the presence of a background 
expansion field  and / or an external expansion field  generated by other singularities , 
relations which are reported in the table of figure 8.8.

In the case of a prismatic edge dislocation loop (BC), we do not know a priori the 
dependencies in volume expansion of the radius of the loop, the Burgers vector and the charge 
of curvature. We therefore introduce new expansion constants  and  in such a way that 
we can write the relations for the radius  of the loop, for the Burgers vector  and for the 
curvature charge  in the form shown in table 8.8. These expansion constants  and 

 are not known. The dependence of the radius of the loop should certainly be similar to that 
of the twist disclination loop, either , but it could also be similar to the dependence 
of the lattice pitch, either . As for the dependence of the Burgers vector, which must 
be a vector of the lattice, it should in principle take on value . But for the moment, we 
will not make a choice of these values, and we will keep the parameters  and , 
because the exact values of these parameters are not called to play a crucial role for the rest of 
the theory. The expressions of , of  and of  thus obtained make it possible to write 
four important relationships for a prismatic edge dislocation loop in the presence of a 
background expansion field  and / or an external expansion field  generated by other 
singularities, remembering that the charge of curvature and the gravitational mass associated 
with the charge of curvature can be positive or negative according to the nature of the charge, 
as indicated in the table of figure 8.8.
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In the case of a slip mixed dislocation loop (BM), we also do not know a priori the 
dependencies in volume expansion of the radius of the loop and its Burgers vector. We 
therefore introduce expansion constants  and  allowing us to write the relationships 
shown in figure 8.8.

We have seen, from the dilation of time and the curvature of the wave rays in a weak 
gravitational field, that the values which must take the parameters  and  associated 
with the twist disclination loops cannot be determined in a simple and unequivocal manner, but 
they must at least satisfy the relationship . For the edge and mixed 
dislocation loops, there are again no known experimental effects which could make it possible to 
simply deduce the value of the parameters . The values of the different 
parameters  are therefore not known to us, except for the 
relationship . But the actual values of these parameters should most likely 
have physical consequences which should be accessible by the experience.

But there is yet another much more confusing physical consequence of these parameters. 
Indeed, if the radius of theedge loops were to depend on a value different from 1/3, therefore 
that , to ensure the existence of electron-like dispirations, this would mean that the 
number of lacunar or interstitial sites of the edge loop should vary if local expansion changes. 
However, the only possibility to vary this number of sites is that the edge loop behaves like a 
source or a pit of vacancies or interstitials in the presence of a variation of . And this effect 
would have very surprising consequences on Maxwell's equations, because in this case of 
divergent flow of vacancies or interstitials, Maxwell's equation  should be 
replaced by , with for analog  in electromagnetism. In other words, in the 
case where  the edge dislocation loops behave like magnetic monopoles in the 
presence of variations in the expansion of the cosmological lattice. However, this effect should 
be observable and measurable by the HS observers, who should measure a very weak 
monopole magnetic component linked to the particles containing edge loops, and caused by the 
local variation of the expansion (which the HS cannot measure in principle). And this monopole 
component of particles containing edge loops should necessarily exist under the effect of the 
cosmological expansion of the universe, which could open up an exciting chapter in our theory.

In the case of a macroscopic vacancy, one can take again the relations obtained in figure 
7.7a and transform them so as to obtain the various relations reported in table 8.8 in the 
presence of a background expansion field  and / or of an external expansion field  
generated by other singularities. We note that the gravitational mass of the vacancy has the 
property of changing sign for two values of the background volume expansion of the lattice, and 
we also remember that the macroscopic vacancy is the only singularity which necessarily 
becomes a black hole when the background volume expansion of the lattice satisfies the 
relationship .

In the case of a macroscopic interstitial, one can also take again the relations obtained in 
figure 7.8 and transform them so as to obtain the various relations reported in table 8.8 in the 
presence of a background expansion field  and / or of an external expansion field  
generated by other singularities. We can see that the gravitational mass of the interstitial has 
the property of changing sign depending on the value of the background volume expansion of 
the lattice.
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All of the gravitational interactions between the various singularities of the lattice

Using the relations obtained in table 8.8, we can then calculate the gravitational interaction 
forces that can appear between two of the singularities of the lattice, by calculating the energy 
increase of the two singularities by their interaction, as a function of the distance separating 
them. This increase therefore corresponds to the gravitational energy of interaction, and the 
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derivative of this energy by the distance separating the two singularities corresponds to the 
force of gravitation between the two singularities. As five different topological singularities have 
been described in table 8.8, it is possible to calculate the gravitational interaction force in 15 
different cases. By performing all these long and tedious calculations, we finally obtain all of 
these gravitational interaction forces as shown in figure 8.9. In this table, we see several 
important things:
- only the interaction between the twist disclination loops, carrying the "electric" charge of 
rotation, exactly satisfies Newton's law of gravitation. It should be noted that these loops have a 
much higher interaction energy than the other types of loops, and that it is these loops which 
therefore very largely dominate the gravitational interactions between loops,
- all the other interactions present a somewhat modified version of the gravitational interaction. 
Between the various loops, the interactions always depend on the "constant" of gravitation 

, but with an additional numerical factor which can contain the unknown parameters 
,

- in the case where an edge dislocation loop occurs, there are always two interaction terms, one 
dependent on the mass of curvature  of the edge loop, and the other dependent on the 
mass of inertia  of the edge loop. Since the curvature mass of the loop is much higher 
than its mass of inertia, the term containing the curvature mass largely dominates in the 
expression of the force of interaction. In addition, this dominant term can correspond to an 
attractive or negative interaction force since the mass of curvature of the corner loop is positive 
if the loop is of vacancy type and negative if the loop is of interstitial type,
- in the case where a macroscopic vacancy or a macroscopic interstitial intervenes, there are 
two possible formulations of the gravitational interaction force: the formulation which involves 
the masses of gravitation  and  and which resembles the formulation of Newton's 
law, but which has the disadvantage that the masses  and  strongly depend on the 
background expansion of the lattice, to the point of changing sign in certain domains of 
expansion. This is why we will prefer to use the second formulation which involves the radii  
and  of the macroscopic singularities, and which has the advantage of being much simpler to 
analyze as regards the sign of the interaction (attractive or negative),
- on the basis of these expressions of "gravitational" interaction forces between singularities, we 
can deduce the attractive or repulsive behavior of all the interactions in table 8.8 as a function of 
the evolution of the background expansion  of the lattice. This behavior is reported in figure 
8.10. In this figure, we did not respect the scale of values on the axis of expansion , 
especially with regard to the value of  which is in fact extremely higher ( ) since 

  in the case of the perfect cosmological lattice.
We see that the gravitational interactions evolve strongly under the effect of the background 

expansion of the cosmological lattice. There appear in particular changes of sign of the 
interactions, which pass from the attractive mode to the repulsive mode or vice versa for certain 
values of expansion. These changes in sign of the interaction correspond either to a zero 
crossing of the interaction force, or to the appearance of a singularity of the attraction force.

It is obvious that figure 8.10 implies very important consequences on the cosmological 
behavior of the singularities of the lattice, that is to say on the evolution of the singularities 
during the cosmological expansion of the lattice. We will return to this subject in a future 
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chapter. In figure 8.10, we have also reported certain phenomena associated with the evolution 
of the background expansion of the cosmological lattice, namely:
- first of all, for , the transition from the expansion domain without transverse waves, 
dominated by localized longitudinal eigen modes (to which we will return later), to the expansion 
domain where the real propagation of longitudinal waves appears, and where quantum physics 
disappears as we will see later,
- then the expansion domains in which the macroscopic vacancies are or are not black holes, 
with a transition for the expansion value ,
- the expansion value  for which the evolution of the perfect cosmological lattice 
(figure 3.10) passes from the domain of the end of inflation (with decrease in the speed of 
expansion) to the domain of expansion with a speed of increasing expansion (acceleration of 
expansion),
- it is quite clear that the domain which is concerned by our current Universe lies between the 
values  and  , because it is in this domain that there are no longitudinal waves 
and that the macroscopic vacancies are black holes ,
- we will also notice that all the interactions which involve edge loops BC (i) of interstitial nature 
are repulsive in the domain between   and  , which will play a considerable role 
in the cosmological evolution of matter,
- finally, one did not represent in figure 8.10 the stages of the cosmological evolution which 
follow the critical value , namely the end of the acceleration of the expansion, the 
passage by a null value of the speed of expansion and finally the return to a contraction of the 
cosmological lattice (see figure 3.10).
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Chapter 9

Cohesion of the edge-screw dispirations and the weak force

Considering topological singularities formed from the coupling of a twist disclination loop with 
an edge dislocation loop, which are called dispiration loops, an interaction force similar to a 
capture potential appears, with a very small range, which induces interactions between loops 
presenting a perfect analogy with the “weak interactions” between elementary particles of the 
Standard Model.

Previously, the notion of “mass of curvature” of the edge dislocation loops appeared, which 
corresponds to the equivalent mass associated with the gravitational effects of the charge of 
curvature of these loops, and which can be positive in the case of loops of vacancy nature or 
negative in the case of loops of interstitial nature. In fact, the charge of curvature and the mass 
of curvature associated with the edge dislocation loops do not appear in any other physical 
theory, nor in General Relativity, nor in Quantum Physics, nor in the Standard Model of 
elementary particles. But in our theory, it is precisely this mass of curvature which becomes 
responsible for the appearance of a weak asymmetry between the particles (hypothetically 
containing edge loops of interstitial nature) and the anti-particles (hypothetically containing edge 
loops of vacancy nature), and this weak asymmetry between matter and antimatter will be called 
upon to play a capital role in the cosmological evolution of topological singularities described in 
the following chapter.

While the previous chapter presented all of the long-range “gravitational” interactions 
between the various topological singularities of the cosmological lattice, this chapter is 
concerned with the very short-range “gravitational” interaction that occurs between a twist 
disclination loop (BV) and an edge dislocation loop (BC) due to the expansion perturbations 
associated with the curvature charge of the edge loop and the short-range perturbations 
associated with the rotation charge of the twist loop .

It is explained that this interaction between rotation and curvature charges corresponds to a 
very short-range repelling force in  when the two loops are separated, but that it 
corresponds to a cohesive force when the two loops are joined in the form of a dispiration.

Long-range and short-range interactions between a twist disclination loop (BV)
and an edge dislocation loop (BC)

If a twist disclination loop of radius  is close enough to an edge dislocation loop of radius 
, as shown in figure 9.1, the total interaction energy between the two loops will involve the 

energies associated with the gravitational fields at long range, but also an interaction energy 
linked to the short-range expansion perturbation field of the twist disclination loop. By 
expressing the fields of long-range in   and short-range in  of the twist disclination 
loop (figure 7.10), the distortion energy of the edge dislocation loop can be calculated (figure 
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8.8), and likewise by calculating the long-range field in  of the edge dislocation loop 
(figure 7.11), the distortion energy of the screw loop can also be calculated (figure 8.8), so that 
the total gravitational interaction energy between the two loops is written as the sum of these 
distortion energies. Taking into account that the mass of curvature of the edge loop is much 
greater than its mass of inertia , the total energy of the two loops can be 
simplified, and we can then find the increase  in energy compared to the sum of the 
energies of the two loops when they do not interact, corresponding to the interaction energy of 
the two loops. After some calculations, we obtain the relation for this increase  as 
expressed in figure 9.2.

At long distance, it is the term in  which prevails, so that the interaction energy is 
negative if , that is to say if the edge loop is of vacancy nature, and it is positive if 

, that is to say if the corner loop is of interstitial nature (figure 9.2).
At a short distance, this is the term in  that prevails, so that the energy of interaction 

necessarily becomes positive (figure 9.2). In the case of the vacancy type edge loop, we have
, so that the interaction energy goes through zero for  whose value is given 

in figure 9.2
From the energy increase , we can deduce the "gravitational" force of interaction 

 between the two loops thanks to the derivative with respect to the 
distance . The expression of this force is also reported in figure 9.2, and we note that at long 
distance, it is the term in  which prevails, so that the interaction force is negative, therefore 
repulsive, if , that is to say if the edge loop is of interstitial nature, and it is positive, 
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therefore attractive, if , that is to say if the edge loop is of vacancy nature.
At a short distance, this is the term in  which prevails, so that the force of interaction 

becomes necessarily negative, therefore repulsive. In the case of the vacancy type edge 
dislocation loop for which , the interaction force goes through zero for  
and it presents a maximum for .

Coupling energy of a screw-edge dispiration loop (BVC) 
formed by a twist disclination loop (BV) and an edge dislocation loop (BC)         

If a twist disclination loop (BV) of radius  combines with an edge dislocation loop (BC) of 
radius , we obtain a screw-edge dispiration loop (BVC). The elastic energy and the 
kinetic energy of this loop of dispiration is due to the field of rotation of the twist loop, to the 
fields of expansion and of shear of the edge loop and to the field of speed due to the two loops. 
As the various fields of the two loops are all orthogonal and contained in the torus surrounding 
the screw-edge dispiration loop, the relativistic energy of this one is the sum of the relativistic 
energies of the two loops, and is simply worth .
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On the other hand, if we consider the external field of expansion perturbations associated 
with this dispiration loop, we will have the short and long distance fields of the screw loop (figure 
7.10) and the fields of the edge loop (figure 7.11) which will overlap on the outside of the 
dispiration. The “gravitational” energy of this perturbation field can be calculated, and we then 
obtain the individual energies of the perturbation fields of each of the loops, but there is added a 
new coupling term between the two loops, due to the terms of interaction between the twist loop 
and the edge loop which occur in the square term . These 
coupling terms contribute to an increase   in energy which, taking into account the fact 
that  and keeping only the most important term, is represented by the value 
reported in figure 9.2.

In fact, this energy is due to the coupling of the external field of expansion perturbations at 
short range due to the rotation charge of the twist loop with the external field of expansion 
perturbations due to the charge of curvature of the edge loop. It is therefore an interaction 
between the rotation and curvature charges of the two loops of dispiration via their respective 
external gravitational effects. We also note that this coupling energy is negative if , 
that is to say if the edge loop is of lacunar type, and positive if , that is to say if the 
edge loop is of interstitial type.

We can now compare the energy  of gravitational interaction at short distance 
between two loops distant of  with the energy  of coupling within the loop of 
dispiration. It comes the relation for  reported in figure 9.3. For a 
distance of the order of , we therefore have, if , and remembering that

 in the perfect cosmological lattice that . Indeed, in the 
expression of figure 9.2, it appears the relation  which is very likely to be 
much smaller than the unit, so that the absolute value  of the energy of coupling of the 
dispiration is undoubtedly clearly smaller than the interaction energy  between the two 
loops when separated by a distance .

It is deduced therefrom that the potential energy of interaction  between the two 
loops, as a function of the distance  between these two loops behaves in fact like a capture 
potential such as that represented in figure 9.2 in the domain “dispiration”. This potential keeps 
the two loops linked within the dispiration, with a binding energy  corresponding to the 
energy difference between the maximum of the potential energy  of interaction of the 
separate screw and twist loops and the coupling energy  of the dispiration.

The potential energy of interaction  represents a repulsive force in  between 
the two loops as soon as they separate from a distance greater than a certain critical distance of 
the order of . To separate the two loops from the dispiration, it suffices:
- either of an energy fluctuation equal to or greater than the binding energy  of the 
dispiration loop, so that the two individual loops meet at a distance  and repel each 
other definitively,
- either that the edge loop crosses the potential barrier by quantum tunnel effect, and that the 
individual loops are found at a distance  and repel each other definitively.

About the analogy with the weak interaction of Standard Model of elementary particles

The short-range interaction that we have just described between the rotation and curvature 
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charges, respectively of a twist diclination loop and an edge dislocation loop, presents a 
remarkable analogy with the weak interaction of the Standard Model of elementary particles.

One of the four fundamental forces of nature is the weak interaction of the Standard Model. It 
is responsible for the radioactive decay of elementary particles and it affects all fermions, 
namely electrons, neutrinos and quarks. In the Standard Model, the weak interaction is linked to 
the exchange of massive bosons ,  and , and it explains the weak lepton, semi-
lepton and hadronic interactions. It is because this interaction is very short-range and weaker 
than the strong interaction and the electromagnetic interaction that it has been described as a 
weak interaction. On the other hand, it also has the property of breaking the P parity symmetry 
and the CP symmetry. It is also directly linked to the electric charge since electromagnetic 
interactions and weak interactions, which could be unified as two aspects of an electroweak 
interaction.

The analogy between the short-range interaction between an edge loop and a twist loop and 
the weak interaction of the Standard Model is literally obvious. Indeed:
- both are responsible for a weak bond within particles or loops,
- the two interactions have a very weak range,
- they both allow the decomposition of a particle or a loop into other particles or other loops,
- the decomposition of a particle or a loop of dispiration can be obtained by a local fluctuation of 
energy, or a quantum tunnel effect, which obviously intervenes in a random way, just like the 
radioactive decay associated with weak interaction is a statistical phenomenon,
- the weak interaction participates in the symmetry breaking P and CP, which agrees with the 
fact that it has asymmetry of the interactions between a twist loop and a lacunar or interstitial 
edge loop (figure 9.2).

As an example, consider the weak decay transforming the muon  into an electron  
shown in figure 9.3. This weak leptonic interaction presents an initial decomposition of the muon 

 into a muonic neutrino   and a massive boson , then the decomposition of the 
massive boson  into an electron  and an electronic anti-neutrino .

Let us then consider conjecture 8 which stipulates that "the singularities of a vacancy nature 
correspond by analogy to anti-matter and the singularities of interstitial nature to matter". On this 
basis, let us suppose for example that the combination of a twist disclination loop  with an 
interstitial edge dislocation loop  in the form of a loop of dispiration is the analog of the 
electron , and imagine that the combination of a twist disclination loop  with an 
interstitial edge dislocation loop  of slightly different topology (see chapter 13) forms a 
dispiration loop analog of a muon . The weak decay causing the muon  to transform into 
an electron  shown in figure 9.3 (a) would then have a similar decay of the loops shown in 
figure 9.3 (b). The initial dispiration corresponding to the muon , and made up of the couple 

 linked by the weak force, is broken down into a twist disclination loop  
carrying the rotation charge, and analogous to the massive boson  carrying the electric 
charge, and into an interstitial edge dislocation loop  analog to the of muonic neutrino 

. Next, the twist disclination loop combines with an interstitial edge dislocation loop 
 to form a dispiration  analog to an electron , by emitting a vacancy edge 

dislocation loop , analog to the electronic anti-neutrino .
The weak interaction corresponding to the transformation of the anti-muon  into a 

W + W − Z 0

µ− e−

µ− νµ W −

W − e− νe

BV −

BC(1)
(i )

e− BV −

BC(2)
(i )

µ− µ−

e−

µ−

BV − + BC(2)
(i ) BV −

W −

BC(2)
(i )

νµ BV −

BC(1)
(i ) BV − + BC(1)

(i ) e−

BC(1)
(i ) νe

µ+



Chapter 9200

positron  shown in figure 9.3 (c) also has its perfect analogue with loops shown in figure 9.3 
(d). But this time, the twist disclination loop is replaced by the anti-loop with an opposed 
rotation charge and the vacancy type edge loops are replaced by interstitial edge loops and vice 
versa. If we now consider the interactions between loops in figures 9.3 (b) and 9.3 (d), we 
immediately imagine that there is an asymmetry between these two reactions due to the slightly 
different interaction potentials in the case of lacunar and interstitial loops (figure 9.2). This 
asymmetry then becomes the analog of the violation of parity symmetry P and of symmetry CP 
in the case of weak interactions. We will return in detail in chapter 13 on the topological 
structures of the twist disclination loops and of the edge dislocation loops which could be 
involved in weak interactions.

e +

BV +



Chapter 10

Matter-antimatter asymmetry and its cosmological evolution

           
Within the framework of our analogy with the great theories of physics, we begin in this 

chapter, essentially qualitative and prospective, by emitting some hypotheses concerning the 
constitution of the matter and the anti-matter by supposing that particles and anti-particles are 
made up of clusters of topological singularities in loops (of twist disclination, edge dislocation 
and mixed dislocation) of a perfect cosmological lattice. The weak asymmetry between matter 
and anti-matter is introduced by assuming that matter is based on edge loops of interstitial 
nature and that anti-matter is based on edge loops of lacunar nature. Using the results of 
chapter 8, we will see that the interactions of gravitational nature between particles and anti-
particles of the Universe are almost all attractive, while presenting a weak gradation of the 
intensities of interaction according to the type of interacting particles. Only the interaction forces 
which involve a prismatic edge loop of interstitial nature, which will be interpreted as a neutrino, 
have a repulsive nature.

Based on the cosmological behaviors of lattice expansion and gravitational interactions 
between topological singularities, we can imagine a very plausible scenario for the cosmological 
evolution of topological singularities leading to the current structure of our Universe. This 
scenario is based entirely on the fact that, in the case of the simplest edge dislocation loops, 
analogously similar to neutrinos, the mass of curvature dominates the mass of inertia, so that 
neutrinos should be the only gravitational repellant particles, while the anti-neutrinos would be 
gravitatively attractive. This assertion then makes it possible to give a simple explanation to 
several facts still very poorly understood in the evolution of matter in the Universe. The 
formation of galaxies could correspond to a phenomenon of precipitation of matter and 
antimatter within a sea of repellant neutrinos. The disappearance of anti-matter could 
correspond to a phenomenon of segregation of particles and antiparticles within galaxies, due to 
their slight difference in gravitational properties, segregation during which the antiparticles would 
regroup in the center of the galaxies to finally form gigantic black holes in the heart of galaxies. 
Even the famous "dark matter" that astrophysicists had to invent to explain the abnormal 
gravitational behavior of the periphery of galaxies would then be very well explained in our 
theory. Indeed, "dark matter" would be in fact the sea of repellant neutrinos in which the 
galaxies have precipitated and bathed, which, by the compressive force which it exerts on the 
periphery of the galaxies, would explain the abnormal gravitational behavior of the stars in the 
galaxy peripheries. Finally, we also show how we can easily treat the Hubble constant, the 
"redshift" of galaxies and the evolution of the cosmic microwave background in the framework of 
our theory.
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About the constitution and the asymmetry of matter and anti-matter

The existence of 15 different “gravitational” interaction forces depending on the nature of the 
singularities involved in the table in figure 8.9, as well as the behavior of these forces as a 
function of the background expansion of the lattice illustrated in the figure 8.10, allow us to 
develop a fairly simple and entirely plausible scenario of the cosmological evolution of our 
Universe.

Let's start from conjecture 8, which stipulated that the singularities of a vacancy nature 
correspond by analogy to anti-matter and the singularities of interstitial nature to matter, to 
introduce the following hypotheses:
- the particles of matter (electron , neutrino , neutron , proton , etc.) of the Universe 
would be made up of assemblies of loops of twist disclination, which give them their electrical 
charge, of loops of mixed dislocation, which give them their electric dipolar field, and prismatic 
edge dislocation loops of interstitial nature, which give them a negative curvature charge,
- the particles of anti-matter (positron , anti-neutrino , anti-neutron , anti-proton , 
etc.) of the Universe would be made up of assemblies of twist disclination loops, which give 
them their electrical charge, of loops of mixed dislocation, which give them their dipolar electric 
field, and of loops of prismatic edge dislocation of vacancy nature, which give them a positive 
charge of curvature.

If we accept this distinction between particles and anti-particles, the positive or negative 
curvature charge due to the component of edge loops of interstitial or vacancy nature, which 
appears neither in General Relativity, nor in the Standard Model of elementary particles, 
introduces a weak asymmetry between particles and anti-particles which exists only in our 
theory. This asymmetry is reminiscent of the asymmetry observed experimentally between 
particles and anti-particles in Particle Physics, without us knowing very well what cause 
attributed to it. This asymmetry affects certain properties of elementary particles (such as the 
violation of CP symmetry, combined action of a charge conjugation C and a symmetry by 
reflection P), but not the rest mass of these particles (linked to the non violation of CPT 
symmetry, combined action of charge conjugation C, reflection symmetry P and time inversion 
T). However, in current physics, whether it is Particle Physics or General Gravitation, there is 
never any mention of the property of curvature charge, since this can only appear by the 
approach of the topological singularities of a lattice that we have developed in this book. This 
property of curvature charge specific to lattice topological singularities could therefore be an 
excellent candidate to explain the asymmetry observed experimentally between particles and 
anti-particles of matter.

To simplify the rest of this talk, let's now call the various particles with a generic name 
according to their type:
- particle or  a particle of matter such as an electron , a muon , a tauon , a 
neutron , a proton  (or any other elementary particle composed of quarks) which involves 
twist disclination loops, therefore electrical charges, possibly loops of mixed dislocation in the 
event of a dipolar electric field and predominantly interstitial edge dislocation loops, therefore a 
negative curvature charge,
- anti-particle or  an anti-matter particle such as a positron , an anti-muon , an anti-
tauon , an anti-neutron , an anti-proton  (or any other particle composed of quarks) 
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which involves loops of twist disclination, therefore electrical charges, possibly mixed dislocation 
loops in the event of a dipolar electric field, and predominantly edge dislocation loops of a 
vacancy nature, therefore a positive curvature charge,
- neutrino  a particle of matter corresponding to the electron neutrino , to the muonic 
neutrino  or to the tau neutrino , which does not involve any loops of twist disclination and 
loops of mixed dislocation, but only loops of prismatic edge dislocation of interstitial nature, 
therefore a negative charge of curvature,
- anti-neutrino  a particle of anti-matter corresponding to the electronic anti-neutrino , to 
the muonic anti-neutrino  or to the tau anti-neutrino , which does not involve loops of twist 
disclination and loops of mixed dislocation, but only loops of prismatic edge dislocation of a 
vacancy nature, therefore a positive curvature charge.

