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On n’a peut-étre pas encore prété assez d’attention [a] I'utilité dont cette étude [de
la Géomeétrie] peut étre pour préparer comme insensiblement les voies a I'esprit
philosophique, et pour disposer toute une nation a recevoir la lumiére que cet esprit
peut y répandre [...]. Bient6t I'’étude de la Géométrie conduira [...] a la vraie Philo-
sophie qui par la lumiére générale et prompte qu’elle répandra, sera bientdt plus
puissante que tous les efforts de la superstition.

Jean le Rond D’Alembert, article “Géométrie” de L’'Encyclopédie, 1772

Si toute la connaissance scientifique disparaissait dans un cataclysme, quelle
phrase unique pourrait préserver le maximum d'information pour les générations
futures? Comment pourrions-nous leur transmettre au mieux notre compréhension
du monde? Je propose: "Toutes choses sont faites d'atomes, petites particules
animées d'un mouvement incessant, qui s'attirent lorsqu'elles sont distantes les
unes des autres, mais se repoussent lorsqu'on les force a se serrer de trop pres".
Cette seule phrase contient, vous le verrez, une quantité énorme d'information sur
le monde, pour peu que I'on y mette un peu d'imagination et de réflexion.

Richard P. Feynman

The more the universe seems comprehensible, the more it also seems pointless.
But if there is no solace in the fruits of our research, there is at least some consola-
tion in the research itself [...] The effort to understand the universe is one of the
very few things that lifts human life a little above the level of farce, and gives it
some of the grace of tragedy.

Steven Weinberg, from “The First Three Minutes”

Imagination is more important than knowledge. For knowledge is limited to all we
now know and understand, while imagination embraces the entire world, and all
there ever will be to know and understand.

Albert Einstein
Pensons, il en restera toujours quelque chose!

(Think, there will always be something left!)

Snoopy
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THE CRYSTALLINE ETHER

Introduction

Storytelling of this book

"What if the Universe was a crystal?" was the question that came to my mind little by little
forty years ago when | was preparing a course for physics students in their fourth year of study.
At that time, with a degree in physics-engineering and a doctorate in physics, | was pursuing
research in dislocation dynamics at the Swiss Federal Institute of Technology of Lausanne, and
as part of this research activity, | also had to participate in teaching. The course | was
responsible for was directly related to my research and was called physics of dislocations.
Dislocations are defects in arrangement in the crystal structure of solids, such as metals. And it
is the movements of these structural defects which explain a good part of the macroscopic
properties of deformation of crystalline solids, hence the importance of describing them
theoretically and studying them experimentally.

When preparing for my course for the first time, | decided to teach a very theoretical
mathematical approach to dislocations developed by M. Zorawski'. Unfortunately, this approach
is very complicated, because it uses Riemann differential geometry to describe the spatio-
temporal evolution of dislocations in local infinitesimal frames, approach involving all the very
heavy mathematical artillery of general relativity (metric tensor and symbols of Christoffel). This
first version of my course was a bitter failure. This approach not only hid the whole reality of the
behavior of dislocations behind an armada of very complicated mathematical objects (tensors),
but it also very quickly provoked strong repulsion from students, but also from the professor.

During the second year of teaching this course, | therefore decided to completely change my
approach to dislocations, basing it on a more usual description of the deformations of solids,
using the classic Lagrange coordinate system and formalizing at best the physical properties of
the medium, which is generally not very well done in most courses in the theory of continuous
media.

By teaching this theory from year to year, and by perfecting the presentation of my course
each time, | saw intriguing analogies appear with other theories of physics. The first analogy
that appeared was surprising, as it involved Maxwell's theory of electromagnetism. And the
analogy became over the years more and more clear and obvious, because it was not limited
only to an analogy with one of the two pairs of Maxwell's equations in a vacuum, but it was also
generalized to the various phenomenologies encountered in electromagnetism, such as
dielectric polarization and magnetization of matter, as well as charges and electric currents.

It is by taking inspiration from the literature that | also showed in my course that it was

1 M. Zorawski, «Théorie mathématique des dislocations», Dunod, Paris, 1967.



2 Introduction

possible to calculate the rest energy E, of dislocations, which corresponds to the elastic energy
which

cin’

of deformation Edef stored in the lattice by their presence and their kinetic energy E
corresponds to the kinetic energy of the particles of the lattice mobilized by their movement,
which then allowed them to be assigned a mass M, of virtual inertia which satisfies
relationships perfectly similar to the famous equation E, = Moc2 of Einstein’s special relativity,
but which was obtained here in a completely classic way, that is to say without appealing to a
principle of relativity. In addition, the dynamics of high velocity dislocations also satisfied the
principles of special relativity and Lorentz transformations.

The analogy with Maxwell's equations was already very astonishing by the simple fact that it
was initially postulated that the solid lattice satisfied a very simple dynamic, purely Newtonian, in
the laboratory of the experimenter, while the dislocations, responsible for the plastic
deformations of the solid, were necessarily subject to a relativistic dynamic within the solid,
obligation due to the set of Maxwell equations governing the deformations of the medium.
Therefore, | came to the very paradoxical conclusion that the relativistic dynamics of
dislocations is in fact nothing more than a consequence of the perfectly classic Newtonian
dynamics of the elastic solid lattice in the laboratory of the experimenter.

The numerous analogies which appeared during the preparation of my course between the
theory of deformable solid media and the theories of electromagnetism and special relativity
were sufficiently surprising and remarkable to not fail to tickle any open and somewhat scientific
mind. But it was clear that these analogies were far from perfect. It was therefore very tempting
to analyze these analogies in more depth and try to find out how to perfect them. This is what
led me to work on this subject, in my spare time and for forty years, and finally to propose
several theoretical books developing on the one hand an original approach to the deformation of
solids? using coordinates of Euler instead of the coordinates of Lagrange, and on the other hand
a revolutionary approach of the Universe3 based on the deepening, the improvement and the
understanding of the analogies between the theory of the deformation of crystalline solids and
the great theories of modern physics such as Maxwell's equations, special relativity, Newtonian
gravitation, general relativity, modern cosmology, quantum physics and the standard model of
elementary particles.

It is quite remarkable to be able to deduce all the great theories of modern physics from a
logical development based exclusively on the simple concepts that are, from a physical point of
view, the three main principles of classical physics, namely Newtonian dynamics (Newton's
equation), the first principle of thermodynamics (conservation of the total energy of a system)
and the second principle of thermodynamics (the existence of a physical quantity, entropy,
measuring the disorder of a system), and from a mathematical point of view, the detailed

2 G. Gremaud, “Théorie eulérienne des milieux déformables — charges de dislocation et désinclinaison
dans les solides”, Presses polytechniques et universitaires romandes (PPUR), Lausanne (Switzerland)
2013, 751 pages, ISBN 978-2-88074-964-4

G. Gremaud, “Eulerian theory of newtonian deformable lattices — dislocation and disclination charges in
solids”, Amazon, Charleston (USA) 2016, 312 pages, ISBN 978-2-8399-1943-2

3 G. Gremaud, “Univers et Matiere conjecturés comme un Réseau Tridimensionnel avec des Singularités
Topologiques”, Amazon, Charleston (USA) 2016, 664 pages, ISBN 978-2-8399-1940-1

G. Gremaud, “Universe and Matter conjectured as a 3-dimensional Lattice with Topological Singularities”,
Amazon, Charleston (USA) 2016, 650 pages, ISBN 978-2-8399-1934-0
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description of the spatio-temporal evolution of a lattice thanks to an original geometry based on
Euler coordinates.