To these 4 types of particles or anti-particles, we can, thanks to the previous chapters, 
assign masses of inertia and equivalent masses of curvature, which satisfy the mass 
relationships indicated in figure 10.1 in the case of particles and anti-particles, and in the case 
of neutrinos and anti-neutrinos.

Thus, without first knowing the exact constitution in terms of singularity loops of the various 
particles and anti-particles, we can deduce thanks to these relationships between masses of 
inertia and masses of curvature, very relevant information about the behavior of gravitational 
forces of interaction between these various particles. Indeed, in the case of the interaction 
between particles  and anti-particles , we have, thanks to table 10.1, the following 
inequality relations  between the gravitational interaction forces.  As the 
mass of curvature is much lower than the mass of inertia   in the case of a 
particle or an anti-particle which is not a neutrino, the difference between these interaction 
forces remains small, but it ensures still an asymmetry between particles and anti-particles 
(gravitationally, particles attract a little less strongly than anti-particles) which could play an 
important role in the cosmological evolution of the Universe, as we will see in the next section.

In the case of the interaction between particles  and  , we have the following inequality 
relations  between the gravitational interaction forces which again 
show that particles attract a little less strongly than anti-particles.

As for the cases which involve only neutrinos, the following relationships are deduced for the 
interaction forces: . In other words, 
neutrinos repel each other with a force of the same magnitude as anti-neutrinos attract. As for 
the interaction between a neutrino and an anti-neutrino, it is extremely weak since it involves the 
product .

Finally, with regard to the interactions between particles and neutrinos, the following 
relationships are obtained: . So the interaction 
between a neutrino and a particle is repulsive. Between an anti-neutrino and an anti-particle, it 
is attractive. And between a neutrino and an anti-particle, or between an anti-neutrino and a 
particle, the interaction can be slightly positive or negative, but of lesser magnitude than in the 
first two cases.

Effects of the cosmological expansion of the lattice on gravitational interactions

With the relations of inequality between gravitational interaction forces that we have just 
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obtained for the interactions between particles, anti-particles, neutrinos and anti-neutrinos, we 
can return to the cosmological evolution of the perfect cosmological network (figure 3.7 and 
3.10), and integrate into it the behaviors of the gravitational forces of interaction between 
particles. We obtain the result of figure 10.2.
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As this figure shows, a series of values characteristic of expansion  appears for which 
there are sudden changes, either in the behavior of cosmological expansion, or in the behavior 
of the various gravitational interaction forces. In this figure, we have also reported the 
gravitational interaction forces involving macroscopic vacancies (black holes as soon as 

) and macroscopic interstitials (neutron stars). Among the important characteristic 
values of the cosmological expansion of the lattice are:

, which represents the initial “big-bang” of the lattice over time ,
, which represents the expansion value for which the interaction force between a 

macro vacancy and a particle or an anti-particle changes from repulsive to attractive,
, which represents the expansion value for which the interaction force between a 

macro vacancy and a macro interstitial changes from repulsive to attractive,
, which corresponds to the passage from the stage of inflation, during which 

τ 0 (t)
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the speed  of expansion decreases, to the stage of expansion during which the 
speed  of expansion begins to increase again,

, which corresponds to the transition from the repulsion stage between 
macroscopic vacancies to the attraction stage between macroscopic vacancies,

, which represents the expansion value from which the macroscopic vacancies 
become black holes,

, which represents the critical expansion from which longitudinal waves appear 
within the lattice to the detriment of localized eigen modes of vibration of the expansion, and 
which also represents the critical expansion for which several of the gravitational interaction 
forces change sign, either by passing through an infinite singularity, or by passing through a 
zero value.

Beyond , the cosmological evolution of the lattice passes from the stage of expansion, 
during which the speed  of expansion is positive, to a stage of contraction during 
which the speed  of expansion becomes negative, and which ends after stages of 
contraction and deflation, by a “big-crunch” followed by a new “big-bang” of the lattice, therefore 
by a “big-bounce” of the lattice due to the kinetic energy stored, as well show figures 3.7 and 
3.10.

A plausible scenario of cosmological evolution of topological singularities 
in a perfect cosmological lattice

On the basis of figure 10.2, a plausible scenario of evolution of the topological singularities of 
the cosmological lattice can then be imagined, which implies several distinct stages to arrive at 
the current state of our Universe:

(1) Hypothetical liquefaction and solidification of the lattice during the "big-bounce" and 
formation of an "initial hot soup" of loops of singularities.

In the scenario of a “big-bounce” Universe represented in figures 3.7 and 3.10, the intense 
contraction of the lattice at the end of the “big-crunch” must certainly heat the lattice to an 
extreme since its compression becomes gigantic, which could lead to to its "liquefaction". It is 
obvious that such a phenomenon, modeled on our knowledge of usual matter, is not easy to 
imagine, and presupposes that the cells of the lattice are associated with "strange particles", 
which would be responsible for the mass associated with lattice (and which would perhaps 
correspond to the famous Higgs particles of the Standard Model). For the lattice to effectively 
present a phase transition phenomenon by "liquefaction", its complete state function should not 
only contain the terms of free energy for deformation, but also thermal terms leading to the 
phase transition .

Assuming therefore that the "big-bang" following the "big-crunch" occurs from a very hot 
liquid of massive "strange particles", the inflation phase of cosmological evolution should lead to 
a cooling of the liquid (to a decrease in its thermal agitation) and to a sudden “solidification” of 
the liquid in the form of the perfect cosmological lattice which we introduced in chapter 3. During 
this phase transition, it could then appear structural defects of the lattice, in the form of 
dislocations, disclinations, loops, vacancies and interstitials, and even grain boundaries, very 
similar to what happens for example during the rapid solidification of a metal .
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φU τ 0 (t)( )
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We could speak of an “initial hot soup” of singularity loops, the term soup including the fact of 
a homogeneous initial distribution of the various types of singularity loops and a very great 
mobility of these loops as in a liquid, then that the term hot includes the notion of a still 
extremely hot lattice, in other words containing a very large quantity of transverse wave modes 
(photons) and localized longitudinal vibration modes (gravitons), implying a very strong thermal 
agitation of the initial loops.

(2) Inflation of the lattice and condensation of the loops of singularities into particles and anti-
particles.

During the inflation of the cosmological lattice, and therefore of its cooling, and as soon as 
the temperature has dropped sufficiently, the various dislocation and disclination loops will 
regroup within the "hot soup" to form complex and localized topological dispirations, formed by 
dislocation and disclination loops linked by the weak interaction force (chapter 9), and 
corresponding to the various elementary particles of matter (électron , neutrino , neutron 

, proton , etc.) and of anti-matter (positron , anti-neutrino , anti-neutron , anti-
proton , etc.) of our Universe. The existence of such combinations of loops in localized form, 
which can correspond to the various elementary particles of our Universe, will be discussed in 
chapter 13 in this work.

(3) Formation of galaxies by precipitation of matter and anti-matter in a sea of repulsive 
neutrinos.

In the hot soup of lattice singularities, an initially homogeneous mixture of particles and anti-
particles, there are particles and anti-particles whose gravitational interaction is attractive 
(electron , neutron , proton , positron , anti-neutrino , anti-neutron , anti-
proton , etc.), but there are also the various neutrinos  whose gravitational interaction 
with other particles (such as electron , neutron , proton , positron , anti-neutron 

, anti-proton , etc.) is repulsive, or almost non-existent (with anti-neutrinos ), and there 
is obviously also a sea of energetic photons interacting strongly with particles and anti-particles 
charged via the Compton scattering mechanism. This situation linked to the component of the 
edge dislocation loops with their curvature charge is completely original in our theory, and will 
necessarily lead to explain the phenomenon of initial formation of galaxies, which is very difficult 
to explain at present by other theories.

Indeed, it is possible to make an extremely simplified model of the initial and homogeneous 
hot soup of particles and anti-particles to describe the formation of galaxies. Consider that the 
initial hot soup forms a kind of liquid composed of attractive particles on the one hand (electron 

, neutron , proton , positron , anti-neutrino , anti-neutron , anti-proton , 
etc.) and repulsive neutrinos  on the other part (electronic neutrino , muonic neutrino  
and tau neutrino ), and let us try to express the free interaction energy  per particle 
within this liquid mixture.  By introducing the concentrations  nd  of repulsive 
neutrinos  and attractive particles  into the mixture, the free energy of interaction can be 
written as the sum of an internal energy interaction term and an entropic mixing term , as shown 1

in the first formula in figure 10.3, where  is the mean coordination number, which represents 
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 see section 7.6 in «Théorie eulérienne des milieux déformables: charges de dislocation et de désinclinai1 -
son dans les solides», G. Gremaud, Presses Polytechniques et Universitaires Romandes, Lausanne 2013, 
ISBN 978-2-88074-964-4 (751 pages).
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the mean number of neighboring particles with which a particle can form a pair interaction and 
where the factor 1/2 is introduced so as not to count each interaction twice.

By then introducing an average value of the mass of inertia of the attractive particles 
 and neutrinos , as well as the average mass of curvature  of 

the matter neutrinos, and by supposing an average distance  between the particles in the 
initial homogeneous hot soup, one can express very approximately the free energy of 
interaction per particle in the form of the second relation of figure 10.3. If we represent this 
interaction free energy as a function of the neutrino concentration  for different lattice 
temperatures, as in the diagram in figure 10.3, we see that at high temperature the minimum 
free energy is obtained by a homogeneous mixture of attractive particles  and repulsive 
neutrinos . But if the lattice temperature drops sufficiently, there appear two minima of free 
energy depending on the concentration : a minimum corresponding to a very low 
concentration of neutrinos and a minimum corresponding to a very high concentration of 
neutrinos. In fact, there appears a phase transition by precipitation, which tends to separate the 
attractive particles  and the repulsive neutrinos , as represented in figure 10.4 (a). It will 
therefore appear precipitates, a kind of islands made up of attractive particles , within a sea 
of repulsive neutrinos . At low temperatures, the minimum free energy corresponds to the 
concentrations  and , which corresponds to a complete separation of the 
attractive particles and the repellent neutrinos.
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The phase transition by precipitation of attractive particles and anti-particles in the form of 
localized clusters can be represented by a precipitation phase diagram as in Figure 10.4 (b), 
and it corresponds perfectly to the phenomenon of galaxy formation in our Universe . In this 
model, it is the existence of repulsive neutrinos that becomes the engine of galaxy formation. 
And it is very interesting to note that the repulsion of neutrinos of matter is due exclusively to the 
charge of curvature of neutrinos, a concept which does not exist in General Relativity nor in the 
Standard Model of elementary particles. On the other hand, we already know that the curvature 
charge is also at the origin of the weak asymmetry existing between matter and anti-matter, 
which confirms the strong link existing between this asymmetry observed experimentally and 
the initial formation of galaxies and structures of our current Universe.

(4) Formation and segregation of matter and anti-matter within galaxies.
Now let’s take a look at what’s going on in emerging galaxies, during the precipitation of 
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particles and anti-particles that attract each other. Within this precipitating liquid phase of 
particles, the attractive gravitational interaction forces have small differences depending on 
whether we are dealing with particles or anti-particles. Consider for example the family of 
particles  and anti-particles . The gravitational interaction forces between these particles 
are expressed in figure 10.1. With the mass of inertia  of these particles, we deduce, 
thanks to the classical Newton equation, the acceleration that these particles undergo during 
their various interactions -  , -  and - : , 

 and . We deduce that , 
therefore anti-particles  attract more strongly than particles , and we must therefore see a 
phenomenon of progressive segregation of anti-particles and particles appear, during which 
anti-particles will tend to regroup towards the center of the emerging galaxy, leaving the 
particles in the periphery of the galaxy.

It is clear that this phenomenon of segregation must be accompanied by an intense activity 
of annihilation between particles and anti-particles, in an area located around the center of the 
galaxy, and which should necessarily be a source of intense gamma radiation. But there must 
also appear an activity of combinations between particles and between anti-particles to form 
matter and anti-matter (initially hydrogen and anti-hydrogen atoms and helium andanti-helium  
atoms).  These annihilation and recombination processes must continue until there appears to 
be an effective separation between a galaxy core composed essentially of anti-matter and a 
galaxy periphery composed essentially of matter. We note again that this process of segregation 
of matter and anti-matter is to be associated with the charge of curvature of the dislocation edge 
loops, which is an exclusive property of our theory, since it is these charges which are 
responsible of the equivalent mass of curvature, itself responsible for the small difference in 
attractive gravitational interaction between matter and anti-matter.

(5) Formation of a cosmic radiation background.
Initially, all particles and anti-particles are in thermal equilibrium with a sea of photons, via 

interactions by Compton scattering, and as long as their temperature has not dropped enough 
to form atoms. But as soon as the temperature drops below around 3,000 K, helium, anti-
helium, hydrogen and anti-hydrogen atoms are formed which ensures the electrical neutrality of 
matter and anti-matter. At this time there is also decoupling of photons from neutral matter and 
anti-matter. The Universe therefore becomes transparent to photons, which then fill all the 
space in the form of a cosmic microwave background. This cosmic radiation background has 
been observed and studied experimentally: it is almost isotropic and presents the spectrum of a 
perfect black body, that is to say a Planck distribution of the energy density  of photons, 
centered on a temperature  which is currently measured at 2.7 K (figure 10.5, with  the 
speed of light,  the Planck constant,  the Boltzmann constant,  the temperature of the 
black body and  the photon frequency). We will come back to the process that leads to the 
“cooling” of this cosmic microwave background.

(6) Gravitational collapse and disappearance of anti-matter by the formation of gigantic black 
holes in the center of galaxies.

The formation by precipitation of galaxies composed of attractive particles and anti-particles 
within the sea of repulsive neutrinos will lead to enormous pressures in the heart of galaxies as 
they evolve. The appearance of a spinning movement of the galaxies makes it possible to 
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partially balance the gravitational pulling forces within the galaxies and the compressive forces 
of the neutrino sea. But at the very center of galaxies, the compressive forces could reach 
values sufficient to witness a gravitational collapse of their hearts. If such a collapse occurs, as 
the heart of the galaxies is formed essentially of anti-matter, it will be responsible for the 
appearance of macroscopic vacancies since during the collapse the loops of twist disclinations 
will annihilate (if the anti-matter was initially electrically neutral), while the vacancy edge 
dislocations loops specific to anti-matter combine to form macroscopic lattice vacancies in the 
center of the galaxies.

The macroscopic vacancy created in the center of a galaxy by the gravitational collapse of 
anti-matter is in fact nothing but a gigantic topological singularity, which becomes a huge black 
hole as soon as the bottom expansion of the lattice exceeds unity ( ). This phenomenon 
of gravitational collapse of segregated anti-matter in the heart of galaxies would then explain 
perfectly, and quite simply, experimental observations of the existence of gigantic black holes in 
the center of most galaxies and of the disappearance of the anti-matter in our current universe.

(7) Coalescence of matter in galaxies and formation of stars.
The matter that composes the galaxies after the collapse of the anti-matter core in a central 

black hole will gradually coalesce under the effect of the gravitational attraction to form clouds of 
hydrogen and helium gases, various types of stars and planetary systems, such as those 
observed in our current universe.

(8) Gravitational collapse of stars and formation of neutron stars.
As the galaxies are then essentially made up of matter, based on edge dislocation loops of 

interstitial nature, any gravitational collapse of a very large star under the effect of its own 
gravity must lead to a localized topological singularity of a macroscopic interstitial type, and not 
of the macroscopic vacancy type. Consequently, there cannot appear vacancy type black holes 
after the gravitational collapse of a massive star composed of matter.

Experimentally, we sometimes and suddenly observe this phenomenon of gravitational 
collapse of massive stars of matter in the form of a supernova (a cloud of residual gases from 
the initial explosion of the star, which extends to very high speed), with, in the center of the 
supernova, a relatively small and very massive object, which should correspond to a residual 
macroscopic interstitial singularity, which we commonly describe as pulsar (by its properties of 
emission of electromagnetic pulses whose frequency corresponds to the very fast frequency of 
rotation of the object on itself) or as neutron star (due to the enormous mass density of the 
object).

The rest of the story is then well known and well described by astrophysicists, with the 
formation of atoms of increasing mass by the nuclear fusion of hydrogen and light elements in 
the heart of stars and by the dispersion of these elements by the supernovae, ultimately leading 
to the appearance of all the elements of Mendeleev's table and the formation of increasingly 
complex stars, planetary systems, etc.

(9) The future of our universe.
In the scenario of the “big-bounce” universe represented in figures 3.7 and 3.10, which in 

fact corresponds best to our own universe, the phase of expansion at increasing speed, under 
conditions where there is no propagation of longitudinal waves, is between the values

 and . Our present Universe must therefore be situated in this field 

τ 0 ≥1

τ 0 = −3 / 2 τ 0 = τ 0cr >>1
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of fundamental expansion since recent observations have shown that the expansion of the 
universe is most likely taking place at increasing speed. We can even say that the current 
background expansion should in fact be understood in the domain  , since 
massive black holes seem to have been observed in the center of most galaxies, especially in 
the center of our galaxy, the Milky Way.

Since this expansion range ( ) is very large, it is difficult to know where 
our Universe is currently located and how long it will take for it to reach the critical expansion 

. But we can on the other hand affirm that when this one approaches the critical value 
, it will inevitably appear titanic phenomena of reshaping of celestial objects, matter, black 

holes and the sea of repulsive neutrinos since at that moment we will have essentially that:
-  the gravitational constant  will become negative by passing through a singularity at ,
- the eigen modes of localized vibrations will disappear in favor of the propagation of 
longitudinal waves, which should in fact correspond to the disappearance of quantum physics 
as we will see in the rest of this work.

These two phenomena alone should be cataclysmic. But one could still push further by 
considering the phenomena which should intervene during the phase of re-contraction of the 
cosmological lattice, especially during the reverse passage by the critical value  where the 
gravitational constant would become positive again and where it would reappear eigen modes 
of localized vibrations instead of the propagation of longitudinal waves. These predictions are 
most likely in the realm of the possible with our theory, although certainly very difficult and very 
rough. In fact, we are swimming there in full science-prediction, not to say in full science-fiction.

The fact remains that our theory goes much further in explanations and predictions than 
general relativity, and that a number of exotic phenomena such as instantaneous displacement 
in space and time via the famous wormholes described from general relativity, which are the 
delight of theoretical physicists and science fiction writers, should be nothing but pure ranting in 
the light of our theory.

About the famous «dark matter» of astrophysicists

The formation of a “sea of repelling neutrinos” in which the galaxies are bathed perfectly 
explains the phenomenon attributed to “dark matter” by astrophysicists. Indeed, when we 
observe a galaxy and we measure experimentally the speeds of the stars composing it as a 
function of their distance from the center of the galaxy, we find that the speeds of the stars 
located on the periphery of the galaxy are too high compared to the speeds calculated by 
applying Newton's law of gravitation with the mass density of the stars (which can be measured 
experimentally by their brightness). Everything happens as if there was a halo of matter invisible 
to our eyes around the galaxy, which, by its gravitational effect, forces the stars to rotate faster 
to compensate for this attractive effect. This halo of invisible matter has been called dark matter 
by astrophysicists, and research into the very nature of this dark matter is currently one of the 
great subjects of basic research, having generated a plethora of diverse explanations, but none 
of which is satisfactory. 

In our theory, the concept of dark matter is no longer necessary, because it is simply 
replaced by the concept of "repulsive neutrino sea" in which all the galaxies, globular clusters 
and other structures of the visible Universe bathe. Indeed, let us consider a galaxy subjected to 
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the repulsive force of the sea of neutrinos in which it bathes. This repulsive force actually 
corresponds to a compressive force which is applied to stars in the suburbs of the galaxy. To 
resist this compressive force, the stars on the periphery of the galaxy must force to rotate faster 
than what is calculated on the basis of the visible mass, so as to balance the compressive force 
of the neutrino sea by an additional centripetal force of rotation.

About the Hubble’s constant

Experimentally, we see that the light from galaxies has a redshift (redshift of the spectral 
lines of emission of atoms). This offset was attributed by Hubble to the apparent recession 
speed  of the galaxies according to their distance  due to the expansion of the Universe, v d
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effect explained initially by the Doppler-Fizeau effect due to the flight movement of the galaxies 
in the space. The experimental relationship between the speed of recession and the distance  
was measured by Hubble, who found that , where  is the Hubble constant which 
is approximately 70 (km/s)/Mpc (70 km per second, per megaparsec). The initial interpretation 
of this observation as a Doppler-Fizeau effect due to the speed of separation of galaxies in 
space actually leads to galaxies which would be located at distances greater than 4,000 
megaparsecs moving away from us at speeds higher than that of light, which is obviously 
nonsense from special relativity. The solution to this problem can be deduced from general 
relativity, for which the expansion of the universe should not be interpreted by a movement of 
galaxies in space, but rather by an inflation of space itself, which implies a progressive 
distancing of the objects which it contains (a little in the same way as in our theory where it is 
the perfect cosmological lattice which extends).

Let's take a look at the Hubble constant in our theory, which is very clearly distinguished from 
general relativity, by the existence of the scalar  of volume expansion which is directly 
concerned by a cosmological expansion of the perfect cosmological lattice. Let us therefore 
suppose a cosmological evolution of the perfect cosmological lattice like that described in 
figures 3.7 and 3.10. In the course of evolution, suppose that the GO observes a certain region 
in graph 3.10, in which the cosmological lattice is expanding, and even expanding at increasing 
speed. Suppose that the GO observes galaxies that are initially distant from  at the moment 

.  If these galaxies do not move in relation to the expanding cosmological lattice, the initial 
distance  will change over time, and the GO will observe that the distance between the two 
galaxies will increase exponentially as , so that the two galaxies 
will move away relative to each other with relative speed . The value of this 
speed can be approached by a second order development of the expansion  over time, 
which makes it possible to deduce the value  of the Hubble constant reported in 
figure 10.5. If the GO then measures this speed at an instant , it will find that the Hubble 
constant becomes dependent on the instant at which it observes the universe during its 
cosmological evolution, and in particular that this increases if one is in a domain where the 
speed of expansion of the universe increases.

About the «redshift» of galaxies

Now consider two galaxies that were initially distant from  at the instant  for the GO. 
If, at this instant , galaxy 1 emits a signal towards galaxy 2, the signal will travel a distance 

 during the lapse of time  such as . But as the lattice is expanding, and 
neglecting the acceleration of this expansion, we have that the speed of the transverse waves 
depends on the instant , so that , where  is the speed of the 
transverse waves at the instant . The distance  between the two galaxies will then be 
covered in the time lapse  shown in figure 10.5, which can be calculated approximately 
thanks to the relationship giving .

When the signal is received by galaxy 2, the expansion of the universe will then have 
reached a value  worth  . Suppose that the signal emitted in galaxy 1 
at the moment  is measured by a local observer HS(1) at the frequency  of a certain 
spectral line of a given atom, the frequency  of the signal received and measured by an 
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observer HS(2)  in galaxy 2 at the moment  will be different because of the increase
 in expansion of the Universe during propagation. Thus, an observer HS(2) located 

in galaxy 2 will be able to compare the frequency  of this signal received with the 
frequency  of the same spectral line of the same atom emitted in his own laboratory, and 
he will call "redshift" of galaxy 1 the ratio between these two frequencies:

. To calculate this redshift, we must schematically represent how the 
physical values measured by the observer HS(1)  in galaxy 1 at the instant  with the same 
physical values measured by the GO at the instant  and at the instant  as well as by 
the observer HS(2) in galaxy 2 at the moment . For this, we remember that the time spans 

 measured by an HS in its own reference frame  are perceived by the GO in its 
local reference frame  as time spans  linked by the expression  in 
which  is the expansion of the lattice at the location where is HS. This expression also makes 
it possible to link also the frequency measurements made by an HS and by the GO in the form 

. With this relation, we can schematically represent in figure 10.5 how the 
frequency and wavelength measurements made during the signal transmission experiment 
between galaxies 1 and 2 behave.

We then observe that the "redshift" measured by the observe HS(2)  is very simply related to 
the expansion increase  of the Universe that occurred during the propagation 
since . By calculating the value of  thanks to the 
expression of the lapse of time  used by the light to traverse the distance separating the 
two galaxies, one obtains the expression reported in figure 10.5 for the “redshift” measured by 
the observer HS(2), which depends on both the instantaneous speed of expansion  and 
the initial distance  between the two galaxies. But we can also connect the “redshift” to the 
instantaneous Hubble constant  or to the relative speed  of recession of the galaxies as 
reported in figure 10.5.

The "redshift" observed by the observer HS(2) will therefore be proportional to  what 
means that the frequency ratio decreases if the initial distance  between the galaxies 
increases, and therefore that the "red shift" of the spectral line increases with the increase in the 
initial distance . The "redshift" is also proportional to , which means that it 
decreases if the Hubble constant increases. And finally it is also proportional to . 
However, the velocity of reciprocal remoteness of two galaxies is not limited by the speed of 
transverse waves in our theory since this speed is associated with the speed of the lattice in the 
absolute space of the GO, which satisfies a purely Newtonian dynamic. Thus, the measured 
"redshift" can tend towards 0 if the recession speed  of expansion tends to infinity.

Note again that these calculations were made by making two restrictive assumptions:
- that we are in a limited region in graph 3.10 in which the cosmological lattice is expanding, and 
which can be approached by a second order development in time of expansion . For 
phenomena which would spread over much longer times, the calculations would be particularly 
complicated since it would then be necessary to know exactly the function of the cosmological 
expansion  of the lattice.
- that the galaxies do not move in relation to the expanding cosmological lattice. If this were not 
the case, for example because of the gravitational interactions between the galaxies, it would be 
necessary to add to the "redshift" due to the expansion of the lattice a Doppler-Fizeau effect due 
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to the displacements of the galaxies compared to the lattice, such than that described in figure 
6.12. 

About the «cooling» mechanism of the cosmic microwave background

The cosmic microwave background is currently observed as a perfect black body spectrum, 
very precisely following the Planck distribution of the energy density  of photons (figure 
10.5), centered on a temperature  of 2.7 K. We assume that this radiation is fossil from the 
big bang, which formed during the decoupling of photons from particles during the formation of 
neutral atoms of helium and hydrogen, and that, therefore, it was originally emitted with a 
temperature of the order of 3’000 K. We can then ask ourselves what is the “cooling” 
mechanism of this radiation in the light of our theory. To do this, just look at figure 10.5.  If we 
assume that the photon-matter decoupling occurred when the Universe had an expansion  
and that the current expansion of the Universe is , the emission frequency of the microwave 
background is given by  and the frequency currently observed by an observer HS(2) is 
worth . From Planck's distribution (figure 10.5), there is the following 
relationship   between the frequency of black body radiation 
and its color temperature, measured at the expansions  and . We therefore deduce that 

, so that a numerical value of the variation in the expansion of the lattice 
between the moment of photon-matter decoupling and the current time can be calculated as 

. This increase in expansion corresponds in fact to 
an increase in the volume  of the elementary cell of the lattice worth approximately 

, which must certainly take place during the inflation phase of 
the cosmological lattice (figure 3.10).

We therefore see that the apparent "cooling" of the cosmic microwave background is a direct 
effect of the expansion of the lattice, which dramatically changes the rulers and clocks of local 
reference frames .

It is also interesting to note that, for the GO, the frequency  of the cosmic microwave 
background does not change during the expansion since it is always worth the same value as at 
the time of its emission . But on the other hand, for the GO, it is the 
wavelength   which will change with the expansion, since this is then equal to

. The points of view of the local 
observers  HS(i)  and of the external observer GO are therefore very different, and this is due to 
the fact that the speed of the transverse waves of rotation (speed of light) is a universal constant 
always valid for the observers HS(i)  whatever the state of expansion of the lattice in which they 
are placed, while the celerity of the transverse waves of rotation varies enormously according to 
the instantaneous expansion of the lattice for the external observer GO.
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Chapter 11

Quantum Physics

           
Intuitively, we can sense that quantum physics could be linked to the existence of dynamic 

solutions of Newton's second partial equation, in the form of localized temporal fluctuations of 
the scalar field of expansion which would be associated with the topological singularities of the 
perfect cosmological lattice, when the latter does not exhibit propagation of longitudinal waves 
in the domain . We will show in this chapter that, by conjecturing operators of energy 
and momentum similar to those of quantum physics, a wave function, directly deduced from 
Newton's second partial equation for the lattice expansion perturbations, is effectively intimately 
linked to the mobile topological singularities of the lattice, whether these are clusters of 
elementary loops or isolated elementary loops.

First, it is possible to deduce the gravitational fluctuations associated with a topological 
singularity moving almost freely at relativistic speeds within the lattice. Then, in the case of non-
relativistic topological singularities linked by a potential, the second partial Newton's equation 
applied to the longitudinal gravitational fluctuations associated with these singularities leads 
very exactly to the Schrödinger’s equation of quantum physics, which makes it possible to give 
for the first time a simple and realistic "wave" interpretation of the Schrödinger equation and the 
quantum wave function: the quantum wave function deduced from the Schrödinger’s equation is 
linked to the amplitude and phase of the longitudinal gravitational vibrations associated with a 
topological singularity of the cosmological lattice.

All the consequences of Schrödinger's equation then appear with a simple physical 
explanation, such as the standing wave equation of a topological singularity placed in a static 
potential, the Heisenberg uncertainty principle and the probabilistic interpretation of the square 
of the wave function.

In the case where the gravitational fluctuations of expansion of two topological singularities 
are coupled, we will also find the notions of bosons, fermions and indistinguishability, the 
principle of exclusion of Pauli, as well as the way towards a physical understanding of 
phenomena intriguers such as quantum entanglement and quantum decoherence.

Relativist wave equation of the fluctuations of the gravitational field of expansion

Suppose the existence of dynamic longitudinal fluctuations in the cosmological lattice. These 
fluctuations must obviously satisfy the dynamic version of Newton's second partial equation in 
figure 5.1. We obtain at first order in  , by also taking into account the geometro-kinetic 
equation for , and by emitting the hypotheses that ,  and 

, the equation managing the gravitational fluctuations, represented in figure 
11.1.

Let us first propose a simple solution, localized and independent of the time of this equation 

τ 0 < τ 0cr
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for the wave function , assuming that it is a simple exponential decay with spans 
 in the three directions of space, and that the pulsation  is a real constant 

independent of time and space (figure 11.1). By introducing this solution into the wave equation 
that we have just established, we obtain the relation which must exist between the pulsation  
of the fluctuations and the ranges  of these fluctuations. There then appears a 
localized gravitational fluctuation  which corresponds to a localized, non-damped and 
pulsating regime with a pulsation  which decreases symmetrically and exponentially in the 
vicinity of the origin, with spatial ranges equal to  and  along the 3 axes, which are 
correlated with each other and which decrease with the pulse frequency.

We therefore deduce that, in a perfect cosmological lattice satisfying the hypotheses that we 
have put forward, there can perfectly exist stable and localized fluctuations of vibrations of the 
volume expansion. We will return to this subject in more detail in chapter 14.

Now imagine that mobile topological singularities within the lattice, such as clusters of 
elementary loops or isolated elementary loops as described in the previous chapter, are also 
associated with dynamic longitudinal gravitational fluctuations, which should obviously satisfy 
the dynamic version of Newton's second partial equation outside of the topological singularity.

We know that, in the cosmological lattice, Newton's second partial equation reveals 
gravitational perturbations of the expansion field within immobile singularities, perturbations 
which depend directly on the elastic energy of distortion of these singularities. And in chapter 7, 
we showed that this internal field of expansion perturbations is directly responsible for a static 
external gravitational field  of expansion which also depends on the elastic energy of 
distortion of the singularity or of the cluster of motionless singularities, in the form   

. There is therefore a good chance that the dynamic 
gravitational perturbation field  of the expansion outside a mobile singularity also depends 
on the elastic distortion energy of the singularity, but probably also on the energy associated to 
the movement of the singularity. Now we know that a topological singularity in movement in the 
lattice is entirely characterized by a total relativistic energy  and a total relativistic momentum 

. Therefore, we will assume that the pulsation  of the expansion fluctuations associated 
with it is a complex number which would undoubtedly also depend on the relativistic energy 

 of the singularity and its relativistic momentum . We can therefore a priori 
h y p o t h e s i z e t h a t t h e r e s h o u l d e x i s t a r e l a t i o n o f t h e f o l l o w i n g f o r m 

. The pulsation  of expansion fluctuations should 
therefore depend on time and on surrounding space of the topological singularity, via the 
temporal and spatial dependence of the energy  and the momentum  of the 
mobile singularity.

We can then propose a solution of gravitational perturbations of complex pulsation , 
which we will write for convenience in complex formulation in the form , where 

 is an arbitrary constant for the moment, corresponds to the oscillation of the 
fluctuation and the complex wave function  contains the phase and amplitude 
information for this oscillation. By introducing this solution into Newton's equation for lattice 
fluctuations, we obtain a wave equation for the complex function  in the form shown in 
figure 11.1.

If the frequency  of the gravitational fluctuations effectively depends on  
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and , these two quantities must also be implicitly contained in the temporal and spatial 
behaviors of the complex wave function  associated with the mobile singularity. 
However, this wave function  associated with the wave equation in figure 11.1 actually 
recalls the wave function appearing in quantum physics, and quantum physics says that it is 
possible to define operators allowing to measure  and   from the quantum wave function 

.

By analogy with quantum physics, we will therefore conjecture a priori operators with similar 
properties: this will be conjecture 10 of our theory, reported in figure 11.1. In fact, we are going 
to hypothesize that the second derivative with respect to the time of the envelope  of the 
oscillations of  is directly correlated with the square of the total relativistic energy  of the 

!
Pv (
!r ,t)

ψ !r ,t( )
ψ !r ,t( )

Ev  
!
Pv

 ψ
!r ,t( )

!2ψ
τ (p) Ev



Chapter 11220

singularity, and that the Laplacian (the second derivative with respect to space) of the envelope 
 of the oscillations of  is directly correlated with the square of the total relativistic 

momentum . In the relations associated with this conjecture, we introduced, as in quantum 
physics, a constant  allowing to normalize the partial derivatives of the wave function to 
energetic terms (and which is, in the case of quantum physics, nothing other than the Planck's 
constant). It is quite simple to verify that these operators, applied once to the wave function, 
provide the usual operators of quantum physics, as illustrated in figure 11.1.

Conjecture 10 that we have assumed here has a physical meaning that can be explained 
very simply. Indeed, suppose that the envelope  of the oscillations of  is of oscillatory 
type, of the form . In this case, conjecture 10 simply implies that the 
pulsation  of the envelope is proportional to the total relativistic energy  of 
the singularity and that the wave number  of the envelope is proportional to 
the relativistic momentum  of the singularity, with a 
proportionality factor equal to the inverse of the Planck constant.

Thanks to the arbitrary constant  introduced into the 
solution for , the wave equation for  is then 
directly composed of terms corresponding to energy squares. We 
deduce that each term of this equation must represent the 
product of the square of an energy by the dimensionless wave 
function . We deduce in particular that the term  has 
the dimension of an energy.

On the other hand, the second derivative operator of time 
provides the square of the total relativistic energy  that the 
singularity would have at the place where the operator is applied, 
and the Laplacian operator provides the square of the total 
relativist momentum  that the singularity would have at the 
place where the operator is applied. From this definition of the second derivative and Laplacian 
operators, we deduce the operators directly supplying the total energy of the singularity and the 
components of the momentum of the singularity at a given location.

With these "a priori" conjectured operators  based on quantum physics, we can try to apply 
them to the wave relation deduced from Newton's second partial equation. We thus obtain the 
relation which should exist between the relativistic energy  of the singularity, the energy of 
movement  of the singularity and the pulsation  of the gravitational fluctuations 
associated with the singularity, which now really becomes a complex number, in the form 

. It should be noted here that the double signs   
and   appearing in this relation are independent of each other because the first  comes 
from the expression  and the second is introduced by taking the square root of 

.
In the case of a singularity which moves at relativistic speed, this one must satisfy the 

principal relativistic relations obtained in chapter 6 and reported in figure 11.1, in particular the 
important relation    which makes the link between the total relativistic energy

, the relativistic momentum  and the mass at rest  of the singularity. These relativistic 
expressions lead to the relation giving the complex pulsation  of the gravitational 
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fluctuations associated with a topological singularity, either an elementary loop, or a cluster of 
elementary loops linked together, moving at speed . The complex relativistic pulsation 

 therefore presents two conjugate solutions shown in figure 11.1. It is interesting to 
note that there is indeed an expression justifying the hypothesis that we had put forward, 
namely that   is a direct function of   and . Indeed, by performing the product of 
the two combined values of the pulsation, we see that it is the norm  of 
the complex pulsation  which is a simple and direct function of the quantities  and 

 of the singularity.
The wave equation for  then has two relativistic versions shown in figure 11.1, 

because of the double sign  that appears in  . On the other hand, in this 
expression of the wave equation, the double sign  no longer appears.

Gravitational perturbations of a massive singularity at relativistic speed 

Let us take again the relativistic wave equation of figure 11.1 and try to find a solution for a 
rather massive singularity which would move almost freely at relativistic speed  more or less 
constant in the direction , which implies that  varies relatively slowly in time and 
space. Under this hypothesis that the total relativistic energy of the singularity varies only slowly 
in time and space, we can admit that the function , which represents the amplitude 
and the phase of the oscillation with a pulsation  is in fact a function of the position  
along the axis . Let us therefore pose a simple wave solution of the relativistic wave 
equation along the axis , which does not explicitly depend on time, on the type 

, where the complex wave number  also varies very slowly over time 
and the space. By injecting this solution into the relativistic wave equation, we obtain the 
expression of figure 11.2 for the value of the complex wave number  and we note that  
in fact depends on  and  only by the dependence of the relativistic energy  in  
and , which allows to express the wave function  as well as the expansion fluctuations 
associated with the relativistic singularity. By introducing the value of  obtained in 
figure 11.1, we get two solutions which really have a physical meaning among four possible 
solutions, so that, finally, the solution for  can be written in the form represented in 
figure 11.2. We can therefore explain the real expansion fluctuations of a relativistic singularity, 
by taking the real part  of this expression.

We see that this function  represents the product of oscillations in time and 
oscillations in space. Oscillations in time present a frequency  and oscillations in space a 
wavelength . We note that the frequency  of temporal oscillations is an increasing function 
of the speed  and of the relativistic energy  of the singularity, and that it tends towards an 
infinite value for . It depends indirectly on the position  of the singularity and on time 

via the dependence of the potential  on these quantities. As for the wavelength  of 
the spatial oscillations, it decreases as a function of the speed  and of the relativistic energy 

 of the singularity, and it tends towards 0 for . It is also modulated in space and time 
via the potential .

The amplitude of these temporal and spatial oscillations is modulated by an exponentially 
decreasing envelope on both sides of the average position  of the singularity 
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(which thus moves in the direction of the axis  or in opposite direction according to the sign 
+ or -). The speed of decrease of the envelope  is related to a range  of the 
envelope of the oscillations, which decreases when the speed   of the singularity increases 
and when its relativistic energy  increases, and it tends towards 0 for . It, too, is 
modulated in space and time via the potential  that the singularity undergoes. All this 
implies that the gravitational fluctuations associated with the total relativistic energy of the 
singularity are very short spans and certainly become negligible for massive singularities, such 
as clusters of linked elementary loops. For example, for an electron at non-relativistic speed, the 
range of gravitational perturbations associated with its rest energy  is already tiny, of the 
order of .

Finally, we note that the dynamic expansion fluctuations associated with the relativistic 
singularity are contracted along the axis  of the movement of the singularity, as a function 
of the speed  of the singularity, as we can see on the wavelength  of the spatial oscillations 
and on the range  of the envelope of the oscillations. These effects strictly correspond to the 
relativistic effect of contraction of the rulers of a mobile cluster of singularities described in 
chapter 6.
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Schrödinger's equation of gravitational perturbations of a massive singularity
moving at non-relativistic speed in a variable potential

The treatment of the previous section applies to gravitational perturbations associated with a 
massive singularity which moves at relativistic speeds and which is not subject to a sufficiently 
strong potential to influence strongly its trajectory. But for a microscopic singularity (a loop of 
disclination or dislocation for example) in a non-relativistic regime , and subject to a 
potential  large enough to influence strongly its trajectory, one can wonder what 
becomes its wave equation. To do this, let's rewrite the relativistic wave equation obtained in 
figure 11.1 by removing the very small terms in . This is the first step shown in figure 11.3.

Then using conjecture 10, the wave equation can transform into a "reduced form" containing 
only the first derivative of time. But the total energy  of the non-relativistic singularity 
can be expressed as  or as , 
which allows to rewrite approximately the wave equation in a third form, which we will call the 
non-relativistic wave equation. This wave equation then admits two distinct solutions for 
gravitational perturbations   which are distinguished by the sign of the rotating vector.

In this form, the non-relativistic wave equation is very similar to Schrödinger's equation of 
quantum physics, and it can be shown that it is possible to find this equation. Indeed, let's make 
a change in wave equation by introducing a wave function 

 such that it gives the initial wave function  when 
multiplied by the factor . We then obtain a non-
relativistic wave equation which is very well known, since it is the 
famous Schrödinger’s equation of quantum physics.

By solving this wave equation for a singularity of mass  
subject to a potential , we deduce the wave function 

 which makes it possible to directly find the gravitational 
perturbations  associated with this singularity thanks to 
the relation reported in figure 11.3. But unlike the non-relativistic 
wave equation that precedes it, this equation, due to the change of 
the wave function  by , gives only one solution 
for the gravitational perturbations  .

The wave function  provided by the Schrödinger’s 
equation is directly related to the Hamiltonian of the singularity, namely to the sum of its kinetic 
energy and its potential energy, since by using the operators defined by conjecture 10 in 
Schrödinger's equation, we get directly the relation .

The wave equation that we have obtained for  corresponds in all points, very 
exactly, to the time-dependent Schrödinger’s equation of quantum physics for a non-relativistic 
particle, provided that the universal constant  that we have conjectured is effectively the 
Planck constant of quantum physics. This perfect similarity is obviously not fortuitous and allows 
for the first time to give a very understandable interpretation of quantum physics, by saying that 
«the Schrödinger’s equation is a wave equation deduced from the second partial Newton 
equation of a perfect cosmological lattice, in the domain , which makes it possible to 
calculate the envelope  of the dynamic gravitational fluctuations  associated 
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with a topological singularity of mass  and subjected to a potential ».

The standing wave equation of a singularity placed in a static potential

If the potential in which the topological singularity is placed is a static potential , the left 
term of the non-relativistic wave equation reported in figure 11.4 is an operator giving the total 
energy  of the singularity, which must obviously be a constant since the singularity moves 
into a static potential. Using conjecture 10 to make the time derivative disappear, we obtain a 
time-independent wave equation.

Here we find the expression of the stationary Schrödinger’s equation of quantum physics, 
which is, as we know in quantum physics, a problem with eigenvalues, which means that the 
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Hamiltonian, that is say the sum of the potential energy and the kinetic energy associated with 
the movement of the singularity, given by , is a constant which can 
take various eigenvalues  according to the potential , so that the wave function has 
eigenstates  satisfying the Schrödinger's equation with eigenvalues reported in figure 11.4.

On the basis of the solution  of the wave equation, we deduce the true physical 
quantity, namely the stationary expansion perturbations associated with the singularity plunged 
in the stationary potential , given thanks to the relation of figure 11.3 by the expression 

, and it is the real part of  which will 
represent the real stationary expansion perturbations. This solution for stationary gravitational 
perturbations is then presented in the form of oscillations of fixed pulsation   
dependent on the eigen energy , oscillations which are modulated by a stationary envelope  

 dependent on the potential  via the Schrödinger's stationary wave equation.

About the interpretation of the wave function of gravitational fluctuations

The power of the dynamic Schrödinger equation (figure 11.3) and the stationary Schrödinger 
equation (figure 11.4) is well known in quantum physics. Many consequences linked to 
Schrödinger's equations are obviously directly applicable in the case of our theory.

For example, the operator commutators and the Heisenberg uncertainty principles are 
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deduced directly using the conjecture 10. Thus, the quantum operator of momentum 
 does not commute with the position operator  of a particle, because 

the commutator  is not zero. Likewise, the energy operator 
 does not commute with the time operator  since the commutator 

 is not zero. These two commutating 
relations are expressions of the Heisenberg uncertainty principle, 
which says that the measurements of certain pairs of observables 
disturb each other, so that the measurement uncertainties  ,

 , , , … are linked together by uncertainty relations.
Another example is the calculation of the stationary eigenstates 

of a particle in different types of potentials (harmonic oscillator, 
anharmonic oscillator, particle in a box, rotation of two linked 
particles, particle in a central potential, etc.), or the calculation of 
the density of states in phase space, and many others that are 
beyond the scope of this book, but found in all books dealing with 
quantum physics.

From this perfect correspondence between our theory of 
gravitational perturbations associated with mobile topological 
singularities and the Schrödinger wave equation of quantum physics, experimentally very well 
verified, we deduce à posteriori that our conjecture 10 turns out to be absolutely founded. 
Therefore, our "classical" interpretation of quantum physics, namely that quantum physics 
follows from Newton's second partial equation of the cosmic lattice, is undoubtedly correct, so 
that Newton's equation of the cosmic lattice seems more and more play a crucial role at the 
heart of all known theories of the Universe.

Even though the complex wave functions  do not give any indication concerning the 
position or the trajectory of the singularity, we can still find them a very interesting physical 
interpretation. As these wave functions correspond to a complex representation of the amplitude 
and phase of the gravitational fluctuations of pulsation  associated with the singularity, 
it is entirely logical and probable that if there is locally no gravitational fluctuations, that is to say 
if the wave function is very small in certain places in space, there will be practically no chance of 
finding the topological singularity there, whereas if these fluctuations become maximum in some 
other places, there is a very good chance of finding the topological singularity there.

We therefore come to a very interesting interpretation of this complex wave function : 
it must certainly be associated with the probability of the presence of the topological singularity 
with which the gravitational fluctuations  are associated. The function  is in fact a 
complex mathematical object representing the amplitude and the phase of the gravitational 
fluctuations , while a probability of presence is a positive scalar mathematical object whose 
sum over all the space must be equal to 1. Consequently, one possibility of extracting a 
quantitative value of probability of presence of the topological singularity from the function 

 is to use the fact that the square of an oscillating function does have a positive scalar. 
In the case of a complex quantity like , it is the product  of the 
complex function  by its complex conjugate  which represents the square of 
the amplitude of the function. It is therefore enough to normalize the product  
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taken over a portion  of space by this product taken over all the space  likely to contain 
the singularity to obtain the probability  of finding the singularity in the portion  of space, 
as illustrated in figure 11.5 . We therefore find the usual simple interpretation of the wave 
function in quantum physics, while giving it a conceptual explanation here.

The fact that the complex wave function  makes it possible to deduce, not the 
position of the singularities at a given instant, but their probability of presence in a given place 
and at a given instant, also means that the wave equations, which allow one to compute 

 or  in the stationary case, and which are in fact nothing other than emanations 
of the Newton's equation of the lattice applied to the gravitational fluctuations, are at the same 
time a new form of equations of the dynamics of microscopic topological singularities within the 
lattice.

As the exact microscopic movements of topological singularities are not accessible and 
predictable via their complex wave function , but only the probability of the presence of 
singularities subject to a potential  or  can be obtained, the real movements of 
microscopic singularities within the cosmological lattice must probably be stochastic and chaotic 
movements.

One can imagine for example that random gravitational fluctuations (see chapter 14), but of 
pulsations different from the pulsation  associated with the topological singularity, and 
which would appear and disappear in the vicinity of the singularity, could come to shake it 
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enough by providing it random pulses. These impulses would then contribute to stochastic 
movements of the singularity. But as the stochastic walk of the singularity must also be strongly 
coupled with its proper gravitational fluctuations of frequency , this stochastic walk 
should present a statistical distribution of presence which would manifest itself via the 
probability of presence deduced from the wave function.

There are in fact two observable physical phenomena which present strong analogies with 
such a “stochastic march” of topological singularities:
- in solids, dislocations can exhibit a microscopic stochastic course under the effect of random 
thermal fluctuations (due to phonons) which can shake them up. There then appears a 
stochastic movement of dislocations, called Brownian movement, as described for example in 
the article «overview on dislocation-point defect interaction: the brownian picture of dislocation 
motion» .1

- recent macroscopic experiments carried out in the laboratory with bouncing droplets on a 
vibrated liquid surface present fairly surprising results. The droplets move randomly on the liquid 
surface, which is why they have been called “walking drops” . This “walk” is attributed to a 2

resonant interaction of the gout with its own wave field . The measurement of the probability of 3

distribution of the drop on a limited liquid surface can then have a regularity presenting 
astonishing similar i t ies with the 
probability of the presence of quantum 
microscopic particles confined in a well 
of potential .4

In fact, the interpretation of 
quantum physics that emerges from 
our theory comes close enough to the 
interpretation of Bohm, in its stochastic 
version, introduced in 1954 as a 
development of the pilot wave theory 
of Louis de Broglie of 1927. Indeed, in 
our theory, the wave function   
i s a rea l and ob jec t i ve fie ld , 

corresponding to the envelope of the 
gravitational fluctuations of the volume expansion of the cosmological lattice associated with 
topological singularities, while topological singularities are also, as for them, real particles 
(dislocation or disclination loops) which at all times have real coordinates in space and a given 
momentum. These are indeed the main ideas of Bohm's interpretation. And the image of the 
world conveyed by our theory is clearly indeterministic as is the Bohmian image of quantum 
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physics, in the sense that we do not have direct access to the positions of the singularities, but 
only to the notions of probabilities that we deduce from the wave function, which are only a 
reflection of our ignorance of the underlying history which determines the course of events for 
microscopic topological singularities.