But if the basic principles of my approach are very simple and quite classic, the
developments leading to find the great theories of modern physics from these principles are
long, quite difficult and very theoretical, with many mathematics formulas. They are therefore
not an easy approach, even for physicists, and especially if these are not versed in the field of
solid state physics and their deformations. This is why | undertook to write this new book in
which | have the ambition to make known, if possible with the minimum of mathematics, the ins
and outs of my approach, in order to familiarize physicists and all people passionate about
knowing the Universe at the simplicity and elegance of my original approach to it on some
simple and very classic basic concepts.

I must note here that the existence of analogies between the mechanics of continuous media
and the physics of defects and the theories of electromagnetism, special relativity and
gravitation is by far not my own idea. Indeed, it had already been the subject of numerous
publications before | was concerned about it. Excellent reviews on this subject have been
published, notably by Whittaker4 in 1951 and by Unzicker5 in 2000.

For example, Nye® initiated in 1953 the use of differential geometries to introduce topological
defects such as dislocations in deformable continuous media, and for the first time made the
connection between the dislocation density tensor and the curvature of the lattice. On the other
hand, Kondo” in 1952 and Bilby8 in 1954 have independently shown that dislocations can be
identified with a crystalline version of 1922 Cartan's concept? of twisting a continuum.

And this approach was formalized in great detail by Kréner'© in 1960, who also proposed in
1980 that the existence of extrinsic point defects, which can be considered as extra-material,
could be identified with the presence of matter in the universe' and be introduced consequently
in the form of Einstein equations, which would lead to a purely Riemannian differential geometry
in the absence of dislocations. He also proposed that intrinsic point defects (vacancies,
interstitials) could be approached by a non-metric part of an affine connection. Finally, he also
considered that the introduction of other topological defects such as disclinations could call on
even more complex higher-order geometries, such as Finsler or Kawaguchi geometries.

4 S. E. Whittaker, «A History of the Theory of Aether and Electricity», Dover reprint, vol. 1, p. 142, 1951.

5 A. Unzicker, «What can Physics learn from Continuum Mechanics?», arXiv.gr-qc/0011064, 2000

6 J.F. Nye, Acta Metall.,vol. 1, p.153, 1953

7 K. Kondo, RAAG Memoirs of the unifying study of the basic problems in physics and engeneering
science by means of geometry, volume 1. Gakujutsu Bunken Fukyu- Kay, Tokyo, 1952

8 B. A. Bilby , R. Bullough and E. Smith, «Continous distributions of dislocations: a new application of the
methods of non-riemannian geometry», Proc. Roy. Soc. London, Ser. A 231, p. 263-273, 1955

9 E. Cartan, C.R. Akad. Sci., 174, p. 593, 1922 & C.R. Akad. Sci., 174, p.734, 1922

10 E. Kréner, «Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen», Arch. Rat. Mech.
Anal., 4, p. 273-313, 1960

1 E. Kréner, «Continuum theory of defects», in «physics of defects», ed. by R. Balian et al., Les Houches,
Session 35, p. 215-315. North Holland, Amsterdam, 1980.
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Kréner's analogies between the mechanics of continuous media and the great modern theories
of physics are undoubtedly the most famous. However, none of this previous research had gone
as far in highlighting analogies as the approach presented in this book.

In search of a Theory of Everything

One of the fundamental problems of modern physics is the search for a Theory of Everything
capable of explaining the nature of space-time, what matter is and how matter interacts. Since
the 19th century, physicists have sought to develop theories of unified fields, which should
consist of a coherent theoretical framework capable of taking into account the various funda-
mental forces of nature. Some attempts to find a unified theory include:

- The “Great Unification” which brings together the electromagnetic interaction forces, the weak
forces and the strong forces,

- Quantum Gravity, Quantum Loop Gravitation, and String Theories, which seek to describe the
quantum properties of gravity,

- Supersymmetry, which proposes an extension of space-time symmetry connecting the two
classes of elementary particles, bosons and fermions,

- The Theories of Strings and Superstrings, which are theoretical structures integrating gravity,
in which the point particles are replaced by one-dimensional strings whose quantum states
describe all the types of elementary particles observed,

- M Theory, which unifies five different versions of string theories, with the surprising property
that extra-dimensions are required to ensure its consistency.