Superposition of topological singularities, bosons, fermions and exclusion principle

One can legitimately wonder what becomes of the field of gravitational fluctuations when two 
topological singularities are close to each other. Imagine that we consider two singularities (a) 
and (b) which evolve in the same space, and therefore in the same potential . Let’s look 
for the superimposed standing wave function, that is, how to write the volume expansion 
perturbations due to the two singularities at the same time. Assuming that in the state of 
stationary superposition, the stationary Schrödinger equations remain valid for the two 
singularities (figure 11.6), let us try to combine these two relations, by multiplying the first by 

 and the second by , and by summing the whole.  We get a new equation which 
is nothing other than the Schrödinger equation for the superposition wave function 

. We therefore deduce that the oscillatory perturbations of the volume expansion 
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due to the superposition of the two singularities are written as a product of the two wave 
functions multiplied by the oscillations  and . We 
note that there are then two types of possible superpositions, according to the signs of 
exponential exponents, which have very different global oscillation frequencies, related to the 
sum and the difference of the energies of the singularities, namely  
and .

By analogy with quantum physics, we will call bosons the singularities corresponding to the 
first superposition solution, whose pulsation is , because the two 
singularities can occupy the same energy level without disappearance of the oscillatory 
perturbations of the expansion. As for the singularities which correspond to the second pulsation 
solution , they will be called fermions because they 
cannot be superimposed in the same energy level since in this 
case the oscillatory gravitational perturbations of the expansion 
disappear.

This observation on the way that the singularities are 
superimposed reveals therefore directly the famous principle of 
exclusion of Pauli: the singularities which combine according to 
the second possibility, namely the fermions, cannot be found in 
the same state of energy.

In usual quantum physics, where we only describe the wave 
functions, and where we ignore the real physical meaning of 
these wave functions in terms of amplitude and phase of 
oscillatory gravitational perturbations, we can show this difference 
between bosons and fermions directly in the superposition wave function . For 
this, we note that for the same value of the energy  of the system, there are two possible 
solutions of the equation for the superposition wave function , which simply correspond to 
exchanging the two identical singularities, let   and . 
Now, one of the fundamental properties of linear and homogeneous differential equations is that 
any linear combination of particular solutions of this type of equation is also a solution, so that 
the most general solution of the Schrödinger equation can be written as a a superposition  

. This expression would seem to indicate that there 
exists a large number of stationary states for a system of two singularities. However, it must now 
be taken into account that, because of the principle of uncertainty linked to the operator 
commutators, identical singularities lose their individuality. We say that identical singularities are 
indistinguishable, which quite simply means that it is not possible to follow the trajectory of a 
given singularity over time. If we consider the wave function  of the system, we know that 

 determines the probability of finding the two singularities in a certain portion of space. If we 
exchange the two singularities, it is clear that  must remain unchanged. On the other hand, 
the phase of  can be modified by this exchange, so that . If we proceed to a 
second exchange of singularities, we obviously have  and we find ourselves in the 
initial state , so that . To satisfy this last condition, it suffices that  or 

.
In the case where the wave function  is transformed into  during the exchange 
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of the two singularities, the wave function is said to be symmetrical, and the singularities are 
called bosons. The wave function is written , where  
is a normalization factor.

If the wave function  changes to , the wave function is said to be 
antisymmetric, and the singularities are called fermions. The wave function is written with a 
normalization factor  like .

The indistinguishability of the two singularities then emerges clearly from the two previous 
expressions of the wave function . We also note that, for the antisymmetric wave function, it 
is not possible that the two singularities are in the same state since  would then be zero: this 
is indeed the mathematical expression at the level of the wave function itself of the principle of 
exclusion of Pauli, who says that two fermions cannot occupy the same state simultaneously 
because the gravitational perturbations disappear in this case.

In the case of a system of  identical singularities, the preceding concepts are easily 
generalized. In the case of bosons, the symmetric wave function  of the system is written 
in the form , where the sum relates to the possible 
permutations of all the different states of the system. If the system has  singularities in the 
energy state ,  singularities in the energy state ,  singularities in the energy state , 
etc., the number of terms making up the wave function  is given by all the possible 
permutations, namely  . 

In the case of fermions, the antisymmetric wave function  of the system can be written 
in the form of a determinant, as shown in figure 11.6. Indeed, the permutation of two columns of 
a determinant changes the sign of the determinant, which ensures the anti-symmetry of the 
wave functions under the exchange of two of the singularities. On the other hand, we also know 
that a determinant is zero if two lines are identical, which here corresponds to the expression of 
the Pauli exclusion principle, namely that a given state cannot be occupied by more than one 
fermion.

Demystifying quantum physics

It is quite remarkable that the wave function associated with the gravitational perturbations of 
the volume expansion is perfectly similar to the quantum wave function of a particle, and that it 
satisfies a wave equation identical to Schrödinger's equation. This obviously deserves further 
discussion.

The relativistic wave equation obtained in figure 11.1, deduced from Newton's second partial 
partial equation in figure 5.1, made it possible to describe the "gravitational" expansion 
fluctuations associated with a massive singularity moving at relativistic speeds within the lattice. 
As for the non-relativistic wave equation of a singularity linked by a potential, it is absolutely 
identical to the Schrödinger’s equation of quantum physics since their respective interpretations 
in terms of probability of presence of a particle are identical. The key passages used to arrive at 
the Schrödinger equation of a singularity from Newton's second partial equation for gravitational 
expansion perturbations are, first, the conjecture 10 postulating the physical meaning of the 
operators of time and of space applied to the wave function and, secondly, the “reduction” of the 
wave equation reported in figure 11.3 allowing to pass from a second degree wave equation in 
spatial derivatives to a first degree wave equation in spatial derivatives, again using the 
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conjecture 10. These are the two key passages that allowed to establish a physical theory 
entirely similar to quantum physics to describe the microscopic behaviors of topological 
singularities within a cosmological lattice not presenting longitudinal waves.

But our theory still lacks a deep physical explanation of these two key passages and their 
reason for being. In particular, we can legitimately ask the question of why the Planck constant 
exists, where its value comes from, and whether it is really a universal constant or if it is 
deductible from the other constants appearing in our theory. An answer to these questions 
would allow an even more in-depth and definitive understanding of quantum physics.

But in our theory, the complex wave function  and the Schrödinger wave equation 
are still physically demystified, since they become there the mathematical expressions of the 
envelope and of the phase of the vibratory fluctuations of the lattice expansion, therefore 
gravitational fluctuations correlated with topological singularities.

From this completely innovative interpretation of quantum physics, the possibility of having 
“bosons” and “fermions” type singularities, the fact that there is indistinguishability between 
topological singularities when they contribute to the same field of correlated gravitational 
fluctuations, and the fact that singularities of the "fermion" type must satisfy an exclusion 
principle similar to the Pauli exclusion principle is probably the most remarkable and astonishing 
point of our calculations, because it demystifies a side that has always been most obscure in 
quantum physics.

Finally, it is equally remarkable to note that all these properties, such as for example the 
properties of superposition (the symmetry of the wave function  of singularities of bosons 
type and the anti-symmetry of the wave function  of singularities of fermions type, the 
indistinguishability of topological singularities and the principle of exclusion) are direct 
consequences of the fact that the gravitational fluctuations associated with one or more 
singularities must satisfy Newton's second partial equation of the cosmological network.

In fact, the image of a field of vibrational gravitational fluctuations correlated with a 
topological singularity has enormous potential to explain simply observed and / or calculated 
quantum phenomena, but still remains very mysterious in the framework of usual quantum 
physics. Just think of the following few examples:
- the concept of wave-particle duality of quantum physics, which finds an immediate and simple 
explanation here since the particle is the topological singularity, and that the wave is the field of 
the gravitational fluctuations which is correlated to it,
- the experiments of quantum interference obtained by the passage of particles through two 
slits, but by letting pass only one particle at a time, which can very well be explained now by the 
fact that each topological singularity has actually to go through only one of the slits. But the field 
of gravitational fluctuations associated with it crosses the two slits, hence the possibility of 
interference of these fluctuations at the exit of the two slits, resulting in their coupling with the 
singularity a modification of its trajectory, and finally a statistical distribution of the successive 
impact points of the particles on the screen placed after the two slits,
- the Heisenberg's uncertainty principle, which is obviously satisfied in our theory since it admits 
a fortiori the same interpretation of the operators acting on the wave function as quantum 
physics, and therefore satisfies all the relations of classical quantum physics . The uncertainty 
relationships are then directly linked to the existence of gravitational perturbations correlated to 
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the singularity,
- the very mysterious experiments of quantum entanglement and quantum decoherence, since 
one can very well imagine that the entanglement is the fact for two or more topological 
singularities to have in common a single field of gravitational fluctuations, in which case the fact 
of acting on only one of the singularities will modify this common field of gravitational 
fluctuations, which will necessarily act on the other singularities which participate in the 
entanglement, and which can also cause quantum decoherence, in other words the decoupling 
of the topological singularities involved in the common field of gravitational fluctuations.

Einstein said "God does not play dice" when talking about quantum physics, meaning that 
the quantum physics of his time was not a complete theory, and that there had to be a rational 
and pragmatic explanation for the probabilistic aspect of quantum theory. This opinion of 
Einstein has been strongly contested, not to say highly criticized. It has been demonstrated that 
there could not be local hidden variables to explain quantum physics, but on the other hand 
nothing prevents there from being non-local hidden variables, and this is precisely the case of 
gravitational fluctuations correlated to topological singularities. It is therefore clear here that 
Einstein was indeed right, and that there is indeed a completely rational explanation of quantum 
physics.

There is, moreover, a highly ironic note in the famous Einstein sentence, since quantum 
physics would be explained by gravitational fluctuations of the volume expansion field and by a 
stochastic movement of topological singularities interacting with these gravitational fluctuations. 
And these are precisely the ingredients with which God, if he existed, could play dice, and that, 
oh ironic irony, it is precisely Einstein himself who is the inventor of the explanations of the 
General Gravitation and the Brownian Motion, which earned him the Nobel Prize in physics.

Thus, our explanation of quantum physics proves Einstein right, by showing that quantum 
physics is the expression of gravitational fluctuations at very small scales in a cosmological 
lattice without propagation of longitudinal waves. Consequently, all modern attempts to quantify 
gravitation are bound to fail since quantum physics is precisely the expression of dynamic 
gravitational fluctuations on a microscopic scale.
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Chapter 12

Spin of the topological loops

           
In this chapter, we are going to be interested in finding the solution of Newton's second 

partial equation within the torus itself surrounding a twist disclination loop. At the very heart of a 
loop of topological singularity, one demonstrates that it cannot exist static solutions to Newton's 
second partial equation for longitudinal gravitational fluctuations. It therefore becomes 
imperative to find a dynamic solution to this equation, and the simplest dynamic solution that it is 
possible to envisage is that the loop turns on itself, in a quantified rotational movement of the 
loop around one of its axes. By solving this rotation movement with Newton's second partial 
equation, which is in this dynamic case nothing other than the Schrödinger’s equation, one 
obtains the quantified solution of the internal gravitational fluctuations of the loop, which is in 
fact the spin of the loop, which can take several different values (1/2, 1, 3/2, etc.) and which is 
perfectly similar to the spin of the particles of the standard model. If the loop is composed of a 
twist disclination loop, there also appears a magnetic moment of the loop, proportional to the 
famous Bohr magneton.

On shows that, in the case of our theory, this rotation movement is very real, and that it does 
not infringe special relativity, contrary to what believed the pioneers of quantum physics. Indeed, 
the argument of the pioneers of quantum physics was that the spin of a particle can in no case 
be a real rotation of the particle on itself because of an equatorial speed of rotation greater than 
the speed of the light. This argument is swept away in our theory by the fact that the static 
expansion near the core of the loop is very high, which leads to celerities of light in the vicinity of 
the core of the loop much higher than the equatorial speed of loop rotation.

In this argument on the absolute necessity of a spin of singularity loops to satisfy Newton's 
second partial equation, only the exact value of the spin of a loop, namely the values 1/2 or 1, 
has no simple explanation yet.

About the non-existence of a static internal field of perturbations of expansion
          within a loop of twist disclination (BV)

We have already calculated the static external fields of gravitational perturbations of 
expansion of a twist disclination loop (figure 7.10), and we have seen that these fields are 
responsible for the effects of gravitational attraction at long distance from the loop via gravitation 
force (chapter 8), but also short-range coupling effects with other loops via the weak force 
(chapter 9).

On the other hand, we have not yet looked into the case of the expansionperturbation field in 
the immediate vicinity of the twist disclination loop. This field must be calculated within the torus 
surrounding the twist disclination loop. By using a simplified static version of Newton's second 
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partial equation of figure 5.1, in which one introduces the energy density  of distortion 
associated with the fields of rotation and shears of the screw pseudo-dislocation, one obtains an 
equation of the second degree whose solution  within the torus is shown in figure 12.1, 

and in which  represents a point on a section of the torus relative to the center of this section.
So that this equation has a real solution, it would be necessary that the argument of the root 

is positive, therefore that the distance  in the middle of the loop satisfies the condition of 
existence reported in figure 12.1, which means that the distance  must be greater than a 
certain critical value  for a static solution to exist. If this critical distance turns out to be 
greater than the radius   of the loop, it is clear that a static solution becomes impossible. It 
is quite easy then to show that the condition for which  is in fact a condition on the 
value of the module , which is expressed as , and which 
means that, if  is greater than the critical value , there cannot exist a static solution for 
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gravitational perturbations within the torus surrounding the disclination loop.
It is interesting to involve here numerical values which one can draw from the real world, by 

using for example the analogy with the electrons, namely that, for these, one has an electric 
charge being worth , an estimated radius of the order of

 and that the elastic moduli  are in fact the analogs of the dielectric constant 
of vacuum, so that , the condit ion  would then imply that 

.
The condition that the module  is greater than the critical value  is very likely 

to be fulfilled in the presence of a twist disclination loop, which is strongly supported by the 
numerical application obtained thanks to the analogy with the electrons of the real world. Let us 
therefore admit a new conjecture, conjecture 11, which states that  satisfies well the relation 

 in the perfect cosmological lattice.
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Admitting this conjecture, the “gravitational” perturbation field within the torus surrounding 
the twist disclination loop cannot be a solution of the static equation, and must therefore 
become a dynamic internal “gravitational” perturbation field, solution of Newton's second partial 
equation in figure 5.1. But around the loop, this Newton equation for dynamic perturbations is 
nothing other than the stationary Schrödinger equation in figure 11.4. It is therefore necessary to 
find a movement of the loop which is not a translation of it, but a movement confined to the 
same place in space. However, the only possible movement of the loop which is confined to the 
same place in space is actually a rotation of the latter on itself.

Classic rotation of a twist disclination loop (BV)

Let us therefore consider a twist disclination loop of radius  as shown in figure 12.2, and RBV
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imagine that it can rotate around a direction axis  contained in the plane of the loop with a 
pulsation , which is not impossible since the loop actually corresponds to a screw pseudo-
dislocation. If we first deal with this problem in a conventional way, we can use polar 
coordinates to define the angular momentum  of the loop around its axis of rotation, 
assuming the mass of the loop distributed uniformly over the surface of the loop, as illustrated in 
figure 12.2. As we know in fact only approximately the real distribution of the mass in the vicinity 
of the loop, we will introduce a numerical correction factor  such as  in the calculation 
of , as represented in figure 12.2.

We can then introduce the moment of inertia of the loop  around the axis of rotation using 
the known relation . As a twist disclination loop also has a rotation charge 

, analogous to the electric charge, it also has a «magnetic moment»  in the direction 
of the rotation axis which is defined in figure 12.2, assuming the charge distributed on the 
contour of the loop. As we only know approximately the distribution of the charge in the vicinity 
of the loop, we will also introduce a numerical correction factor  such as . And then we 
find a direct relationship between the «magnetic moment»  and the kinetic moment  of 
this loop, which is called the gyromagnetic ratio  which is roughly equal to .

We can also calculate the kinetic energy  associated with this rotation movement 
around the axis of rotation, as shown in figure 12.2. With the corrective factor  on the 
distribution of mass within the loop, we obtain a value of the energy which is directly related to 
the angular momentum and the moment of inertia since .

Quantification of the angular momentum of the screw loop

Assuming that the twist disclination loop (BV) actually turns on itself, this microscopic 
movement of rotation will induce a field of gravitational fluctuations in the vicinity of the loop, 
depending on the second partial Newton equation of figure 5.1. Now we saw in the previous 
chapter that in the absence of a time-varying potential, Newton's second partial equation leads 
to the stationary Schrödinger equation in figure 11.4. The treatment of the rotation movement of 
a microscopic object around an axis by the stationary Schrödinger equation is succinctly 
summarized in figure 12.3. 

For a particle subject to rotation, it is preferable to describe the operator  linked to the 
classical Hamiltonian in spherical coordinates . In the absence of a potential, this 
operator  is linked to the square operator of the angular momentum  by the last relation 
obtained in figure 12.2. With the expression of this operator in spherical coordinates, we deduce 
the stationary Schrödinger's equation in spherical coordinates, whose stationary solutions have 
quantified energy levels  of rotation. For each value of the energy  
corresponding to a given angular speed, there are  different eigenstates corresponding 
conventionally to different orientations of the axis of rotation. It is said that the energy state  
has a degeneracy of . 

It is the magnetic quantum number  that characterizes the quantification of the projection 
of the angular momentum along a certain axis . It can take the  following values

, so that the projection  of the angular momentum on an axis  
takes the values . Apart from the kinetic energy and the kinetic momentum of the loop, 
we still deduce the quantized magnetic moment of the loop along the axis , which depends 
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Ĥ L̂2

ε j = !
2 j( j +1)/(2IBV ) ε j

2 j +1
ε j

2 j +1
mz

z 2 j +1
mz = j , j −1,...,1− j ,− j Lz Oz

Lz = !mz

Oz



Chapter 12240

directly on the magnetic quantum number , which also depends on the Landé factor  of 
the screw loop, which is roughly equal to 2 in the case of the twist disclination loop, but which 
would depend on the distribution of mass and charge in the case of other types of topological 
singularities. We note that, in the expression of the quantified momentum, we then find the 
value of the famous Bohr magneton, namely .

Finally, the resolution of the stationary Schrödinger equation in this case makes it possible to 
deduce the eigen wave functions  correlated to the different energy levels , and to 
use them to obtain the stationary gravitational perturbations  in the immediate vicinity 
of the loop under the form .

About the completely classic interpretation of the spin of a particle

In quantum physics, the spin of a charged particle like the electron was initially attributed to a 
proper rotation of the particle. However, the fact that the electron is considered a spherical 
particle, which is extremely small, has raised doubts about this "classic" interpretation of spin. 
But the strongest argument for abandoning this "classic" interpretation, although the effects of 
spin like the magnetic moment of the electron correspond strictly to a proper rotation of the 
particle on itself, is the fact that calculating the equatorial speed of rotation of the electron gives 
a speed much higher than the speed of light, which does not at all fit with the theory of Special 
Relativity.

But it is quite different in our theory. Indeed, let us try to calculate the equatorial speed in the 
case of the twist disclination loop, which is obtained from its radius  and the pulsation  
of its rotation movement as . To determine the rotation pulsation , we 
equal the classical kinetic energy of rotation of the loop to its kinetic energy determined via the 
Schrödinger equation, and we obtain the expressions for  and  reported in figure 
12.3. Numerically, let's use the known values of the electron, namely its mass 

, its approximate radius on the order of , the value 
of  equal approximatively to 1, the value of the Planck constant  , 
and its known spin of , and it then comes the following approximative value of the 
equatorial speed . We find that the equatorial speed of rotation of 
the loop is much greater than the speed of light  within the lattice, as 
the pioneers of quantum physics had found.

But a completely new fact comes into our theory, which is the enormous static volume 
expansion in the immediate vicinity of the rotating loop. Indeed, let's express the static volume 
expansion at the limit of the torus where expansion perturbations can become static. At this 
limit, the static volume expansion is maximum, and it is given by the unique solution of the 
equation for  in figure 12.1 when the term under the root is zero, and we obtain that 

. We therefore deduce that the 
actual speed of the transverse waves in the immediate vicinity of the loop is in fact worth 

. Therefore, the speed  is certainly much 
higher than  since . In fact, it is enough that 

 for the equatorial speed of rotation 
of the loop to be possible. We can try to determine what is the limit value of the module  so 
that the rotation of the loop is possible. It’s very easy to get that we need just to have that 
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. Now this condition is always satisfied since we need, from conjecture 6, 
that . We are therefore assured that, in our theory, the rotation movement of the 
loop on itself is not only perfectly possible, but that it is especially compulsory since it is the only 
possible solution to Newton's second partial equation.

We therefore conclude that there is once again a completely “classic” explanation of the 
notion of spin of a particle, as a real quantified movement of rotation of the loop around an axis, 
which does not infringe in any way the principles of special relativity. This explanation removes 
on the one hand all the mysterious side of the notion of spin in quantum physics, and on the 
other hand perfectly explains the existence of a quantified magnetic momentum of spin of the 
electron, directly associated with the real rotation of the charged loop.

About the problem of the spin value of a topological loop

If the existence of a proper rotation of the loops is a necessity in our theory to satisfy 
Newton's second partial equation in the immediate vicinity of the loop, there is still a question to 
which we have no answer: what value must it attribute to the spin of the loop? Otherwise 
formulated, this question amounts to looking for the value to be assigned to the azimuthal 
quantum number  which characterizes the quantification of the energy of rotation and the 
angular momentum of the loop, as well as its magnetic moment (figure 12.3).

Experimentally, we know that the spin of the electron is worth  and that the spin of 
the intermediate boson  is worth . But the underlying reason why these particles have 
these particular values remains very mysterious. In our theory, the same goes: apart from the 
fact that the spin  and  are the weakest, and therefore correspond to the lowest 
possible kinetic energies, no reasonable argument allows for the moment to make a choice of 
the value of  to choose for a twist disclination loop. So let's look at the effect of a spin 

 or a spin  on a twist disclination loop:

- Loop of twist disclination with a spin 1/2
Consider a twist disclination loop of spin 1/2. Whatever the direction of the axis of rotation, 

there can only be two eigenstates of the loop, corresponding to a dextrorotatory or levorotatory 
rotation of the loop around the axis of rotation, since the state of degeneracy of the energy is in 
this case of . The kinetic energy and the kinetic momentum of the loop become 
therefore  and  in this case. As for the magnetic 
quantum number , it can take the two values  so that the projection  of the 
angular momentum on an axis  takes the values . So here we find exactly the notion 
of spin of a particle of spin 1/2. The magnetic moment of the loop along the axis  is then 
written  with .

- Loop of twist disclination with a spin 1
Now consider a twist disclination loop of spin 1. Whatever the direction of the axis of rotation, 

there can then be only three eigenstates of the loop, corresponding to a dextrorotatory rotation, 
to a levorotatory rotation, or to no rotation of the loop around its axis of rotation, since the state 
of degeneracy of the energy is worth . in this case. The kinetic energy and the kinetic 
momentum of the loop are worth  and  respectively. As for the 
magnetic quantum number , it can take the following three valuess  so that 
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the projection  of the angular momentum on an axis takes the values 0 and . We thus 
find here exactly the notion of spin of a particle of spin 1. The magnetic moment of the loop 
along the axis  is then written   with .

About the link between the concepts of bosons, fermions and spin

The question of knowing if a loop of topological singularity behaves like a fermion or a boson 
in the event of superposition of several loops (see chapter 11) and the question of the value of 
the spin of a loop of topological singularity are undoubtedly very closely linked. Indeed, we know 
from quantum physics that fermions have a spin of 1/2 and that bosons have a spin of 1. From 
quantum physics, we also know that the spin component of the wave function  of two 
particles is symmetric when the spins of the two particles are parallel, and antisymmetric if the 
spins are anti-parallel, and we therefore have the following possibilities for the wave function  
of two particles:
• Fermions: antisymmetric wave function parallel spins and antisymmetric spatial 
component, or anti-parallel spins and symmetric spatial component.
• Bosons: symmetric wave function  parallel spins and symmetric spatial component, or anti-
parallel spins and antisymmetric spatial component.

It would be very interesting to explore this problem further, and to see what topological 
interpretation to give it within the framework of our theory of topological loops. We will return to 
this problem in Chapter 13 dealing with the standard particle model.