However, none of these approaches is yet capable of explaining in a consistent manner and
at the same time the electromagnetism, relativity, gravitation, quantum physics and the
elementary particles observed. Many physicists believe that the 11-dimensional M Theory is the
Theory of Everything. However, there is not a broad consensus on this point and there is
currently no candidate theory capable of calculating experimental quantities known as the fine
structure constant or the mass of the electron. Particle physicists hope that the future results of
current experiments - the search for new particles in large accelerators and the search for dark
matter - will still be necessary to define a Theory of Everything.

But these researches seem to have really stagnated for about 40 years, and many physicists
now have serious doubts about the suitability of these theories. On this subject, | strongly advise
readers to consult among others the books of Smolin12, Woit'® and Hossenfelder'4. Since the
1980s, thousands of theoretical physicists have published thousands of scientific articles that
are generally accepted in peer-reviewed journals, event if these papers have contributed
absolutely nothing new to the explanation of the Universe and solve none of the current

12 | ee Smolin, «The trouble with Physics», Penguin Books 2008, London, ISBN 978-0-141-01835-5
Lee Smolin, «La révolution inachevée d’Einstein, au-dela du quantique», Dunod 2019, ISBN
978-2-10-079553-6

Lee Smolin, «Rien ne va plus en physique., L’échec de la théorie des cordes», Dunod 2007, ISBN
978-2-7578-1278-5

13 Peter Woit, «Not Even Wrong, the failure of String Theory and the continuing challenge to unify the laws
of physics», Vintage Books 2007, ISBN 9780099488644

14 Sabine Hossenfelder, «Lost in Maths», Les Belles Lettres 2019, ISBN978-2-251-44931-9
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mysteries of physics. An enormous amount of energy has been mobilized to develop these
theories, which are becoming very remote from the physical reality of our world. It is a race to
publish more and more esoteric articles and to search for a form of "mathematical beauty" at the
expense of "physical reality". Moreover, huge amounts of money have been invested in this
research, to the detriment of fundamental research in other areas of physics, in the form of
building increasingly complex machines. And, to the despair of experimental physicists, the
results obtained have brought almost nothing new to high-energy physics, contrary to the
"visionary" and optimistic predictions of the theorists.

In this book, the problem of unifying physical theories is dealt with in a radically different way.
Instead of trying to build a unified theory by tinkering with an assembly of existing theories,
making them more complex, even adding strange symmetries and additional dimensions for
their "mathematical beauty", | start exclusively from the most classic fundamentals concepts of
physics that are Newton's equation and the first two principles of thermodynamics. Using these
fundamental principles, and by developing an original geometry based on the Euler coordinates,
| come, by a purely logical and deductive path, to suggest that the Universe could be a crystal, a
three-dimensional lattice, elastic and massive, and that the constituent elements of Ordinary
Matter could be structural defects (hereinafter called topological singularities) of this crystal
lattice, namely various loops of dislocation and disclinations which we will describe in detail. For
an isotropic face-centered cubic lattice satisfying Newton's law, and with specific assumptions
on its elastic properties, | find that the behaviors of this lattice and its topological singularities
gather "all* the physics known today, by making appear spontaneously very strong and often
perfect analogies with all the great current physical theories of the Macrocosm and the
Microcosm, such as Maxwell's Equations, Special Relativity, Newtonian Gravitation, General
Relativity, Modern Cosmology and Quantum Physics.

But this approach does not only find analogies with other theories of physics, it also
proposes quite original, new and simple explanations to many physical phenomena that are still
quite obscure and poorly understood at the present time by physics, such as the meaning and
deep physical interpretation of cosmological expansion, electromagnetism, special relativity,
general relativity, quantum physics, and particle spin. It also offers explanations of what
quantum decoherence, dark energy, dark matter, black holes, and many other phenomena
really are.

The detailed development of this approach also leads to some very innovative ideas, among
which the most important is the appearance of the curvature charge, which is an unavoidable
consequence of the treatment of a solid lattice and its topological singularities in Euler
coordinates. This concept does not appear at all in all modern theories of physics, whether in
general relativity, quantum physics or in the Standard Model, whereas in our approach this
concept provides explanations for many obscure points of these theories, such as weak force,
matter-antimatter asymmetry, the formation of galaxies, the segregation between matter and
antimatter within galaxies, the formation of gigantic black holes in the heart of galaxies, the
apparent disappearance of antimatter in the Universe, the formation of neutron stars, the
concept of dark matter, the bosonic or fermionic nature of particles, etc.

Finally, by studying face-centered cubic lattices with special symmetries called axial,
symbolically represented by “colored” 3D lattices, one can identify a lattice structure whose
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loops of topological singularities perfectly coincide with the complex zoology of all elementary
particles of the Standard Model, and one also finds simple physical explanations of the weak
and strong forces of the Standard Model, with all their specific properties.

This approach, published in my second book "Universe and Matter Conjectured as a Three-
Dimensional Network with Topological Singularities™, does not pretend to present a Theory of
All which would already be fully developed and usable, but it should and could by against
proving to be extremely fruitful in giving simple explanations to modern physical theories whose
deep meaning it is difficult, if not impossible, to understand, but also and above all to define
close links and unifying bridges between the various major theories of modern physics.

The aim of this book is therefore to make this approach known to an informed and interested
public, by approaching it in the simplest possible way, on the basis of numerous figures, by
explaining it "with the hands" and by trying to avoid as much as possible the development of the
underlying mathematical equations. On the other hand, I think that it is important to highlight the
most fundamental equations of theory in figures, but without it being necessary to understand
them. Regarding the organization of the content of the book, I tried to follow as closely as
possible the plan of the initial theoretical book, so that those interested could refer directly to the
complete mathematical treatments it contains.

In this book, | begin by autonomously summarizing the theory? published initially in 2013,
which methodically laid the foundations for an original approach to solid lattices by Euler
coordinates, and which also introduced in detail the concept of charge of dislocation and
disclination within a crystal lattice, a concept which makes it possible to quantify structural
defects, topological singularities, which can appear on the microscopic scale of such a lattice.

On the basis of this original approach of solid lattices and their topological singularities, |
deduce a set of fundamental and phenomenological equations which makes it possible to treat
in a very rigorous way the macroscopic spatio-temporal evolution of a solid Newtonian lattice
deforming in the absolute space of the laboratory of an observer outside this lattice.

| then introduce an imaginary lattice, with rather special elastic and structural properties, the
concept of which was imagined and published in 2016 in my second book!, and which | termed
a "cosmological lattice". Initially, this lattice was imagined with a simple cubic structure, which
forced me to do some perilous acrobatics to describe the three families of elementary particles
of the standard model. But in this new version of 2021, | introduce a face-centered cubic lattice,
which | poetically call the crystalline ether, which was suggested to me by my friend Willy
Benoit, and which allows to describe much more judiciously the three families of elementary
particles of the standard model. With a few well-chosen conjectures, the Newton equation of this
lattice and the topological singularities that it may contain present a set of very surprising
properties, which will progressively show strong and surprising analogies with all the major
current physical theories, as summarized in the table of contents .



Chapter 1
Eulerian theory of deformable Newtonian lattices

To describe the spatio-temporal evolution of the deformation of a solid lattice, it is first
necessary to define a reference system for making space and time measurements in the
laboratory. For this, we have the choice between several possible coordinate systems, and we
will choose here the Euler coordinate system for several reasons which will be explained in
detail. Following this choice, it becomes possible to describe how the deformation of a lattice
can be characterized by distortions and contortions. But to quantify these distortions and
contortions, it will be necessary to use mathematical objects called scalars, vectors and tensors.
We will therefore try to explain simply these mathematical objects, and why we systematically
use a vector representation of tensors, which has undeniable advantages over the purely
tensorial representation, if only by the possibility of using powerful formalism of a mathematical
tool called vector analysis. This crucial choice makes it possible to fairly easily obtain equations
which ensure the solidity of the lattice, known as geometro-compatibility equations, and
equations which make it possible to describe the kinetics of the deformation, known as
geometro-Kinetic equations.