About the very important consequences of the existence of spin
          on the cosmological behavior of the lattice

The fact that there is a spin of particles has very important consequences for the 
cosmological behavior of the lattice. Indeed, as the presence of the spin implies (i) that

, with   for the electron, and (ii) that , we deduce that
, so that the expansion of the lattice cannot be infinite and that we find ourselves 

necessarily in one of the universe oscillating between big-bang and big-crunch. By adding to 
this condition on  the conditions drawn from conjecture 6, in particular that 

, we deduce that there is only one admissible behavior for the cosmological 
evolution of the lattice corresponding to figures 3.8 (g) and 3.10.
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Chapter 13

Standard model of particles and strong force

           
We have previously shown that the perfect cosmological lattice presents strong analogies 

with all the major theories of modern physics, namely the equations of electromagnetism, 
special relativity, general relativity, black holes, cosmology, dark energy and quantum physics, 
including the notion of spin and magnetic moment, and that there can exist three types of loops 
of basic topological singularities respectively having the attributes of an electric charge, an 
electric dipolar moment or a load of curvature by bending (which is the exclusive prerogative of 
our theory of the perfect cosmological lattice, and which explains quite simply several 
mysterious phenomena at the present time, like the weak force of coupling of two topological 
loops, the dark matter, the galactic black holes and the disappearance of anti-matter).

In this chapter, we will focus on finding and describing the ingredients that could explain, on 
the basis of loops of basic topological singularities, the existence of the current standard model 
of elementary particles. In other words, we will try to find what mechanisms could generate the 
families of fundamental particles such as leptons and quarks, what could be the origins of the 
existence of three generations of these elementary particles, and where could the strong force 
come from with asymptotic behavior which binds quarks together to form baryons and mesons.

This chapter does not pretend at all to provide an elaborate theory or a definitive and 
quantitative solution to explain the standard model of particle physics, but rather to show by 
some specific arguments that it is certainly the choice of a particular microscopic structure of the 
perfect cosmological lattice which could provide an answer to the various questions which arise 
concerning the standard model. This chapter will therefore bring some elements of reflection by 
showing that it can appear in a solid of well chosen structure a whole "zoology" of loops of 
topological singularities which can have a strange family resemblance with the elementary 
particles of the standard model. It will also make it possible to present behaviors very similar to 
the behaviors of elementary particles, such as the presence of a strong asymptotic force which 
can participate in a coupling between topological loops.

The current Standard Model of elementary particles

At present, particle physics explains the intimate structure of matter using a model called the 
Standard Model of Elementary Particles (figure 13.1). This model reveals fermions, particles of 
matter that have two fairly different families, the lepton family and the quark family, as well as 
three types of interactions that can occur between these fermions: electromagnetic interaction, 
weak interaction and strong interaction.

The interactions between the fermions of matter take place through the exchange of particles 
called gauge bosons, corresponding to the quanta of the quantum fields of interaction 
concerned. The electromagnetic interaction uses the photon , the weak interaction with three 
gauge bosons  ,  et , and the strong interaction with 8 gauge bosons called gluons.

γ
Z 0 W + W −
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As for the mass of particles, it is introduced into the standard model by a new interaction 
associated with the Higgs quantum field, the mediating particle of which is called the Higgs 
boson.

Leptons and quarks

The family of leptons (figure 13.1) is made up of three generations of two types of particles: 
three electrically neutral particles called electron neutrino ( ), muon neutrino ( ) and tau 
neutrino ( ), and three electrically charged particles, called electron ( ), muon ( ) and tau 
( ). Each of these six particles has in principle an anti-particle ( , , , ,  and ) 
which is essentially characterized by an opposite electric charge, which already raises a 
question regarding the existence of anti-particles of neutrinos. Leptons are quasi-point particles 
that are sensitive to electromagnetic interaction and weak interaction, but not strong interaction. 
It has long been thought that neutrinos do not have mass, but recent measurements show that 
this is not the case.

The family of quarks is also composed of three generations of two types of electrically 
charged particles: a first generation is formed of the quarks down (d) and up (u), respectively of 
electrical charges -1/3 and +2/3 of the electric charge of the electron, a second generation 
composed of the quarks strange (s) and charm (c), of electric charges -1/3 and +2/3 
respectively of the electric charge of the electron, and a third generation composed of the 

νe νµ

ντ e− µ−

τ − νe νµ ντ e+ µ+ τ +
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bottom (b) and top (t) quarks, respectively of electrical charges -1/3 and +2/3 of the electrical 
charge of the electron. Each quark has its electric charge anti-particle of opposite sign  ( , , 

, ,  and ). The quarks are sensitive to both electromagnetic, weak and strong 
interaction. Quarks are not free particles, but they exist as a collection of quarks called hadrons. 
Quarks are linked within hadrons by strong force.

Hadrons come in two forms: mesons made up of a quark and an anti-quark, like particles  
,  or , and baryons made up of three quarks, like proton  and 

neutron , or of three anti-quarks.
Each particle of matter, whether a lepton or a quark, has a non-zero mass and a spin 1/2, 

which gives it the fermion status.

Fundamental interactions and gauge bosons

In the Standard Model, we consider the following three possible interactions between 
particles: electromagnetic interaction, weak interaction and strong interaction. These 
interactions are described by quantum field theories, except the gravitational interaction which 
could never be introduced in the Standard Model, despite an intensive search for the graviton 
gauge boson which would be associated with it. Each interaction therefore calls upon a field 
which is specific to it, and is then carried out by the exchange of a particle called a gauge 
boson, corresponding to the quantum of the field concerned. The electromagnetic interaction 
uses the photon ( ), a boson of zero mass gauge. The weak interaction uses the three gauge 
bosons  ,  and , particles of non-zero mass and zero, positive or negative electrical 
charge respectively. As for the strong interaction, it uses 8 gauge bosons called gluons, in fact 
particles of zero mass.

The gauge bosons associated with these interactions are spin 1 particles, which explains 
their name as bosons.

Electromagnetic interaction and quantum electrodynamics

The quantum theory that describes electromagnetic interaction is called quantum 
electrodynamics. It is a quantification of the electromagnetic field: the charged particles interact 
there by the exchange of quanta of the field, the photons. It is a relativistic theory, because it 
takes into account the propagation time of the interaction, namely the speed of the vector 
boson, the photon. In this theory, we can represent an interaction in a simple and convenient 
way, thanks to Feynman diagrams. In figure 13.2, the example of the interaction between two 
electrons is represented by the exchange of a virtual photon, qualified here as virtual because it 
cannot be detected experimentally.

Weak interaction and electroweak theory

The weak interaction acts between all elementary fermions, whether they are leptons or 
quarks (Figure 13.3). This is the only interaction that acts on neutrinos. It is responsible for 
nuclear decay. This interaction has two aspects: the weak interaction by charged currents, 
whose vectors are the gauge bosons  and , and the weak interaction by neutral 
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current, whose vector is the gauge boson . The gauge bosons are the only ones which 
present masses, and these are very high, which imposes, by combining the relation 

 of uncertainty of Heisenberg and the relation  of Einstein, a very short 
lifespan  of these bosons, and consequently, since the speed of light is an insurmountable 
limit, an extremely small range of the interaction via these bosons (of the order of ), 
which explains why this interaction does not manifest itself than at the scale of the atomic 
nucleus.

As the gauge bosons  et  have a non-zero electric charge, fermions can change 
electric charge during an interaction by exchange of  or , which changes their flavor 
(we call flavor of a fermion its nature: electron, neutrino, quark u, quark d, etc.). For example, 
beta radioactivity is explained by the emission of a  by a quark d of the neutron, which then 
changes flavor and becomes quark u. Then, the  materializes in the form of an electron and 
an electronic anti-neutrino (figure 13.3, b).

The gauge boson  has no electrical charge, and therefore cannot induce a change in 
flavor during a weak interaction. The weak interaction by neutral current is quite similar to the 
exchange of a photon. Two fermions which can exchange a photon can also exchange a , 
with the exception of the neutrino which can exchange a  but cannot exchange a photon 
since it is a neutral particle.

There are several types of weak interactions according to the fermions which interact: 
leptonic interactions, semi-leptonic interactions and hadronic interactions, of which examples of 
Feynman diagrams are reported in figure 13.3.

Note that the electromagnetic interaction and the weak interaction were unified in a quantum 
theory which was called electroweak theory.

Strong interaction and quantum chromodynamics theory

The strong interaction is a short-range interaction between quarks via gluons, gauge bosons 
that are vectors of this interaction. It is this interaction which explains not only the mesons 
composed of a quark and an anti-quark and the baryons composed of three quarks, but also 
how neutrons and protons can bond to form atomic nuclei. 

To develop a quantum theory of strong interaction, it was necessary to call upon a new type 
of charges, called charges of color, from where the name of theory of quantum 
chromodynamics. Each quark has a charge of color, red (R), green (V) or blue (B), and anti-
quarks have a charge of one of the complementary colors( ), ( ) or ( ).

The strong interaction is then explained by the exchange of "colored" gluons between 
elementary fermions with a color charge, which allows the color charges to be exchanged 
between fermions. There are 8 gluons of different colors, corresponding to 8 different 
combinations of a color and an anti-color. Thus, when exchanging a gluon between two quarks, 
they exchange their respective colors. In addition, since gluons carry a charge of color, they can 
also interact with each other, which is not the case with other gauge bosons. Leptons do not 
have a color charge and therefore do not undergo strong interaction.

Although the mass of the gluons is zero, the strong interaction is of very short range, of the 
order of , and it has a rather strange characteristic: the more the quarks are distant 
from each other, the more the force of interaction between them is strong. And if they are 
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infinitely close, they no longer interact at all. This property is called asymptotic freedom, and it is 
responsible for what is known as the confinement of quarks inside hadrons: this implies that 
quarks cannot exist in the free state.

The particles formed from quarks are therefore hadrons, that is to say bound states of 
several quarks via gluons. Hadrons must necessarily be "white", that is to say have a zero color 
combination. We can therefore consider:
- the baryons, combinations of three red, green and blue quarks respectively, or else anti-
baryons, combinations of three anti-red anti-green, and anti-blue, respectively. The triplets 
formed of three quarks (among the quarks u, d, s or c) are represented in the diagrams of figure 
13.4 (a), in the cases of global spin of  and  with the name given to the particle 
corresponding to this triplet,
- the mesons, which contain a colored quark (red, green or blue) and an anti-quark of the 

1/ 2 3 / 2
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corresponding anti-color (anti-red, anti-green or anti-blue). The doublets formed by a quark and 
an anti-quark (among the quarks u, d, s or c) are represented in the diagram of figure 13.4 (b), 
in the case of global spin of  and , with the name given to the particle corresponding to this 
doublet.

Particle masses and Higgs boson

In a first version of the Standard Model, all the particles described (leptons and quarks) had 
to be of zero mass, which is obviously false as the table in figure 13.5 clearly shows. To make 
up for this gap in the initial Standard Model, theorists have imagined a fifth interaction, different 
from the other four (electromagnetic, weak, strong and gravitational), and calling on a field 
whose quantum is a particle of spin 0: the boson of Higgs  (figure 13.1). It is then the 
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interactions between the elementary fermions of zero mass and the Higgs field via the Higgs 
bosons which provide a mass to the fermions of the Standard Model. The existence of the Higgs 
boson has been verified experimentally at CERN, quite recently.

The problems of the standard model which already have solutions
          in the theory of the perfect cosmological lattice

The standard particle model, despite its undeniable success, leaves many questions 
unanswered. In the rest of this chapter, we will try to see if an approach to the standard model 
by our theory of the perfect cosmological lattice can provide an answer to these various 
questions. It will not be a question here of giving a complete and quantitative answer to all these 
problems, but of sketching, in a very qualitative way, in other words "with the hands", how the 
cosmological lattice could provide a solution to these problems. Some of the problems raised by 
the standard model already contain a sketch of an explicit solution in the previous chapters.

So let's take a tour of the problems posed by the standard model which already have an 
explanation in the theory of the cosmological lattice and explain how the cosmological lattice 
answers, at least partially, to these various problems:

- the absence of gravitational interaction in the standard model:
The gravitational interaction is directly part of the results obtained with the cosmological 

lattice, as a static solution of Newton's second partial equation, and it is moreover this same 
equation in its dynamic form which made it possible to introduce and give a simple explanation 
of quantum physics and the notion of spin of loop topological singularities.

- the need for the Higgs boson and the impossibility of calculating the masses of the various 
fermions and bosons in the standard model:

In the basic standard model, fermions have no mass, and theorists had to introduce an ad-
hoc mechanism, the interaction with the Higgs field via the Higgs boson, which provides the 
mass of inertia to the elementary particles. However, in the standard model, it is not possible to 
obtain quantitative values of the inertia masses of the particles, which must therefore be 
"calibrated" on the values obtained experimentally. The theory of the cosmological lattice 
actually contains a mechanism fairly analogous to the Higgs field: it is the field of the masses of 
inertia of the "corpuscles" of the network (which are therefore a kind of analog of the spin 0 
Higgs bosons) as well as the elastic energy of distortion of the lattice, which are responsible 
together for the relativistic properties of inertia of topological singularities, and which allow a 
quantitative calculation of the masses of inertia of topological singularities, without having to 
“calibrate” these values on results experimental.

- the physical nature of the electromagnetic interaction in the standard model:
The electromagnetic interaction, as well as its vector boson, the photon, with its various 

quantum properties, are an integral part of the theory of the cosmological lattice, and have there 
a simple and well-defined physical explanation based on the field of rotation within the 
cosmological lattice.

- the physical nature of the weak interaction in the standard model:
A weak interaction presenting an analogy with the weak interaction of the standard model 

has been obtained in the theory of the cosmological lattice (chapter 9), in the form of a very 
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short-range bonding force binding "topological fermions" between them (twist disclination loops 
to edge dislocation loops), by coupling their rotation and curvature charges.

- violation of the CP invariance (charge / parity) in the standard model:
In the current universe, there is a violation of the invariance CP (charge / parity) that 

theorists believe to be the probable cause of the matter / anti-matter asymmetry and of the 
matter / anti-matter imbalance in the current universe. In the theory of the cosmological lattice, 
this weak asymmetry between matter and anti-matter exists well, and is explained perfectly by 
the existence of the charge of curvature by bending of the edge dislocation loops, charge which 
has absolutely no equivalent in the standard particle model. This same phenomenon is also 
behind the explanation of the famous dark matter of astrophysicists and the disappearance of 
anti-matter during the cosmological evolution of the universe.

- the absence of explanation of the dark energy and the dark matter in the standard model:
These two concepts invented by theorists to provide explanations for the acceleration of 

cosmological expansion and the gravitational behavior of galaxies both have a direct 
explanation in the theory of the cosmological lattice: the energy of elastic distortion with regard 
to dark energy and the repulsive gravitational force of the neutrino sea with respect to black 
matter.

The problems of the standard model which have not yet been explained
           in the theory of the perfect cosmological lattice

Among the problems of the standard model of elementary particles, there are some for which 
plausible explanations have not yet appeared in the theory of the cosmological lattice. These 
include:

- the existence of fermions in the form of three generations of leptons and quarks:
If the fermions correspond to topological singularities in the theory of the cosmological 

lattice, the existence of fermions in the form of leptons and quarks, as well as the existence of 
three generations of these fermions, should probably be explained by a judicious choice of the 
structure of the cosmological lattice and of the constitution of elementary particles as topological 
singularities in the form of dispiration loops, judicious assemblies of loops of twist disclination, of 
edge disclination, of edge dislocation and of mixed dislocation .

- the existence of three massive gauge bosons in the weak interaction:
Since the weak interaction has already appeared in our theory as the force linking the twist 

disclination loops to the edge dislocation loops, it remains to find out what the massive gauge 
bosons, vectors of this interaction, are in cosmological lattice theory.

- the existence of a strong interaction linking quarks by a color confinement mechanism:
The strong interaction, with its color confinement mechanism and its vector bosons, the 

gluons, is the only interaction that has not yet appeared in the framework of cosmological lattice 
theory. But we have already encountered mechanisms which could be very interesting potential 
candidates to explain this force and its asymptotic behavior, such as for example the 
mechanisms generating a fault energy within the lattice, such as the dissociation of a dislocation 
by example.

- the existence of quantified electrical charges, of relative values 1, 1/3 and 2/3:
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The electrical charges of fermions have relative values 1, 1/3 and 2/3 between the charge of 
the electrons and the charges of the quarks. These quantified values have absolutely no 
explanation in the standard model, but it is a safe bet that the choice of a particular structure of 
the cosmological lattice could provide an explanation for this problem.

In the rest of this chapter, we will try to find answers and explanations to these questions of 
the standard model, playing exclusively on the structure of the cosmological lattice and on the 
properties of the topological singularities that it can contain. In the standard model, 26 different 
parameters are required in the case where the neutrinos are massive to obtain a functional 
theory, such as the masses of the particles and the intensities of the various forces, and these 
parameters must necessarily be “calibrated” on the values of experimental results. It is a safe 
bet that the model of the cosmological lattice can make it possible to greatly reduce the number 
of parameters to be adjusted, simply by the fact that it can provide new physical explanations for 
phenomena that do not have any in the standard model. 

A "colored" cubic lattice with specific stacking and rotation rules
         to explain the first family of quarks and leptons of the standard model

In the perfect cosmological lattice, we have seen that the simplest topological singularity for 
explaining the electric charge is the twist disclination loop. As we saw in chapter 8, for the 
gravitational interaction of twist disclination loops to satisfy behaviors similar to experimentally 
observed behaviors (time dilation, curvature of wave rays), it is sufficient that the coefficients 

 and  in the expressions  and  giving the 
dependence of the radius and the torsion angle of the twist disclination loop as a function of the 
background expansion of the lattice satisfy the relation . This implies that 
the angle of twist  could
(i) either be a constant independent of the expansion, in which case  and

, which allows the existence of a topological reason for the explanation of the 
existence of discrete values, independent of the expansion, for the angle ,
(ii) either depend in fact on the volume expansion, in which case  cannot take a discrete 
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value which is directly linked to the structure of the lattice since this angle would then depend 
continuously on the volume expansion.

Thus, so that it appears quantified charges like the charge of the electron, but also fractional 
charges of 1/3 and 2/3 of the charge of the electron as it is the case of the quarks of the 
standard model, the screw loops should be obtained by rotating the two planes inside the loop 
by an angle corresponding to the symmetry of the lattice, for example , , , ... in 
the case of a cubic lattice, or , , , ... in the case of a hexagonal lattice.

We will therefore choose hypothesis in the form of the conjecture 12 explained in figure 13.6 
to try to find a cosmological lattice which could explain the standard model of elementary 
particles.

Let us imagine a priori the fairly particular simple cubic lattice represented in figure 13.7, of 
lattice step , which would be made up of “colored planes of corpuscles” with an alternation of 
three fundamental colors R, V, B (Rouge=Red, Vert=Green, Bleu=Blue). These imaginary 
"colors" are chosen for convenience only and have no bearing at this point on the "colors" used 
in the standard model to explain the color charge of quarks and gluons. Even if we do not know 
the physical reason for the existence of these "colored planes", we can assume that this 
alternation of colors of the corpuscular planes can be a condition for the existence of a perfect 
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cosmological lattice in the absence of topological singularities, and that, if the alternation R, V, B 
of the planes of the lattice is broken by the presence of a topological singularity, it may appear 
fault energies if a "corpuscular" plane does not follow the arrangement R, V, B. Let us then 
postulate a priori rules for stacking and rotating the colored planes in this very particular lattice, 
in the form of a thirteenth conjecture shown in figure 13.8.

About the necessity to combine a twist disclination loop with an edge dislocation loop
           in such a lattice and the existence of quarks

We can introduce a twist disclination loop in our particular lattice, symbolically represented in 
figure 13.9h, with an angle of rotation of the lower plane of  or  or . But ±π / 2 ±π ±3π / 2
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according to rule 3, a rotation of  or  induced on all the planes lower than the loop 
will change their color, with, according to rule 2, the generation of a cylinder of stacking faults 
presenting the surface energy fault , as shown schematically in figures 13.9a to 13.9d.

±π / 2 ±π

γ 0
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The change of color of the lower planes in the case of the rotations of  or  also 
implies that rule 1 is violated at the level of the twist disclination loop, and that, to satisfy the 
stacking of the colored planes, it is necessarily to associate with the twist disclination loop an 
edge dislocation loop, symbolically represented in figure 13.9h, of interstitial type if the angle of 
rotation is worth  or  (figures 13.9a and 13.9c) or of vacancy type if the angle of 
rotation is worth  or  (figures 13.9b and 13.9d).

The intermediate plane in the case of the interstitial edge loop has one of the three colors R, 
V, B, while the missing plane in the case of the vacancy edge loop has the anti-color of the color 
of the interrupted plane, namely one of the colors ,  or . The complementary colors of 
R, V, B, which are the colors cyan, magenta and yellow, are used in the figures, as shown in 
figure 13.8. In the four cases (figures 13.9a to d), the twist disclination loop is obviously linked to 
the edge dislocation loop by the weak force described in chapter 9, but also by the need to 
introduce the edge loop to ensure the good succession of the colors of the planes at the level of 
the twist disclination loop.

The dispirations thus formed have a "color", which corresponds to the color of the plane of 
the interstitial loop or to the anti-color of the lacunar plane (the anti-color or color 
complementary to the color of the corpuscular plane in which appears  the vacancy loop).

Concerning the disclination loops of angle  (figures 13.9e to 13.9g), they do not 
need to be combined with edge loops since these rotations do not cause any color change in 
the lower planes, and therefore also no stacking cylinder below the loop.

±π / 2 ±π
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Existence of intermediate gauge bosons

In the table in figure 13.10, we have reported the properties of the different topological 
singularities thus formed, giving them, as in figure 13.9, a name chosen "by chance", and using 
the fact that the two dispirations on the right (a and c) in figure 13.9 are clearly the anti-loops of 
the loops on the left (b and d).

In the table of figure 13.10, one notes then that the charges  of rotation, analogous to 
the electric charge, present three different values, corresponding respectively to 1/3x, 2/3x and 
1x the charge of the loops  or . On the other hand, only the dispirations , ,  et 

 have a non-zero curvature charge  by flexion, and the sign of these charges, positive 
in the case of the vacancy edge loop and negative in the case of the interstitial edge loop, 
implies as we have already postulated it with conjecture 8, that the particles  and  
correspond by analogy to matter and that their anti-particles  et  correspond to anti-matter. 
As for the particles ,  and  which do not have a curvature charge , they must 
certainly have a large mass since they are loops of twist disclination with a very high angle 

 of rotation.
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Weak interaction between quarks via intermediate bosons 

It is interesting to note here that the combination of two dispirations  and , or  and  
helps to create a pure twist disclination loop   or , which can again turn into a pair of 
dispirations   and , or  and . We can also imagine an exchange of a loop  or 
between two dispirations  and , or  and  which will change their nature, or to speak in 
a more colorful or poetic way, their "taste" or their "flavor".

These combinations and these exchanges are illustrated in figure 13.11 in the form of 
Feynman diagrams. They are characterized by the fact that the total rotation  is preserved, 
which at the same time ensures the conservation of the rotation charge . We also note 
that the total charge  is also preserved in these reactions. It is then undeniable that these 
reactions have a strange similarity with the weak interactions of the standard model shown in 
figure 13.3.

Existence of localized "baryons" and "mesons", formed of 3 and 2 dispirations 

Each of the dispirations in figures 13.9a through 13.9d generates a stacking fault cylinder 
which has energy proportional to the side surface of the cylinder. Consequently, it is impossible 
for these dispirations to appear in isolation, because the cylinder of stacking fault would then be 
of length , and consequently of gigantic energy. We can then ask ourselves how to 
generate singularities composed of such dispirations, and which are of reasonable energy.

In fact, there are three ways to combine the four dispirations of figure 13.9 so that the 
topological singularity thus formed is perfectly localized, namely that the stacking fault tube is of 
finite length:
- the combination of three singularities  or  shown in figure 13.12a,
- the combination of three anti-singularities  or  shown in figure 13.12b,
- the combination of a singularity  or  with an anti-singularity   or  represented in figure 
13.12c.

So that the three rules previously issued are all perfectly satisfied in these various 
combinations, it is necessary that:
- the sum of the angles  of rotation of all the dispirations of the combination is zero or a 
multiple of , which allows the stacking fault tube to be of finite length,
- that the color of the assembly thus formed is "white", therefore that the assembly presents the 
sum of the 3 colors R, V, B (figure 13.12a), or the sum of the 3 anti-colors  , ,  (figure 
13.12 b), or the sum of one of the colors R, V, B with its respective anti-color , ,  (figure 
13.12c).

In the table of figure 13.13, one reported the 8 different possible combinations of 3 
dispirations of the table of figure 13.10 with their property, by giving them a symbol and by 
calling them baryons by analogy with the standard model.

In this table, the analogy with the baryons of the standard model of elementary particles, 
composed of triplets of quarks  and  or triplets of anti-quarks  and , is obvious and 
perfect. Not only do we see there appear particles composed of quarks with fractional rotation 
charges  corresponding to the electric charges of the standard model, but here we add 
the charge  of curvature by flexion which has no equivalent in the standard model, and 

d u d u
W − W +

d u d u W − W +

d u d u

ΩBV

qλ BV
qθ BC

 ∼ R∞

u d
u d

u d u d

ΩBV

3π / 2

R V B
R V B

u d u d

qλ BV
qθ BC



The standard model of particles and the strong force                259

which corresponds perfectly with our conjecture 8, namely that the singularities of a lacunar 
nature correspond by analogy to anti-matter and the singularities of interstitial nature to matter. 
The fact that the particles of the standard model appear with two different symbols in this table 
for combinations , ,  and  can be explained by the notion of spin of 
twist disclination loops, developed in chapter 12. Indeed, if each quark has a global spin 

, then the composition of the spins can create an overall spin of  in the case of 
particles  (neutron)  and  (proton) and of anti-particles  (anti-neutron)  and  (anti-
proton), or else a spin  in the case of particles  and  and anti-particles  et 

. In the case of combinations , ,  et  the spins of the 3 quarks are 
necessarily aligned (for a reason which remains to be explained, but which is most probably 
linked to the principle of exclusion), and the composition of the spins can then only provide a 
global spin of  in the case of particles  et  and anti-particles   et .