The basic concepts of physics, namely Newtonian dynamics and Eulerian thermokinetics,
can then be introduced in this topological context. With all these ingredients, it then becomes
possible to describe a number of specific behaviors of deformable solid lattices, such as
elasticity, anelasticity, and self-diffusion.

Coordinate systems to describe the deformation of a medium

If an observer, who we will call hereafter Great Observer GO, wishes to describe in his
laboratory the evolution of a certain continuous medium which moves in space by translation
and rotation, and which, moreover, can deform at over time (figure 1.1), it must first define the
kinetic behavior of the medium. Taking as a basic axiom that the evolution of the medium in
space and time satisfies the principle of additivity of velocities, namely that the velocity of an
object moving at velocity v¢ with respect to another moving object at velocity v in the laboratory
will have a velocity vi + vz in the laboratory, we will then have to deal with kinetics satisfying the
transformation of Galileo, and called Galilean kinetics. In this case, the observer GO can
describe this spatio-temporal evolution on the basis of an absolute reference system placed in
his laboratory. This frame of reference is composed of an orthonormal Euclidean coordinate
system Ox x,x,, that is to say of three rules of unit length, oriented perpendicularly to each
other and represented by three arrows which are called the base vectors (€,,€,,€,) of the
coordinate system, and of a universal clock ensuring that time ¢ is measured identically
everywhere in the laboratory (figures 1.1 and 1.2).

To describe the spatio-temporal evolution of a deformable continuous medium, the observer
then has several possibilities among which the Lagrange coordinate system, used to describe
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the deformation of solids, and the Euler coordinate system,
used in general to describe the hydrodynamics of fluids.

To simply and completely describe the spatio-temporal
evolution of a solid continuous medium, the observer GO can
use the Lagrange coordinate system. First, it performs a
marking of the solid material medium at the initial instant 7 = 0
using a grid of points P, .

Then, he can define a stationary reference frame Ox1x2x3

in his laboratory. By providing this fixed frame 0)61)62963 with

unit length rules (€_,€,,€,), and by orienting it judiciously with Joseph Louis Lagrange

respect to the initial position of the medium at the instant (1736-1813)

t =0, it can measure the position of all the points P, of the
medium at the initial instant # = 0 using of arrows, vectors! 7 .

At a point # >0 in time, a point P, in the middle will have moved to P, and the observer
can then connect the point P, to the point P using an arrow, the vector u which is called the
displacement vector of point F, . As this vector depends on the initial position 7 of the point P,
and time 7, the set of vectors u(7,t) identifying all the points of the medium is called the
displacement field of the medium in Lagrange coordinates.

The Lagrange coordinate system is therefore based on the description of the evolution in
space and time of the vectors u(7r,t) of the displacement field defined above, knowing the

t>0
t=0
Coordinates of all the — j
solid points u(r,t)
X, A
O(F.1)
Displacement
- field
-
- -
e, X,
X, é Great
E_;""..." QLD Observer

Figure 1.1 - The Lagrange coordinates

1 Vector: a vector is a mathematical object corresponding to an arrow oriented in space. A vector actually
represents a physical quantity described by three numbers which correspond respectively to the lengths of
the three projections of the arrow on the axes 0x1x2x3 of the coordinate system. We speak of a vector
field when a vector physical quantity takes different values at all points in space and over time.



Eulerian theory of deformable Newtonian lattices

coordinates 7 of all the points of the initial solid in the fixed
frame Ox,x,x, of the laboratory of the observer, as illustrated
in figure 1.1.