In the table of figure 13.14, we have reported the different possible combinations of 2 
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dispirations of the table of figure 13.10 with their property, by giving them a symbol and calling 
them mesons by analogy with the standard model.

In this table, the analogy with the mesons of the standard model of elementary particles, 
composed of doublets of quarks  or  with anti-quarks  or , is obvious and perfect. We u d u d



The standard model of particles and the strong force                261

see there appear particles composed of quarks with fractional rotational charges , which 
correspond to the mesons of the standard model, but with a zero charge  of curvature by 
flexion zero, which means that these topological singularities cannot be cataloged like anti-
matter (singularities of a vacancy nature) or of matter (singularities of an interstitial nature).

The fact that the particles of the standard model appear with two different symbols in this 
table can also be explained by the notion of spin of the twist disclination loops, developed in 
chapter 12. Indeed, if each quark has a spin  , then the composition of the spins can 
create a global spin of  for particles , ,  and , or a spin  for particles , 

,   and .

Strong force and its asymptotic behavior 

The quarks making up the particles in the tables in figures 13.13 and 13.14 are linked by a 
cylinder of stacking faults, so that the energy of the topological singularity increases as 

 if the distance  separating two dispirations increases. The bonding force 
of the dispirations is therefore "asymptotic in nature", in the sense that it is a strong force, 
because the bonding force increases if we try to separate the dispirations. It is a phenomenon 
similar to the case of the stacking fault energy between two partial dislocations in a FCC lattice 
or to the case of connection fault energy between three partial dislocations in an axial cubic 
lattice (see chapter 2). The equilibrium distance  between the dispirations is then controlled 
by a competition mechanism similar to that described in the case of figure 2.16.

Strong interaction between quarks via gauge bosons: the gluons

In the standard model, quantum processing of the “colors” of quarks is provided by quantum 
chromodynamics. In this theory, there are 8 colored gauge bosons, vectors of the strong force, 
called gluons.

And it is the exchange of a colored gluon between two quarks which then makes it possible 
to exchange the color of these two quarks, by an interaction which can be represented, as in 
figure 13.15, in the form of a diagram of Feynman illustrated by the configuration of the 
topological singularities involved.

The colored gluons therefore correspond to two associated edge loops, one of interstitial 
nature and one of lacunar nature, and their rotation charge  is zero. The edge loops are 
linked together by the existence of a stacking fault cylinder, and are therefore subjected to 
strong force. As for their curvature charge , it is zero since we have

, so that the energy associated with the distortions of this pair of 
loops must be extremely low, and that, consequently, the mass of the gluons must be almost 
zero, while it has a non-zero energy coming from the stacking fault cylinder. From this point of 
view, gluons are like photons.

In quantum chromodynamics, it is believed that it is this gluon exchange mechanism 
between neutrons and protons in the atomic nucleus that explains the cohesion of atomic 
nuclei. This is therefore a side effect of the strong force since these exchanges of colored 
gluons disturb the distances  between the dispirations composing the neutrons and the 
protons, and consequently disturb the energies of the protons and neutrons.
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Constitution of leptons and intermediate bosons of the standard model 

In the standard model, there is also a first family of quasi-point particles which are called 
leptons and which are represented by the electron , the anti-electron or positron , the 
electronic neutrino   and the electronic anti-neutrino .

In the cosmological network, we have already postulated the existence of the neutrino in the 
form of an edge dislocation loop of interstitial nature, while the anti-neutrino corresponded to an 
edge dislocation loop of lacunar nature. This is what allowed us to deduce very exceptional 
repulsive gravitational properties for the neutrino, due to its curvature charge by flexion which 
largely dominates the attractive gravitational effects due to its mass of inertia. In the case of the 
“colored cosmological lattice” of figure 13.7, to respect of the three rules with which this lattice 
must satisfy, the neutrino can only correspond to the insertion of three consecutive planes of 
color R, V, B, and the anti-neutrino to the subtraction of three consecutive planes , ,  as 
shown in figures 13.16a and 13.16b, so as to form an inclusion or a hole which has no color, i.e. 
white color. In this form, neutrinos and anti-neutrinos have exactly the properties that we 
deduced in the previous chapters for prismatic edge dislocation loops, provided that their 
Burgers vector has a norm such that , so that the charge of curvature by flexion has 
a norm equal to .

As for the electron and anti-electron, we have already hypothesized that the twist disclination 
loop was a good candidate to represent them. In this case, to ensure that the rotational charge 
corresponds well, the angle of rotation  between two consecutive planes must be equal to   
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, so that the norm of the rotational charge satisfies the relationship 
. However, in this pure form, the twist disclination loop has already been 

identified as the particle   or   in figures 13.9e and 13.9f. In addition, the electron and 
the positron must exhibit the asymmetry between matter and anti-matter, and they must satisfy 
the weak lepton interactions in figure 13.3. To satisfy these desiderata, we must again use a 
combination of a twist disclination loop, which satisfies rule 3 and which therefore has no color, 
with an edge dislocation loop corresponding to the insertion of three consecutive planes of color 
R, V, B, or the subtraction of three consecutive planes , , . In principle, there should 
therefore be four different electrons, of charges   and  . 
However, the simplest and least energetic way to create an electron and a positron would be to 
compress the quark assemblies   and   so that to collapse the three screw loops 
into one, and collapse the three edge loops into one. We then obtain the electron and the 
positron represented in figures 13.16c and 13.16d.

Weak interaction of leptons and intermediate bosons of the standard model 

In the standard model, weak interactions correspond to exchanging intermediate bosons 
or , which allow the electrical charge to be exchanged between two particles, as 

shown in figures 13.3 and 13.11. In order for the Feynman diagrams of these figures to work 
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with the dispirations of our model, the intermediate bosons must necessarily be pure screw 
pseudo-dislocation loops with angles of rotation  worth respectively   or , as 
shown in figures 13.9e to 13.9g .

The intermediate bosons are then the only massive gauge bosons, which is understandable 
if they are indeed pure loops of twist disclination. Experimentally, we have found that their mass 
is much higher than that of the electron and the positron, which could be understood by the fact 
that the rotation of  must entirely be made over a distance of  in the case of 
intermediate bosons, then that in the case of the electron and the positron, the rotation of 

 can be distributed over 3 successive planes, therefore over a distance of , which 
must very considerably decrease the local distortions of the lattice, and therefore the energy of 
the particle. This could also be the reason why a gauge boson would associate extremely 
quickly with 3 interstitial or lacunar edge loops to greatly decrease its energy, which would 
perfectly explain the weak interactions in figure 13.3.

Note also that, in the standard particle model, the gauge bosons and  are of spin 1, 
and therefore that they do not satisfy the exclusion principle, which means that two gauge 
bosons can occupy the same state, therefore overlap, which in fact creates a screw pseudo-
dislocation loop of angle  equal for example to . In contrast, the electron and the 
positron are spin 1/2 particles, which satisfy the Pauli exclusion principle. They cannot therefore 
occupy the same state, which means that they cannot be superimposed, which becomes 
naively almost obvious when we consider the loop structure of electrons and positrons shown in 
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figure 13.15. We can then report the properties of leptons and gauge bosons in the table in 
figure 13.17.

About the three families of quarks and leptons of the standard model 

In the standard model, there are not only the quarks and leptons that we have just described, 
but there are also two additional families of quarks and leptons (figure 13.1), which are 
distinguished above all by the significantly higher masses observed experimentally each time 
we go from one family to the next. The progression of the masses within the table of elementary 
particles of the standard model is reported in figure 13.18, giving the approximate multiplicative 
factor of the masses, in the horizontal direction of the table and in the vertical direction of the 
table. We note that the average multiplicative factors reported outside the table are indeed very 
high when passing from one family to another, while the multiplicative factors to pass from one 
particle to another in each family are not so high except in the case of the transition from 
neutrino to electron, which would tend to suggest that it is probably the topological structure 
which is responsible for the large increase in mass changes from one family to another, but also 
that the topological structure most likely remains the same within the same family. It is also 
remarkable that the multiplicative factors associated with the neutrino are colossally higher than 
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all the other factors, which tends to suggest that it is probably the structure of the edge loops 
that change from one family to another.

As for the colossal multiplying factor to go from neutrino  to electron , it is explained by 
the enormous energy difference between a dislocation edge loop and a twist disclination loop, 
as we explained in chapter 5.

About the possibility of using edge discination loops 

If it is the structure of the edge parts of the topological singularities which must present 
changes from one family of leptons and quarks to another and justify enormous variations of 
energy from one family to another, it exists in the theory of lattice singularities ideal candidates 
to satisfy these desiderata: it is the loops of edge disclination which were discussed in chapter 
2, and in particular the loops which could be carried out with combinations of the edge 
disclinations , ,  and  of figure 13.19 .

Indeed, it is possible, by coupling two loops of edge disclination  and , or else  and 
, to form a fairly complex topological structure which corresponds in fact to a loop of edge 

dislocation. And the configuration of the two loops with respect to each other makes it possible 
to create edge pseudo-dislocation loops, both lacunar and interstitial, as the two examples in 
figure 13.20 clearly illustrate in the case of loops formed on the basis of the disclinations   
and , represented here with additional intermediate planes. Although the field energy of an 
edge dislocation loop is very low in the perfect cosmological lattice, the energy of a singularity 
formed using edge disclination loops must be much higher, due to the enormous elastic 
distortions by rotation and shear involved on the cells of the lattice located in the vicinity of the 
loops.

Possible realization of three families of quarks 

In Figure 13.21, we have plotted the possible topological structures that can explain the 
three families of quarks on the basis of the introduction of pairs of loops of edge disclinations 

 and  for the second family of quarks and pairs of edge disclinations  and   for the 
third family of quarks.

Note that the structure of quarks is shown very schematically in this figure, since we have 
not reported the huge lattice distortions involved by the presence of pairs of edge disclination 
loops. And it is precisely the much higher topological distortions of the loops  and   
compared to the loops  and  which could then explain the energy differences observed 
between the particles of the second and the third family. As for the first family of quarks, it does 
not involve any edge disclination loop, which would explain the differences in particle energy 
between the first family and the second family of quarks.

With this explanation for the family of quarks, the gauge bosons  et  described in 
figure 13.9 are not modified since they do not involve edge dislocation loops. On the other hand, 
all the mechanisms described for the first family remain valid with the three families of quarks 
described in figure 13.21, that it is the weak hadronic interactions (figure 13.3) involving the 
gauge bosons  like those of figure 13.11 or the strong interactions involving the two-color 
gluons in figure 13.15.
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Possible realization of three families of leptons 

The pairs of edge disclination loops  and , or  and  can also be used to explain 
the three families of leptons that are observed in the standard model.

Figure 13.22 shows the possible topological structures of the three families of leptons based 
on the introduction of the loop pairs   and , or  and .

As in the case of the quarks of figure 13.21, the structures presented in figure 13.22, as well 
as all the topological structures reported in the preceding figures, scrupulously respect the rules 
of color introduced at the beginning of this chapter, in particular rule 1.

It is also easy to verify that all the leptons in figure 13.22 satisfy the weak leptonic and semi-
leptonic interactions shown in figure 13.3. On the other hand, since there are no stacking 
cylinders in the structures of leptons, these are not subjected to the strong force.
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About the interest of the analogy between the "colored" cosmological lattice 
           and the standard model of elementary particles

The analogy between our “colored” cosmological lattice model, with the elementary 
topological singularities that it can contain, and the standard model of elementary particles is 
excellent, and it is very fruitful to provide explanations for several rather mysterious facets of the 
standard model of the particles that we will list here:

- The structure of the particles of the standard model in three families of quarks and leptons in 
three families of quarks and leptons:

The topological structures of edge dislocation loops, screw loops and pairs of edge loops 
introduced into a "colored" cubic lattice having strict rules of arrangement and rotation of 
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"colored" corpuscular planes make it possible to constitute all particles of the standard model of 
elementary particles, namely quarks and leptons, which have a structure in three families whose 
very different masses can be explained by the elastic energies of distortion of the cells of the 
lattice in the immediate vicinity of the loops. These various quarks and leptons also satisfy all 
the properties of the weak interaction and the strong interaction using respectively the 
intermediate gauge bosons  and  and the gluons, which also have their own topological 
structures in the "colored" cosmological lattice. As for the strong force, it does have the good 
asymptotic properties due to the fact that it is generated by a cylinder of stacking faults whose 
energy increases if it is lengthened, and it is responsible for the existence of baryons and 
mesons, which are the only localized and "non-colored" topological structures that can be 
formed on the basis of quarks. In this way, we can reconstitute all the particles of the standard 
model, such as for example the baryons and the mesons of figure 13.4, composed of the quarks 
and anti-quarks u, d, s and / or c.

- Interaction fields by weak force and by strong force:
As for the force fields acting between the topological loops, they have simple topological 

explanations:
- the weak force is essentially due to the reduction in the energy of formation of a loop of 
expiration associated with a dislocation corner loop with a loosening loop screw, as we saw in 
chapter 9. It is the very low range of the interaction potential of capture of this force which then 
explains the radioactive decay of elementary particles, by crossing the interaction potential by 
quantum tunnel effect. In fact, the weak force is an interaction between the charge of rotation of 
a twist disclination loop and the charge of curvature of an edge dislocation loop.

And there are effectively gauge bosons exchanged during the weak interaction: these are 
the intermediate bosons  and , which have a well-defined topological structure, shown in 
figure 13.9.
- the strong force, which binds two or three quarks together, is due to the cylinder of stacking 
faults generated by the fact that the twist disclination loops associated with the quarks have 
charges which are only 1/3 or 2/3 of the charge of the perfect disclination loop associated with 
the electron. The dissociation distance between the loops of a doublet or a triplet of quarks 
depends essentially on the energy of the connection faults per unit of area. If this energy is very 
strong, we can imagine that the loops will be very close, as shown in the figures in this chapter. 
But if this energy is low, one could also imagine fault tubes constituting membranes whose 
diameter (equal to the diameter of the topological loops) is much smaller than the length, so that 
the topological singularities in doublet and triplet could then have aspect of "long strands" 
terminated at each end by topological loops.

And there are also gauge bosons exchanged during the strong interaction: these are the 
two-color gluons, which have a well-defined topological structure, shown in figure 13.15.

- Possibilities of calculating the energy of the particles of the standard model:
A first very interesting consequence of this explanation of the particles of the standard model 

is related to the fact that, in the case of the loops of dispiration and their interactions via the 
weak and strong forces, the energies brought into play for the formation of the multiplets of 
loops has a known origin since it is in fact the sum of the following various energies:
(i) the formation energies associated with the very strong local distortions of the lattice 
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generated by these objects, and stored in the lattice in the vicinity of these objects,
(ii) the energies of connection faults appearing from the fact that the imaginary cosmological 
lattcie considered here is a "colored" lattice, linked to the fact that it must have axial properties,
(iii) the energies brought into play by the weak force in the gravitational couplings between the 
edge dislocation loops and the twist disclination loops, as described in chapter 9,
(iv) the energies stored at greater distance, which are due to the long-range distortions of the 
lattice related to the global charge   of curvature by bending and to the global charge   of 
rotation by torsion of multiplets of loops, which are contained in calculations of the energies of 
formation, of gravitation and of charges of curvature that we have made in the preceding 
chapters, as well as energies of own vibration and proper rotation of the loops which we have 
respectively obtained in chapters 11 and 12.

The total energy of formation of the multiplets of loops could therefore be rigorously 
modified, provided that one knows the exact elastic properties (the modules , ,   and 

) as well as the surface energy  of fault of the cosmological lattcie in which these objects 
appear. This energy aspect is very important because, in the case of the standard model of 
particles, the origin and the value of the energy of elementary particles (their mass) are still very 
mysterious, and are introduced as parameters of the standard model, which must be measured 
experimentally.

In addition, by observing the lattcie distortions generated in the vicinity of the loops of the 
different families, we immediately imagine that the progression of the energies of the loop 
multiplets as a function of the sequence number of their family must be very strongly nonlinear, 
a phenomenon which is very well observed in the case of the energies of leptons and quarks of 
the different families of the standard model.

- The "elementarity" of the particles of the standard model:
Another interesting consequence of our conception of the standard model is the existence of 

an "elementary" difference between the topological loops of dispiration of our imaginary 
cosmological lattice and the leptons and quarks of the standard model. In fact, the dispiration 
loops that we have described, unlike the leptons and elementary quarks of the standard model, 
are not strictly speaking elementary particles, but are already assemblages of other more 
elementary particles, the edge dislocation loops of lacunar or interstitial nature, the twist 
disclination loops and the 4 edge loops formed from the edge disclinations  ,  ,   and 

 of figure 13.19, linked together in the form of pairs of loops by an extra strong force of a 
purely topological nature, the virtual dislocation ribbon connecting the two loops of edge 
disclinations.

To judge the other potentialities of this idea of constituting particles of the standard model, it 
would be necessary to check whether this approach would justify and explain the complicated 
set of selection rules which had to be introduced in particle physics to describe all the 
interactions observed experimentally. This is obviously only a suggestion, and its detailed 
development is beyond the scope of this treaty. Note that other similar approaches to particle 
decomposition of the standard model have already been proposed in particle physics, but in 
different forms, such as the model based on pre-quarks called "rishons". However, these 
models have proven unsuccessful.

- The role of the curvature charge in the standard model:
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The charge of curvature   plays an important role in the development of a model of 
"elementary topological singularities" to explain the standard model of particles. It is quite easy 
to see that this charge, which we do not see a priori a direct analogy in the standard model, 
satisfies a conservation principle during interactions between loops, both during weak 
interactions and during strong interactions.

But this charge has another major interest linked to the bosonic or fermionic nature of the 
particles. Indeed, we note that all the particles with which a charge of curvature is associated 
(leptons, quarks and baryons) are fermions with a half-integer spin, which satisfy the Pauli 
exclusion principle, while all particles which do not have a curvature charge (photons, gauge 
bosons, gluons and mesons) are bosons with an integer spin, not subject to the Pauli exclusion 
principle. There is most probably a crucial role played by the charge of curvature, which remains 
to be elucidated, but which is not the responsibility of this treaty.

The question is also to know if the charge  , which is conserved during interactions 
between loops, has a correlation with one of the characteristic quantities or with one of the 
conservation relationships of the standard model, such as the Gell-Mann-Nishijima relationship 
for example . The answer to this question could certainly present very important potentials for 
particle physics, especially since we have already shown many times that it is the charge of 
curvature which is responsible for the weak asymmetry between matter and anti-matter, and as 
a consequence of the cosmological evolution of matter and anti-matter within the universe, and 
the presence of a "black mass" in the form of a sea of repellant neutrinos surrounding the 
galaxies.

Outstanding questions regarding the «colorful" cosmological lattice model
            and its analogy with the standard model

The analogy developed in this chapter between the topological loops of dispiration in an 
imaginary “colored” cubic cosmological lattice and the standard model of elementary particles 
proves to be very fruitful in trying to understand certain points not yet clarified in particle physics, 
such as topological nature of the elementary particles, as well as strong and weak forces, or the 
origin of the mass of the elementary particles.

But there are, however, several questions still outstanding, which deserve to be studied in 
detail, among which the main ones are the following:

- Application of the spin concept:
As we already mentioned in chapter 12, the notion of spin seems to correspond to a real 

rotation of the topological loops. But there are still many questions that need to be studied in 
detail.

The first question is obviously to try to imagine how an edge dislocation loop, and / or a twist 
disclination loop and / or an edge disclination loop can turn on themselves in a “colored” cubic 
cosmological lattice, knowing moreover that there is a stacking fault tube responsible for the 
strong force in the case of baryons and mesons. Is there a possible topological explanation for 
such a rotational movement, or should we imagine a lattice with "even stranger" properties?

The second question is obviously related to the value to be assigned to the spin of a 
topological loop. For example, why the electron, which would correspond to a weak coupling 
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between an edge dislocation loop and a twist disclination loop, has a spin 1/2, while the gauge 
boson  , which would correspond to an isolated twist disclination loop, has a spin 1? This is 
where the important observation that we have made precedently will probably play an essential 
role in explaining the value of the spin of a particle, namely that all the particles with which a 
charge of curvature is associated (leptons, quarks and baryons) are fermions with a half-integer 
spin, while all particles which have no charge of curvature (photons, gauge bosons, gluons and 
mesons) are bosons with an integer spin.

The third question would be how to apply more carefully the concept of spin developed in 
chapter 12 to the “colored” cosmological lattice model that we described in this chapter. The 
answer to this question could make it possible to find an explanation for the existence of 
particles composed of the same quarks, but of different spin, like the mesons   and   
composed both of the quarks  , but of respective spins 0 and 1, or the baryons  (proton) 
and   both composed of quarks  , but with respective spin values 1/2 and 3/2. Such a 
study would also perhaps explain the exact origin of spin 1/2 of baryons and spin 1 of mesons, 
which is still a fairly obscure point in the standard particle model, but which could perhaps find a 
explanation in the case of the “colored” cosmological lattice by supposing that it is the existence 
or not of a charge of curvature which imposes a boson or fermion behavior on a given particle.

- From the theory of quantum chromodynamics:
It would obviously be very instructive and interesting to develop a much more detailed study 

of the application of wave equation calculations, the concepts of bosons and fermions, the Pauli 
exclusion principle developed in chapter 11, as well as the notion of spin introduced in chapter 
12, to the topological singularities in loops analogous to the particles of the standard model, and 
to try to see if such a study would not finally lead us to an understandable physical explanation 
of the famous theory of "quantum chromodynamics" ?

- The existence of supersymmetric models:
A more detailed study of the existence of the curvature charge could not only (perhaps) 

explain why there are fermions (spin 1/2 particles like quarks and leptons) and bosons (spin 1 
particles like intermediate gauge bosons and gluons) in the standard model, but it could also 
answer the question of whether (by chance) it was possible to create a zoology of particles 
identical to those we obtained in this chapter, but whose spins 1/2 and 1 are inverted, which 
could reveal a "supersymmetric model". But we note that within the framework of our particle 
model, it seems very difficult, if not impossible, to imagine such supersymmetric particles.

- The existence of a fourth family of quarks and leptons:
When introducing the edge disclinations , ,  and  to explain the families of the 

standard model, we knowingly neglected the possible existence (?) of the edge disclinations 
loops  and  reported in figure 2.22. If these disclinations could really exist in the “colored” 
cosmological lattice, there would then appear a fourth family of quarks and leptons in the 
standard model, whose energies would then be perfectly colossal.

- The existence of "exotic" leptons:
In our description of quarks in figure 13.21, the fact that quarks have electrical charges -1/3 

and +2/3 of the charge of the electron, while anti-quarks have electrical charges +1/3 and -2/3 
of the charge of the electron is easily explained by the rules of succession of the colors of the 
corpuscular planes which we postulate. On the other hand, for the leptons that we introduced in 
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figure 13.22, we arbitrarily chose to associate with the neutrino an electrical charge -1 to obtain 
the electron of matter and to associate with the anti-neutrino an electrical charge + 1 to obtain 
the anti-matter positron. But in fact the color rules that we introduced would not prevent a priori 
from associating an electrical charge +1 to the neutrino to obtain an exotic positron of matter 
and an electrical charge -1 to the anti-neutrino to obtain an electron exotic anti-matter. There is 
a new subject for reflection here. Indeed:
- either these exotic leptons do not exist, in which case it would certainly be necessary to find a 
more convincing explanation than that which we proposed to explain that the electron is made 
of matter and the positron of anti-matter. Indeed, we proposed that the electron and the positron 
could be considered as the result of the compression of assemblies of quarks and, which would 
explain the existence of the electrons of matter and the positrons of anti-matter and the absence 
of anti-matter electrons and matter positrons,
- either these exotic leptons actually exist, in which case it would be necessary to explain why 
these particles seem never to have been observed experimentally.

- Conclusion:
To conclude this section, we must note that our “colorful” cosmological lattice model still 

raises many unresolved questions, and that it could therefore be at the origin of a new and 
exciting field of research, especially if we sought to elucidate the preponderant role which must 
undoubtedly play the new and original element of our theory, namely the load of curvature.



Chapter 14

Photons, Vacuum Fluctuations, Multiverses and Gravitons

This chapter is to be taken with caution, because it will deal with some very speculative 
consequences, but also very interesting, of our theory of the perfect cosmological network.

The first part of this chapter is dedicated to a discussion of pure transverse waves, quantified 
in the form of photons. In chapter 3, we have shown that the propagation of a linearly polarized 
transverse "electromagnetic" rotation wave is accompanied by a longitudinal "gravitational" 
wavelet. In this chapter, we will focus on what happens in the case of localized wave packets. 
We will show that these wave packets can only appear with a non-zero helicity so that their total 
energy does not depend on time. Assuming that these wave packets are emitted when a 
topological singularity suddenly changes state, it becomes quite understandable that they 
present a quantification of their energy. These wave packets then behave like energetic quasi-
particles of "electromagnetic" fluctuations which one could qualify as "photons" and which 
actually have properties very similar to the quantum properties of photons: circular polarization, 
zero mass, non-zero momentum, non-locality, wave-corpuscle duality, entanglement and 
phenomenon of decoherence.

The rest of the chapter is dedicated to some very hypothetical consequences of the perfect 
cosmological lattice, associated with pure gravitational fluctuations. One can imagine the 
existence of pure longitudinal fluctuations within the cosmological lattice which can be treated, 
either as random gravitational fluctuations which could have an analogy with "quantum vacuum 
fluctuations", or as stable gravitational fluctuations, which could lead on a macroscopic scale to 
a "cosmological theory of Multiverses", and on a microscopic scale to the existence of a form of 
stable quasi-particles which one could call "gravitons", by analogy with photons, but which in 
fact have nothing in common with the gravitons usually postulated in the context of General 
Relativity.

Transverse rotation wave packets: the photons

We saw in chapter 3 that the propagation of a linearly polarized transverse wave within the 
cosmological lattice is bound to the existence of a correlated perturbation of the expansion of 
the lattice, and that only the circularly polarized rotation waves are pure transverse waves, 
without associated expansion wavelets. One can reasonably wonder if this astonishing property 
could not be at the origin of the existence of quantified "electromagnetic" fluctuations, like the 
famous photons of quantum physics?

Let us consider transverse waves of pulsation  propagating along the axis , with a 
polarization of the fields of rotation  and  and of the fields of velocity  
and  along the axes  and . We then try to form a bundle of transverse waves, 
of pulsation , of exponential envelopes of range  along the axis  and of equal ranges 

 along the axes  et . By applying linearized field equations for these 
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fluctuations in the domain , there appears a volume expansion component  
associated with the wave packet, of frequency . If one calculates the energy density of this 
fluctuation by oscillations of the field of rotation and the field of expansion, it contains terms in 

, in and in , so that it is not independent of time, whereas it should 
be in principle. To make these terms in , in  and in  disappear, so 
that the energy density of the fluctuation does not depend on time, and to make disappear the 
volume expansion component of the wave packet, a rather tedious calculation leads to the real 
solution of the wave packet proposed in figure 14.1.

This wave packet represents in fact, in the analogy with electromagnetism, a packet of 
electromagnetic waves, which MUST present a right or left helicity so that its energy is 
independent of time, and especially so that it is not accompanied by a "gravitational" 
disturbance of expansion. Knowing that  in the perfect cosmological lattice for 

, the energy density of this packet of wave is given by the relation reported in figure 
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14.1. And by making a change of variable  , we can quite easily calculate the total 
energy of this fluctuation of the field of rotation, which is worth . It can 
therefore be seen that this expression of the energy of the wave packet only depends on the 
maximum amplitude  of the oscillations of the field of rotation and of the spans  along 
the axis  and  along the axes  et , and that the pulsation  of the 
wave does not intervene in this expression of energy.

If we consider that the perfect cosmic lattice is indeed a theoretical representation of the real 
Universe, then the rotation wave packets that we have just described must probably correspond 
to photons. Assuming therefore that these wave packets are emitted when a topological 
singularity suddenly changes state (such as for example the level transition of an electron in an 
atom), it becomes very simple to explain that they present a quantification of their energy. 
Indeed, suppose a singularity which passes from a high energy level (a) to a lower energy level 
(b), as illustrated in figure 14.2. Using the relations of figure 11.1 for the pulsation of the 
gravitational fluctuations, and by expressing these relations in the non-relativistic case, one has  

  and    , so that the loss of energy of the singularity during 
its transition from level of energy is expressed as .

This energy  is dissipated in the form of a photon, therefore of a packet of transverse 
waves transporting this energy lost by the singularity. By equalizing the dissipated energy  
with the total energy  of the transmitted wave packet, we obtain a relation between 
the parameters  of the wave packet and the pulsation  of the wave packet, in 
the form .

This relation is then quite remarkable, because it shows that the energy of the transverse 
fluctuation is quantified with the value , and that the frequency  of the 
transverse fluctuation emitted is nothing other than the difference of the frequencies of the 
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gravitational perturbations of the singularity in states (a) and (b). We therefore find the 
experimental observation that the energy of photons is quantified, as Einstein initially proposed, 
and that the energy of a photon has a well-determined value proportional to its pulsation 

 via the Planck constant.

About the possible properties of transverse rotation wave packets

- About the non-locality of the rotation wave packet:
The wave packet thus formed has a "volume" , an amplitude  and an energy 

. As its energy is required to remain constant, this implies that neither the 
amplitude  nor the "volume"  are predetermined, but that they are simply linked by the 
relationship . The wave packet thus presents a kind of "malleability", 
or "plasticity". It can for example lengthen or shrink along its axis of propagation , or extend 
or compress along the axes  and  perpendicular to the direction of propagation, or else 
extend or contract isotropically in the lattice, provided that the product  remains a 
constant equal to . 

If the wave packet is very picked up on itself, that is to say that its «volume"  is very 
small and that its amplitude  is very large, it will then behave like a localized quasi-particle 
of energy  . But during its propagation, it can also very well extend and 
occupy a very large «volume" , with a very low amplitude , and behave in this case 
rather like a wave, capable of all phenomena of interference and diffraction of a usual wave. We 
find here the non-locality property of the quasi-particle during its propagation, in the same sense 
as in quantum physics.

- About the momentum of the quasi-particle "photon":
In the form of a quasi-particle, that is to say when the wave packet is very contracted, 

therefore of very low "volume", it obviously has no mass of inertia, but it does have a non-zero 
momentum. We deduce this peculiarity from the fact that this wave packet moves at the speed 

 and therefore that it must satisfy the relativistic equation of the energy of figure 11.1, with a 
mass of inertia , namely , which implies a non-zero 
momentum  in the propagation direction.

- About the wave-particle duality of the rotation wave packet:
These wave packets actually have a wave-particle duality similar to that observed in 

quantum physics. The only restriction imposed on this wave packet by the fact that it propagates 
in a cosmological lattice satisfyingt  is that it is obliged to remain a single entity of 
given energy and helicity, so that its energy  remains constant and that there is no 
expansion perturbations.

This implies that such a wave packet, if it is very large and that it must, for example, pass 
through a slot, must necessarily contract sufficiently to pass through the slot in the form of a 
single entity. But nothing prevents that during this crossing, the wave side of this entity interacts 
with the edges of the slit so that the entity is diffracted during this crossing, and therefore that 
the "trajectory" of this quasiparticle can be modified.

Similarly, if this extended wave packet encounters a double slit, it can cross the two slits by 
contracting locally, and recombine after this crossing, provided that its entity integrity has not 
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been modified during this crossing. But the recombination of the wave entity after the passage 
of the two slits is subject to wave interference, so that the probability of finding the quasi-particle 
in space after the slits presents fringes identical to conventional interference fringes for a plane 
wave passing through two slits.

This also implies that if the wave packet, very large during its propagation, begins to be 
absorbed by an obstacle, the maintenance of a constant energy over time forces it to contract 
again so that the absorption of its energy is a very localized phenomenon. We could reasonably 
speak here of the "materialization" of the wave packet in the form of a "quasi-particle". It must 
therefore behave like a very localized quasi-particle during its creation or its annihilation.

Note that what is called the "measurement problem" in quantum physics corresponds exactly 
to this type of phenomenon. Any attempt to "touch" the wave packet will force it to change so 
that it remains an energy entity independent of time. Thus, a measurement on this wave packet 
is necessarily an action which will disturb this wave packet and modify its characteristics.

- About the creation of pairs of “photon” quasi-particles:
As the quasi-particle "photon" has a momentum due to its relativistic behavior, the creation of 

a single photon would violate the principle of momentum conservation. This implies that photons 
can only be created in pairs of photons of the same frequency, propagating in two opposite 
directions so that their overall momentum is zero.

- About the entanglement phenomenon of two virtual quasi-particles "photons":
Initially, when creating a pair of photons, there may well be only one locally created wave 

packet, in which case it must lengthen at the speed  on either side of the axis of propagation 
of the two virtual quasi-particles in order to ensure zero global momentum. You could say that 
the single wave packet of energy  representing the two quasi-particles of momentum 

 then corresponds to an entangled state of the two virtual quasi-
particles. But if one end of this wave packet is suddenly "materialized" in the form of a quasi-
particle (photon 1) transferring energy  to an "object" interacting with it, the 
second end of the wave packet will regroup and own the energy  and the 
momentum . It will therefore necessarily transform into a wave packet 
representing photon 2, which can be "materialized" in the form of a quasi-particle. 

But it should be noted that the initial wave packet had, at the time of the "materialization" of 
the first quasi-particle, a polarization and a helicity which could be measured, and that this 
polarization and this helicity measured then become the prerogative of the residual wave 
packet. This is exactly what quantum physics predicts when it talks about the entanglement of 
two photons. And there is therefore no instantaneous “transmission” of information from one 
quasi-particle (photon 1) to the other quasi-particle (photon 2) since it is during the 
“materialization” of the first quasi-particle (photon 1) that the wave packet associated with the 
second quasi-particle (photon 2) forms and necessarily acquires the characteristics 
complementary to the first quasi-particle (photon 1), characteristics which will be observed 
during of the "materialization" of the second quasi-particle (photon 2).

- About the phenomenon of decoherence:
As we have just said, a wave packet of energy  representing the two 

photons created initially can extend along a single axis over great distances. But this 
lengthening is obviously done at the expense of the amplitude  of the wave packet. As the 
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wave packet lengthens, it will become more and more sensitive to its environment, that is to say 
to the other field fluctuations it encounters, until it encounters a sufficiently strong fluctuation to 
"break" the initial wave packet and divide it into two independent wave packets, which will 
therefore no longer be entangled. From this moment, the two wave packets become 
independent. We can then speak of a phenomenon of decoherence, in the sense that the 
"materialization" of the two wave packets in the form of two individual photons will no longer 
exhibit the entanglement effect described in the previous section. 

This phenomenon is absolutely similar to the phenomenon of decoherence that quantum 
physics invokes to explain the passage from the microscopic quantum world to the classical 
macroscopic world.

Although quite speculative, the results obtained here are quite interesting, because they 
mean that the cosmological lattice which does not present longitudinal waves for  may 
contain localized disturbances of pure transverse waves of circular polarization which seem to 
have all the characteristics of photons (quantification, wave-particle duality, entanglement, etc.).

Localized longitudinal gravitational fluctuations

In figure 11.1, we have seen that, in a lattive in which the propagation of longitudinal waves 
is not possible, there can appear localized longitudinal vibrations, which one could call localized 
gravitational fluctuations  since they are field fluctuations of the volume expansion. 
We can try to dig a little deeper into this subject, by describing these longitudinal fluctuations in 
a cosmological lattice containing neither topological singularities nor transverse waves.

In the absence of topological singularities and transverse waves, imagine the existence of 
fluctuations  of the volume expansion field of a cosmological lattice in the domain 

, of type . These fluctuations , if they exist, must 
obviously satisfy Newton's equation of the volume expansion field. In the absence of topological 
singularities and transverse waves, and neglecting the effects of vacancies and interstitials 
( ), Newton's second partial equation for longitudinal perturbations is given by the 
relation of figure 5.1 in which we neglect all the fields apart  and , and from which we 
take directly the divergence. By considering sufficiently small fluctuations , it is 
possible to linearize the equation, by completely neglecting the term  and by extracting 
the density  from the divergence term. We can also introduce a parameter  with value 

, which is positive if the cosmological lattice does not present 
longitudinal waves, that is to say if , and replace the material derivative by the partial 
derivative of time, so that the equation is reduced to the first equation of figure 14.3. Still using 
the geometro-kinetic equation for volume expansion, assuming zero lattice sources, and 
neglecting the material derivative, we obtain the second equation in figure 14.3. By combining 
these two relations, we obtain the linearized Newton's equation of weak gravitational 
fluctuations in the cosmological lattice without propagation of longitudinal waves, in the domain 

.
If we dissociate the spatial behavior and the temporal behavior of these fluctuations

, we can write them as the product of a spatial function  by an oscillating term 
 in time, in the form . By introducing this writing of fluctuations into 
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Newton's equation, we obtain the equation which governs the spatial component  when 
the fluctuations present a pulsation .

For example, suppose a fluctuation which is located in the vicinity of the origin, along the 
three axes of space. For such a fluctuation to satisfy the previous Newton's equation, the spatial 
component  must be written in the form of a symmetrical exponential decay on either 
side of the origin, which, introduced into the equation of Newton, makes it possible to connect 
the pulsation  of the fluctuation to its spatial ranges  according to the three directions of 
space. We therefore see that the pulsation of a gravitational fluctuation is then inversely 
proportional to its spatial ranges. We can easily deduce the spatial fluctuation , as well 
as the velocity fluctuation  within the lattice.

Let’s try to calculate the elastic energy stored by this perturbation in the lattice. The elastic 
energy density  is given by the expression in figure 14.3 if the background expansion 

 of the cosmic lattice is not zero. The total elastic energy  of the fluctuation is 
obtained by integrating  over all of the space. The kinetic energy density  of 
the fluctuation is given by the expression in figure 14.3, and the total kinetic energy  of 
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the fluctuation is obtained by integrating  over all of the space. We deduce the total 
energy of the fluctuation  reported in figure 14.3.

Random microscopic fluctuations and quantum vacuum fluctuations        

Now consider microscopic longitudinal fluctuations, that is to say "gravitational" fluctuations 
for which the amplitude  is extremely small. Let’s discuss here the very simple case of an 
isotropic "gravitational" fluctuation, that is to say such that the ranges in the three directions of 
space are equal. In the case of the perfect cosmological lattice, for , we have that   

 and , so that, if this fluctuation is of very small magnitude , it is 
the energy of distortion associated with  which largely dominates the others, and therefore 
that .

This result of a fluctuating energy which is symmetrically positive or negative over time is 
quite interesting and intriguing. It indeed means that a lattice not presenting longitudinal waves 
could be subjected to a superposition of local fluctuations of various pulsations , various 
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phases  and various amplitudes , and whose centers would be located randomly at the 
positions , so as to take instantly the mathematical look shown in figure 14.4.

And since the energy of each of these fluctuations can be positive or negative over time, with 
a zero average, the instantaneous global energy of this field would always have zero energy on 
average. We can try to schematically represent this situation in the lattice, as we did in figure 
14.4.

This field of microscopic "gravitational" fluctuations is obviously not formed of stable 
fluctuations in time since their energy is not a constant. It is in fact made up of "evanescent" 
fluctuations, which appear and disappear spontaneously, while maintaining a zero global energy 
of the cosmological lattice. As such, this field of “gravitational” fluctuations is the perfect analog 
of the field of quantum fluctuations of the vacuum, also composed of quantum fluctuations on 
the microscopic scale, of positive and negative energies, but whose average energy remains 
zero.

In the presence of such a superposition of fluctuations, we can calculate the product of 
 by its complex conjugate. When expressing this product, it appears many terms, some 

having a zero value because of the positive and negative random values of the products  
 and some having a non-zero value because they represent the sum of the 

squares of the amplitudes of each fluctuation. We thus obtain a nonzero product which is 
nothing other than the instantaneous product of the wave function  by its complex 
conjugate as illustrated in figure 14.4. In chapter 1, we interpreted the product 

 as the probability of the presence of a topological singularity responsible for 
the wave function . We can therefore apply this probabilistic concept here and imagine 
that the nonzero instantaneous value of  corresponds to a probability of the 
presence of a virtual topological singularity, in other words a topological singularity which does 
not really exist, which perfectly matches the usual interpretation of the quantum vacuum 
fluctuations in quantum physics.

Is it possible to form stable oscillatory gravitational fluctuations?

To form stable gravitational fluctuations presenting themselves as localized and lasting 
longitudinal oscillations within the cosmological lattice, the total energy  of the 
single fluctuation in figure 14.3 poses a serious problem. Indeed, if the fluctuation must be a 
stable localized vibration of frequency , it should in principle have an oscillation energy 

 independent of time, which is obviously not the case of the expression of figure 
14.3, since this expression depends at the same time on , on  and on .

It is therefore necessary to imagine an ad hoc mechanism which can ensure the 
independence of the total energy  over time. In fact, it can be shown by fairly long 
and tedious calculations that the total fluctuation must be composed of at least four individual 
elementary fluctuations a, b, c and d, of the same frequency , and located in different places 
of the lattice, respectively in , ,  and , as described in figure 14.5. And so 
that these four fluctuations together present a total energy independent of time, the various 
ranges of the four fluctuations must satisfy conditions which are reported in figure 14.5, where 
the product  of any three numbers is in fact proportional to the "volume" occupied by each 
fluctuation within the lattice. In this case only, we obtain a fairly simple expression of the total 
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energy independent of the time of the four fluctuations, which is essentially composed of kinetic 
energy, and this global fluctuation is then stable over time.

Stable macroscopic gravitational oscillations
          in an infinite cosmological lattice and Multiverses   

In the domain of the cosmological lattice in which there are no longitudinal waves, there is 
thus the possibility of seeing a stable macroscopic fluctuation appear formed of a quadruplet of 
elementary fluctuations, like that represented in figure 14.5, which represent local longitudinal 
vibrations at a given frequency , and in such a way that the total energy of the global 
fluctuation, essentially of kinetic nature, does not depend on time.

ω
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Consider then the case of a macroscopic fluctuation composed of a quadruplet of 
elementary quasi-isotropic fluctuations, that is to say with . From the 
relationships in figure 14.5 we deduce the pulse frequency   of this macroscopic 
fluctuation, which is inversely proportional to the range , as well as the energy

 of the fluctuation which is essentially kinetic in nature. We deduce 
that macroscopic gravitational fluctuations of large amplitudes  in the domain  
would have a frequency of pulsation  proportional to the inverse of their range  and that 
their overall energy would be proportional to the product of the square  of their amplitude 
and to their volume , and independent of their pulsation .

In a perfect cosmological lattice which would be of infinite size, it is not possible to envisage 
a cosmological expansion like that which we described in chapter 3 (figures 3.7 to 3.10) in the 
case of a finite perfect cosmological lattice. On the other hand, one could imagine the 
appearance of a macroscopic fluctuation like that which we have just described in figure 14.5, 
which would be of gigantic volume , so that its frequency  of oscillation would be 
extremely low. And if its amplitude  were also high enough, for tiny HS observers who would 
be placed within one of these elementary fluctuations, this one would have all the characteristics 
of a Universe which would oscillate between a maximum expansion and a maximum contraction 
with the pulsation . Thus, the set of the four elementary fluctuations could represent a 
Multiverse. And within each of these elementary fluctuations, that is to say of each of the four 
universes, the observations of HS would be very similar to those made by HS who would be 
placed within a Universe such as those described in chapter 3 in the case of a finite perfect 
cosmological lattice.

But for that, there are necessary conditions which can be deduced from figure 14.6 and 
which would be essentially the following:
(i) that the infinite cosmological lattice has a background expansion  such that  in 
order to ensure that the formation of lacunar black holes occurs in the gray area (in figure 14.6) 
where the expansion of this Universe takes place at increasing speed,
(ii) that the amplitude  of the oscillation around  is sufficient for the oscillation to pass 
through the range of values situated around  so that the cosmology scenario presented in 
chapter 10 is also applicable to these Multiverses.

Under these two conditions, each of these multi-universes then presents an expansion 
starting with a kind of “big-bounce”, but which no longer implies that the volume expansion 
passes through a singularity such that , with, in the vicinity of its center, a cosmological 
evolution similar to that described in chapter 10, presenting a phase with an expansion at 
increasing speed during which the lacunar black holes are formed, then a phase with expansion 
at decreasing speed leading to the maximum expansion, which can or not go through an 
expansion domain located beyond the critical expansion value  where longitudinal waves 
appear at the expense of localized longitudinal fluctuations. Then this universe would go 
through a phase of contraction leading it to a new "big-bounce". However, it is clear that the 
complete calculation of the behavior of such Multiverses is not as simple as the calculation 
which we have just presented, if only by the fact that we adopted the assumption that 

 in our calculations, which would obviously not be an appropriate hypothesis in the 
case of gigantic gravitational fluctuations that can form such multiverses.
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Quantified microscopic gravitational oscillations: the “gravitons”          

Let us now consider stable microscopic longitudinal fluctuations, that is to say "gravitational" 
fluctuations of the type described in figure 14.5, of constant energy, but for which the amplitude 

 would be extremely small.
Let us consider here only the very simple case of an isotropic stable "gravitational" 

fluctuation, that is to say such that the ranges in the three directions of space are equal, and 
suppose very hypothetically that the constant energy of this is quantified in the same way as 
photons (the “electromagnetic” transverse fluctuations) were quantified, using the conjecture 11 
introduced previously. By introducing the quantized energy  corresponding to the four 
degrees of freedom of oscillations of the fluctuation, one obtains a stable, localized and 
quantified fluctuation, of kinetic energy , of pulsation , of 
ranges , and whose amplitude  is given in figure 14.7

This quantified stable fluctuation would therefore have spatial extensions  dependent on 
its pulsation , as well as an energy proportional to its pulsation  and an amplitude linked to 
the spatial extensions . This fluctuation would not need to move within the lattice, even if it 
could wander within the lattice. It is therefore a quasi-particle in the same way as the photon in 
the case of transverse "electromagnetic" waves of rotation, but it is a quasi-particle which is 
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associated with longitudinal "gravitational" vibrations of expansion of the lattice. We could 
therefore speak in this case of 

In fact, these gravitons have nothing to do with the gravitons sought in the context of 
quantification tests of general relativity. The gravitons postulated in our theory are stable 
energetic quasi-particles, which can travel within the lattice, but which are not required to move 
at the speed of transverse waves, unlike the gravitons of general relativity which are supposed 
to be moving at the speed of light. In addition, our gravitons are not carriers of the gravitational 
interaction between two singularities, but only localized and quantified energy fluctuations of the 
expansion field, unlike the gravitons of general relativity, which are considered as the mediating 
particles of gravitational interaction.

The configuration of the four elementary fluctuations making up the “graviton” quasi-particle 
can be very complex. The only condition obviously being that the four elementary fluctuations 
can exchange energy between them in order to keep the total kinetic energy constant. One 
could for example imagine axial "gravitons", that is to say quasi-particles for which the four 
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elementary fluctuations would be aligned along a preferential axis, an illustration of which is 
shown in figure 14.7. There is shown very schematically the case of a hypothetical axial 
"graviton" in the case where it is very spread out along the axis . In this representation, we 
have graphically reported the instantaneous local volume expansion of the "graviton", by 
specifying the oscillations of the four components in  and .

It can be seen that the spreads  of the fluctuation along the different axes are constrained 
so that the products for each of the partial fluctuations are constant and equal. But each spread 
is not fixed, so that this quasi-particle can deform by spreading or shrinking along all the axes. 
For example, an axial "graviton" of pulsation , and therefore of kinetic energy , can very 
well oscillate between a very condensed form along the axis  and very extended along the 
axes  and , and an opposite shape, very extended along the axis  and very 
condensed along the axes  and . This effect is again clearly an aspect of the famous 
non-locality of quantum physics, as it has been described in the case of photons.

Finally, note that these hypothetical "graviton" quasi-particles are very different from the 
hypothetical evanescent gravitational fluctuations analogous to the quantum vacuum 
fluctuations described in figure 14.4. Indeed, in the case of evanescent gravitational 
fluctuations, the energy of the fluctuation is essentially an energy of elastic distortion associated 
with the modulus  of the cosmological network, oscillating between a positive and negative 
value, and of zero mean value, while the energy of the hypothetical quasi-particles “gravitons” is 
essentially kinetic in nature and has a constant and not zero value, which ensures their long-
term stability. And to obtain this stability, the quasi-particle must be composed of four strongly 
correlated and indissociable fluctuations which ensure the constancy of energy, in the same way 
as the quasi-particles “photons” must be composed of two perpendicular rotation fluctuations 
and out of phase, giving them their helicity and thus ensuring the constancy of their energy. 
There is therefore a strong analogy between quasi-particles "photons" and "gravitons", not only 
by their constitution ensuring the constancy of their energy, but also by their non-locality, namely 
their ability to spread in space while preserving their identity and their energy, a property which 
is a typical prerogative of quantum physics.

Ox2

cosωt sinωt
δ ij

ω 2!ω
Ox2

Ox1 Ox3 Ox2
Ox1 Ox3

K0

 



Conclusion

As already said in the introduction, this essay does not pretend to present a perfectly 
elaborated Theory of Everything, but rather to show that a rigorous approach to elastic solid 
lattices by an Euler coordinate system, as we developed in this essay, provides a much simpler 
framework for investigation than differential geometries such as those used for example in 
general relativity, but which are very rich and fertile since it has been shown quite simply that it 
is possible (i) to make very strong and often perfect analogies appear with all the major physical 
theories of the macrocosm and the microcosm, such as Maxwell's equations, special relativity, 
general relativity, Newtonian gravitation, modern cosmology, quantum physics and the standard 
model of elementary particles, and (ii) reveal strong unifying bridges between these various 
theories.

About the central role of Newton's equation of the cosmological lattice

Since the beginning of this essay, we note that Newton's equation (figure 3.1) that we 
presented in chapter 3 for the imaginary isotropic cosmological lattice has everywhere played a 
central and capital role, and that it is at the basis of most of the amazing properties of the 
perfect cosmological lattice, including:

- the propagation of transverse waves coupled to longitudinal wavelets, managed by the 
Newton equation, which implies that pure transverse waves can only exist with circular 
polarization (which is a fundamental property of photons),

- the existence of domains of expansion ( ) in which there are no solutions of 
longitudinal waves to Newton's equation, but only quasi-static solutions which are the basis of 
the phenomena of gravitational interaction between topological singularities, or localized 
longitudinal vibration modes, which are the basis of the quantum dynamics and the spin of 
localized topological singularities,

- the curvature of the wave rays in gradients of the volume expansion, which is also a direct 
consequence of Newton's equation, and which predicts the possibility of the existence of black 
holes which irrevocably capture transverse perturbations,

- the complete Maxwell's equations for the rotation vector  when the volume expansion field 
is homogeneous, which show that the electromagnetism equation   is nothing 
other than the expression of Newton's equation of the cosmological lattice applied to this 
particular case,

- the special relativity, with the contraction of rulers and the dilation of time for an observer 
moving within and with respect to the lattice, which is a direct consequence of Newton's first 
partial equation,

- the Newtonian gravitation and the general relativity, which are direct consequences of the 
quasi-static solution of Newton's second partial equation,
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- the spatial curvature of space for the GO observer situated outside the lattice and the space-
time curvature for local observers HS within the lattice itself, which implies a direct analogy 
between the divergence of Newton's equation and the famous Einstein equation of zero 
divergence  for the energy-momentum tensor which ensures that the laws of 
conservation of energy and angular momentum are respected,

- the black holes, static solutions of Newton's second partial equation in the presence of 
macroscopic vacancies in the lattice when ,

- the neutron or pulsar stars, static solutions of Newton's second partial equation in the 
presence of macroscopic interstitial clusters in the lattice,

- the weak interaction force between the edge dislocation loops and the twist disclination loops, 
which is also a consequence of Newton's second partial equation,

- the quantum physics, the wave functions, the Schrödinger wave equation, and the notion of 
spin, which are consequences of Newton's second partial equation in the dynamic case of 
gravitational perturbations associated with localized topological singularities of the cosmological 
lattice,

- the photons, quanta of the transverse solution of circular polarization of the Newton equation,

- the pure and hard quantum concepts, such as bosons, fermions and the indistinguishability of 
topological singularities, as well as the Pauli exclusion principle, which are all deduced directly 
from the application of the second partial equation of Newton to several localized topological 
singularities.

About the perfectly innovative role of the curvature charge

In our theory of the cosmological lattice, a perfectly innovative concept appears, the charge 
of curvature of the edge dislocation loops, which is an unavoidable consequence of the 
treatment of a solid lattice and its topological singularities in Euler coordinates. This concept 
does not appear absolutely in all modern theories of physics, whether in general relativity, in 
quantum physics or in the Standard Model, while in our theory this concept provides 
explanations for many obscure points of these theories , among which the main ones are:

- the weak force associated with the cohesion of the corner-screw dispirations:
Considering topological singularities formed by the coupling of a twist disclination loop with 

an edge dislocation loop, which are called dispiration loops, an interaction force similar to a 
capture potential appears, with a very weak range, which induces interactions between loops 
presenting a perfect analogy with the weak interactions between elementary particles of the 
Standard Model.

- the matter-antimatter asymmetry:
In our theory, the matter-antimatter asymmetry has no more mystery because it is precisely 

the charge of curvature which becomes responsible for the appearance of a weak asymmetry 
between the particles (hypothetically containing edge loops of interstitial nature) and anti-
particles (hypothetically containing edge loops of a lacunar nature).

- the mass of curvature associated with the curvature charge and its consequences:
Each topological singularity is associated with a mass of curvature due to the curvature 

!
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charge which is added to its mass of inertia, and which induces slight differences in the 
behavior of the gravitational interaction forces between matter and anti-matter, and which 
provides simple explanations for several still mysterious phenomena of the cosmological 
evolution of matter, such as (i) the segregation between matter and antimatter within galaxies, 
(ii) the formation of gigantic black holes (macroscopic lacunar singularities) at the heart of 
galaxies by gravitational collapse of antimatter, (iii) the apparent disappearance of antimatter in 
the Universe following the formation of the black holes in the heart of galaxies, and (iv) the 
formation of neutron stars (macroscopic interstitial singularities) by gravitational collapse of 
stars of matter within galaxies.

- the appearance of neutrino antigravity and its consequences:
The negative mass of curvature dominates the positive mass of inertia in the case of the 

pure edge dislocation loop, which we associate with the neutrino of the standard model. This 
phenomenon leads to the fact that the neutrino is gravitationally repellant for other particles, 
which provides simple explanations for several still mysterious phenomena in the cosmological 
evolution of matter, such as (i) the formation of galaxies by precipitation of matter and 
antimatter in the form of aggregates within a sea of repellant neutrinos, and (ii) the concept of 
dark matter which is replaced by the concept of "sea of repellant neutrinos" in which  are 
immersed all galaxies, globular clusters, and other structures of the visible Universe. This sea 
of neutrinos exerts a compressive force on the stars of the periphery of the galaxies, which 
must necessarily rotate faster to compensate for this compressive force by an additional 
centripetal force of rotation.
- the bosonic or fermionic nature of the particles:

The curvature charge has another major interest linked to the bosonic or fermionic nature of 
the particles. Indeed, we note that all the particles with which a charge of curvature is 
associated (leptons, quarks and baryons) are fermions with a half-integer spin, which satisfy the 
Pauli exclusion principle, while all particles which do not have a curvature charge (photons, 
gauge bosons, gluons and mesons) are bosons with an integer spin, not subject to the Pauli 
exclusion principle. There is very probably here a crucial role played by the curvature charge, 
which could impose a boson or fermion behavior on a given particle.

About the importance of the microscopic structure of the cosmological lattice

The structure of the cosmological lattice also plays a preponderant role in the analogies that 
we have developed, but it is especially at the level of the structures of microscopic topological 
singularities in loops that it plays a crucial role. It was indeed necessary to imagine a cubic 
lattice with planes, imaginarily "colored" in red, green and blue and satisfying certain simple 
rules concerning their arrangement, to find topological loops surprisingly analogous to all 
particles, leptons, quarks, bosons and gluons of the first family of elementary particles of the 
Standard Model, as well as a force with asymptotic behavior between the singularities 
analogous to quarks, quite similar to the strong force of the Standard Model, and which requires 
the formation of doublets or triplets of singularity loops similar to mesons and baryons of the 
Standard Model.
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And we also had to imagine a more complex structure of the edge dislocation loops in this 
particular cosmological lattice, based on doublets of edge disclination loops, to try to explain the 
three families of the Standard Model of elementary particles.

From this enumeration of the important roles of the Newton's equation and the structure of 
the cosmological lattice, we can conclude that the Newtonian inertia of the lattice in absolute 
space, its elasticity by shear, by rotation and by volume expansion, its microscopic structure 
and the existence of the charge of curvature associated with the edge dislocation loops are the 
main ingredients of the theory of the cosmological lattice and are the keys to explaining all the 
properties of this particular lattice, and therefore, by analogy, of the real Universe, even if there 
are still many obscure points in this analogy.

Still obscure points concerning the cosmological lattice

It is clear that the cosmological lattice that we have developed throughout this book, despite 
the undeniable successes it has brought us, is far from perfect. There are still many obscure 
points that deserve to be studied, and if possible clarified, among which we will mention the 
most important, in the order of appearance during the presentation, and in the form of 
questions:
- are there really "corpuscles" of the cosmological lattice which would have a purely Newtonian 
mass of inertia in absolute space, and what are the relations existing between these 
"corpuscles" and the Higgs boson of the Standard Model?
- what is the physical nature of the elasticity of the cosmological lattice, leading to the modules

 allowing to express the elastic free energy of the 
lattice per unit of volume?
- where does the kinetic energy of the lattice necessary for the behaviors of the cosmological 
expansion of the lattice come from?
- what role could the "corpuscles" of the cosmological lattice play in hypothetical diffusion 
phenomena within the cosmological lattice (which could very well explain certain properties of 
magnetism)?
- are there really vector electric charges?
- what exactly are the parameters   introduced to calculate the energy of the 
loops, and are they really independent of the background expansion of the lattice?
- what could be the role of the slip mixed dislocation loops in our analogy with elementary 
particles?
- what is the relevance of the analogy between macroscopic vacancies and black holes, as well 
as between macroscopic interstitial and neutron stars?
- what physical explanation and which numerical values should be given to the parameters

 used for the calculation of the energy dependence of the 
loops in the background expansion of the lattice?
- how to explain physically the fact that the parameters  and used to find the clock and the 
rulers of the observer HS must be worth exactly 1/4?
- what is the thermal dependence of the free energy of the cosmological lattice, and could this 
justify a kind of “liquefaction” of the lattice for extremely small values of the volume expansion, 
in the vicinity of the “big-bang” ?

K0 = K3 > 0, 0 < K1 << K0, 0 ≤ K2 << K3

ζ BV , ζ BC , ζ BM
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- how, from a topological point of view, can a dislocation loop or a disclination loop turn on itself 
to explain the spin?
- what makes a certain topological loop have a spin 1/2 or a spin 1, and what is the exact role of 
the charge of curvature in the value of the spin and the bosonic or fermionic behavior of a 
particle?
- what exactly are the structure of the cosmological lattice and the nature of the colored planes 
of this lattice, and what is the link between these colored planes and the "corpuscles" 
composing the lattice?
- how can topological singularities analogous to quarks have a spin when they are linked to 
others by a fault energy tube?
- and many other questions, of a purely physical, or even philosophical nature which are not 
within the scope of this book, but which are very intriguing.

About the unifying power of our cosmological lattice theory

In fact, even if there are still many obscure points, it appears that our theory of the Eulerian 
cosmological lattice contains many strong analogies with all the great theories of modern 
physics, and that in this it has an enormous unifying power. And this theory of the cosmological 
lattice is very simple, on the contrary of the theories of superstrings or of the theory M which the 
theorists propose to unify “of force” the physical theories by quantifying gravity and by 
independently introducing into it the four elementary interactions, which leads to extremely 
complicated mathematical theories, in very complex spaces with n dimensions (n = 11 for 
theory M), and which have so far shown no predictive power.

It is interesting to note here that the superstring theories use cords and branes in 
complicated multidimensional spaces to quantify gravity, while our theory also uses cords, loops 
and membranes, but which are then simple topological singularities of a purely three-
dimensional lattice, with an additional dimension of absolute time completely decoupled from 
the dimensions of space, since time can be measured there by the universal clock of an 
imaginary observer GO  external to the lattice in absolute space .

And if the quasi-static volume expansion of this lattice on the macroscopic scale is the 
expression of the phenomena attributed to gravitation, the dynamic fluctuations of the 
expansion of this lattice on the microscopic scale are nothing other than the expression of the 
phenomena attributed to quantum physics. It is therefore wrong to seek to quantify the theory of 
gravitation, since quantum physics is precisely the expression of dynamic fluctuations of 
gravitation on a microscopic scale.

About the epistemology and the consequences of this essay

It is true that, in this essay, nothing has yet come to give a definitive explanation for the 
existence of the Universe, for the «raison d’être» of the big bang, and why the universe could 
behave like a solid lattice. These points remain, at least for now, within the purview of each 
individual's philosophy or beliefs. But, from an epistemological point of view, this essay shows 
that it is possible to find a very interesting framework to unify the various current physical 
theories, a framework in which there would no longer be many mysterious phenomena other 
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than the reason to be of the universe. And this approach is 
based in fact on a single concept absolutely essential, but of a 
disarming simplicity, which one could state in the following way, 
while being inspired by a famous quotation of the great 
physicist that was Richard P. Feynman:

“It is possible to observe and measure from the outside, with an 
absolute Eulerian reference frame endowed with fixed and 
immutable rulers and a universal clock, the spatio-temporal 
evolutions of a solid lattice having both a certain microscopic 
structure, specific elastic properties and Newtonian inertia 
properties. This one sentence contains, as you’ll see, a huge 
amount of information about the universe, as long as you put a 
little imagination and thought into it. ”



Glossary

Average local velocity : velocity of particles in a liquid or a solid at the coordinates of 
space  and time  in the absolute reference frame  of the laboratory of the GO 
observer.

Average volume : average volume occupied by a solid lattice cell, defined as the in-
verse of , that is to say .

Average volume density : average volume density of particles in a fluid or of elementa-
ry substitutional sites in a lattice with space  and time  coordinates. 

Contorsions: set of curvaturesof a solid lattice by flexion and torsion.

Euler coordinates: the Euler coordinate system is based on the description of the evolution in 
space and time of the vectors  of the velocity field of the points of the fluid or solid 
medium located at the space  and time  coordinates in the absolute coordinate sys-
tem of the GO observer laboratory (figure 1.2).

Disclinations: topological singularities corresponding to discontinuities  (Frank vector) of the 
field of rotations by deformation within the medium.

Dislocations: topological singularities corresponding to discontinuities  (Burgers vector) of 
the field of displacements within the medium.

Dispirations: topological singularities formed by the combination of a dislocation and a disclina-
tion.

Distorsions: set of deformations, global rotations and local rotations of a solid lattice. Only the 
global translations of the lattice are not included in the distortions.

Eulerian thermokinetics: set of two principles of continuity of the total energy and the entropy, 
absolutely essential in Euler coordinates and deduced from the first two laws of thermo-
dynamics and the Newtonian kinetic energy.

Geometro-kinetics: set of equations which relate the temporal variations of the distortions of 
the solid, which are calculated along the trajectory of the particles of the medium using a 
mathematical operator of time called the material derivative, with the spatial variations of 
the velocity field  of the medium, which are calculated using mathematical space 
operators from vector analysis applied to the velocity field.

Geometro-compatibility: set of equations which assure, from a topological point of view, that it 
does not exist, or that it exists, discontinuities  in the field of displacements, called dis-
locations, within the medium

Great Observer GO: the person outside the medium who observes, describes and analyzes 
the continuous medium from his observatory, which is provided with a frame of reference  
composed of an orthonormal Euclidean frame of reference , i.e. three rulers of 
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unit length , oriented perpendicularly to each other and represented by three arrows cal-
led the base vectors  of the coordinate system, and a universal clock ensuring 
that time  is measured identically everywhere in the laboratory.

Homo Sapiens HS: a person situated inside the lattice, et composed of topological singularities 
of the lattice, who observes, describes and analyzes the phenomena from his observato-
ry, which is provided with a frame of reference composed of an orthonormal Euclidean 
frame of reference , i.e. three rulers of unit length , oriented perpendicularly to 
each other and represented by three arrows called the base vectors  of his 
reference frame, and a clock measuring his own time  in his reference frame. Measured 
by the GO observer, the lengths of the rulers and the speed of the clock of the HS obser-
ver depend strongly on the velocity of the observer HS relative to the lattice, and also on 
the local volume expansion of the lattice.

Lagrange coordinates: the Lagrange coordinate system is based on the description of the evo-
lution in space and time of the vectors of a displacement field , knowing the coor-
dinates  of all the points of the initial solid in the fixed frame  of the laboratory 
of the observer (figure 1.1). 

Newtonian dynamics: dynamics of the particles of the medium which satisfy the law of Newton
, and which implies that the acceleration  of a particle is related to the force  

which one applies to it via the mass of inertia  of the particle.

Non-Markovian process: physical process within a system which depends not only on the 
present conditions acting on the system, but also on the history of the system which un-
dergoes it.

Operator material derivative: it is a mathematical operator of time used to calculate the tem-
poral variations of a physical quantity along the trajectory of the particles of a medium 
moving at velocity . This operator is represented by a straight derivative defined as 

.

Operator divergence: the divergence of a vector field  is a mathematical space operator of 
vector analysis providing a scalar field . The scalar  represents the limit of the flow of 
the field  through a closed surface  around a point  and can be different from zero 
only if the field  "diverges locally around the point ". The divergence is an invariant of 
the field , that is to say that it does not depend on the coordinate system chosen.

Operator gradient: the gradient of a scalar field  is a mathematical space operator of vector 
analysis providing a vector field . The direction of the vector  is perpendicular to the 
level surfaces of the function  in space. Its norm is proportional to the speed of varia-
tion of the function  in this direction, and is therefore different from zero only if the value 
of the function  "varies in a direction of space". The gradient is an invariant of the field 

, that is to say that it does not depend on the chosen coordinate system.

Operator curl (rotational): the curl (rotational) of a vector field  is a mathematical space ope-
rator of vector analysis providing another vector field . The direction of the vector  is 
perpendicular to the maximum circulation area of the vector  around a point . Its 
norm is proportional to the speed of circulation of  around  in this direction, and is 
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different from zero only if the field  "turns around the point ". The rotational is an in-
variant of the field , that is to say that it does not depend on the chosen coordinate sys-
tem.

Scalar: a scalar is a mathematical object corresponding to a physical quantity described by a 
single number. We speak of a scalar field when a scalar physical quantity takes different 
values at all points in space and over time.

Scalar of volume expansion : scalar defined as , 
depending on the space  and time  coordinates within the lattice, and perfectly mea-
suring the concept of volume expansion of the lattice since  for intense expan-
sions (when ),  for intense contractions (when ) and  when 

. This scalar represents also the trace of the distortion tensor  or the strain ten-
sor .

Solid medium: a medium will be said to be solid when, on a microscopic scale, it corresponds 
to a collection of particles such that the identity of the nearest neighbors of a given par-
ticle does not change over time.

Source of Frank-Read: mechanism for creating dislocations by a dislocation segment ancho-
red at two points and subjected to a force exceeding a certain limit value.

String model: mathematical model used to describe the movement of a dislocation that moves 
and curves within a lattice.

Tensor of order two: a tensor of order two is a mathematical object represented by an array 3 
of 3 of nine different numbers. A tensor of order two actually represents a physical quanti-
ty described by nine numbers. It can be very convenient to represent a tensor of order 
two using three vectors in the Euler coordinate system. We speak of a tensor field of or-
der two when a tensorial physical quantity takes different values at all points in space and 
over time.

Tensor of shear strain : symmetric tensor of order two, without trace, deduced from the 
strain tensor  from which we subtract the trace, and which represents the set of shears 
of the medium, without taking into account the volume expansion of the lattice.

Tensor of contortion :  spatial variations of the deformation field  which can be decom-
posed by symmetries into a vector of flexion  and a transverse symmetric tensor (wi-
thout trace) of torsion .

Tensor of deformation : symmetric tensor of order two deduced from the symmetrical part 
of the distortion tensor , which represents all the deformations of the medium, but wi-
thout the global rotations of the medium.

Tensor of distortion :  array of nine numbers   sufficient to describe perfectly the set of 
global and local rotations and deformations of the solid lattice. The lattice distortion tensor 
field  will be represented for convenience by a field of three vectors , re-
membering that a vector is a space-oriented arrow composed of three numbers.

Tensor of torsion : symmetric transverse tensor (without trace) deduced from the contor-
tion tensor , and representing the torsions of the medium, as illustrated in figure 1.18.
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Thermal activation: activation process of a mechanism given by localized thermal fluctuations, 
due to the temperature within the medium.

Vector: a vector is a mathematical object corresponding to an arrow oriented in space. A vector 
actually represents a physical quantity described by three numbers which correspond 
respectively to the lengths of the three projections of the arrow on the axes of the coordi-
nate system . We speak of a vector field when a vector physical quantity takes 
different values at all points in space and over time.

Vector of flexion : vector deduced from the anti-symmetrical part of the contortion tensor 
, and representing the flexions of the medium, as illustrated in figure 1.17.

Vector of rotation : axial vector deduced from the anti-symmetrical part of the distortion ten-
sor , and which represents all the local and global rotations within the medium.
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Mathematical and physical symbols 

Mathematical operators

 = gradient operator of the vector analysis
 = curl (rotational) operator of the vector analysis
 = divergence operator of the vector analysis

 =«del» operator  of the vector analysis
 = time derivative to measure the time variations of a physical quantity at a given location 
in space in the Euler coordinate system 

 = material derivative to measure the temporal variations of a physical 
quantity along the trajectory of the particles of a medium

Coordinate system

 = vector position in the coordinate system 
 = field of displacement in Lagarange coordinates

= field of displacement in Euler coordinates
 = local average velocity of the medium
 = average volume density 
 = average volume of a lattice cell
 = scalar of volume expansion

Distortions et contortions

 = distortion tensor
 = symmetric deformation (strain) tensor
 = symmetric transverse shear strain tensor
= rotation vector
 = scalar of volume expansion

 = field of rotation  deduced from the deformation tensor
 = tensors of elastic distortions

 = tensors of anelastic distortions
 = tensors of plastic distortions

 = tensor of contortion
 = tensor of torsion

 = tensor of  flexion

Physical quantities

 = mass density of the medium
 = mass volume source
 = mass transport surface flux
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 = volume source of lattice sites
 = average kinetic energy per lattice site

= average entropy per lattice site
 = average internal energy per lattice site

 = volume source of external work
 = surface work flow
 = heat flux 
= volume source of entropy

 = local medium temperature
 = relative velocity of a vacancy compared to the lattice 
 = relative velocity of an interstitial compared to the lattice 

 = number of vacancies per unit of lattice volume
 = number of self-interstitials per unit of lattice volume

 = atomic concentrations of vacancies relative to the site density  
 = atomic concentrations of self-interstitials relative to the site density 

  = surface flow of diffusion of vacancies with respect to the lattice
 = surface flow of diffusion of self-interstitials with respect to the lattice
 = volume source of vacancies within the lattice
 = volume source of self-interstitials within the lattice

State functions and state equations

 = internal energy state function of an elastic, anelastic and 
self-diffusing solid

 = mechanical potentials conjugated with elastic and ane-
lastic distortion tensors respectively 

 = stress tensor conjugated with the elastic distortion tensor 
 = stress tensor conjugated to the tensor of anelastic distortions 

 = symmetric stress tensor conjugated to the elastic strain tensor 
 = symmetric stress tensor conjugated to the tensor of anelastic deformations

 = symmetric transverse stress tensor conjugated with the elastic shear tensor 
 = symmetric transverse stress tensor conjugated with the anelastic shear tensor 

 = torque vector conjugated to the elastic rotation vector 
= torque vector conjugated to the anelastic rotation vector 

 = pressure conjugated with the scalar of volume expansion 
 = chemical potential conjugated with the atomic concentration of vacancies
= chemical potential conjugated with the atomic concentration  of self-interstitials
 = thermal potential combined with the entropy  of the medium, called the local temperature

Dislocations et disclinations

 = Burgers vector
 = Frank vector
 = tensor density of dislocation charge
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 = vector density of flexion charge, deduced from the anti-symmetrical part of 
 = scalar density of rotation charge, deduced from the trace of 

 = tensor density of contortion charge
 = tensor density of torsion charge

 = tensor density of disclination charge
 =  scalar density of curvature charge 

 = linear tensor charge of dislocation of a dislocation line
 = linear vector charge of dislocation of an edge dislocation line
= linear scalar charge of dislocation of a screw dislocation line
  = surface tensor charge of dislocation of a thin membrane
 = surface vector charge of flexion of a thin membrane of flexion or disorientation
  = surface scalar charge of rotation of a thin membrane of torsion
 = global scalar charge of curvature of a prismatic dislocation loop
 = global scalar charge of rotation of a twist disclination loop
  = global scalar charge of rotation of a localized cluster of topological singularities
 = global scalar charge of curvature of a localized cluster of topological singularities

 = tensor surface flux of dislocation charges
= vector surface flux of rotation charges, deduced from the anti-symmetrical part of 
 = scalar volume source of lattice sites, deduced from the trace of 
= relative velocity of a singularity compared to the lattice
 =  linear tensor flow of dislocation charges per unit of dislocation length

 =  linear vector flow of flexion per unit of dislocation length
 = linear source of lattice sites per unit of dislocation length 

 = Peach and Koehler force acting per unit length on a dislocation
 = total energy of dissociation of a dislocation into two partials, according 

to the distance  separating them
= interaction energy of two partials as a function of the distance  between them, per 

unit of dislocation length
= stacking fault energy per unit area

!
λ  

!
λi

λ  
!
λi!

λi −
!ei ∧
!
λ − !eiλ!

λi −(
!ei ∧
!
λ)/2− !eiλ!

θi = rot
" !"" !

λi −
!ei ∧
!
λ − !eiλ⎡⎣ ⎤⎦

θ = div
!
λ

 
!
Λi

 
!
Λ
Λ

 
!
Πi

 
!
Π
Π
qθ
qλ
Qλ

Qθ

 
!
Ji!
J  

!
Ji

Sn  
!
Ji

 
!
v

 
!
ϒ i

 
!
ϒ
ϒ

 
!
FPK
Et (d) = γ d + Ed (d)

d
Ed (d) d

γ



Glossary302