By using previously the expression of continuous medium,
one appealed to an intuitive concept, namely that a medium
presents, on the macroscopic scale where it is observed,
neither discontinuous structure in the static state, nor
appearance of discontinuities, such as tears, local ruptures or
cavity formations during its spatio-temporal evolution.

From the macroscopic observation of the behavior of the
medium, and in particular of the continuity of the displacement
field u , it is possible to attribute qualifiers to the medium

Leonhard Euler
(1707-1783)

observed. If the medium presents a perfectly continuous displacement field during its spatio-

temporal evolution, it is qualified as solid medium. It then has the macroscopic property of

having its own form which is difficult to modify.

If, on the other hand, the medium has a discontinuous displacement field i , forming over

time an inextricable entanglement, it is qualified as a fluid medium. This has the macroscopic

property of flowing and must therefore be kept in a container whose shape it follows. In this

case, the displacement field u of the Lagrange coordinates loses all physical significance, and

only the vector velocity ¢(r,t) of the fluid located at the instant ¢ at the space coordinate I of

the absolute reference frame retains a physical meaning. This definition of the movements of

the medium by the observer GO is called the Euler coordinate system.

>0
Coordinates )
of the space points
x, A
r Vv,
Local velocity field
of the medium
!
e, X,
é
X, !

Observer

Figure 1.2 - The Euler coordinates
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The Euler coordinate system is therefore based on the description of the evolution in space
and time of the vectors of the velocity field ¢(r,t) of the points of the fluid or solid medium
located at the space I and time ¢ coordinates in the absolute coordinate system 0X1x2x3 of
the observer GO laboratory (figure 1.2).

What is a solid lattice?

The concept of continuous medium defined above only applies when this medium is
observed on a macroscopic scale. Indeed, an enlargement of the same medium on a sufficiently
microscopic scale will reveal a discontinuous collection of objects, to which we will attribute in
the following the generic name of particles (for example corpuscles, atoms, molecules, etc.). We
logically conclude that the global phenomenological properties observed at the macroscopic
scale where the medium appears continuous are in fact statistical effects resulting from the
large number of particles interacting with each other at the microscopic scale.

The enlargement of the medium also makes it possible to define certain important
microscopic characteristics of the medium, such as its structure, that is to say the way in which
the particles which compose it are assembled, and its chemical composition, that is to say ie the
nature of the particles that compose it.

A continuous medium will be said to be solid when, on the microscopic scale, it corresponds
to a collection of particles such that the identity of the nearest neighbors of a given particle does
not change over time. In other words, each particle is connected to its closest neighbors by
elastic bonds which prevent it from moving at a great distance from these. Consequently, only
relative movements at a short distance from its closest neighbors are allowed to it via the
elasticity of the bonds. Under the effect of these bonds, it is said that the particles then form a
solid lattice.

It is possible to define different classes of solid lattices, according to the arrangement of the
particles with respect to each other. If the arrangement of the particles presents a well-
established order, which is repeated at great distance by translation of an elementary cell, we
speak of a lattice of crystal structure. For example, the three-dimensional lattices drawn in
figures 1.1 and 1.2 are obtained by the translation of a cubic unit cell, and they present a perfect
order both at long distance and at short distance. The same is true of the two-dimensional
lattice shown in figure 1.3a, which is obtained by translation in space of a hexagonal cell.

Certain solid lattices can present arrangements of particles having no order at long distance,
but only a certain order at short distance. We speak in this case of an amorphous lattice
structure. The two-dimensional example shown in figure 1.3 (b) represents an amorphous lattice
of particles, obtained by tiling the surface with pentagons, hexagons and irregular heptagons,
whose sides have a fixed length. The short-range order of the amorphous lattice is reflected in
the fact that each of the particles has exactly three closest neighbors.

There can also exist solid lattices whose arrangement of particles does not present an order
by translation at long distance, but a certain order by rotation. In this case, we are talking about
a lattice of quasi-crystalline structure, the example of which in figure 1.3 (c) clearly shows the
absence of order by long-distance translation. This lattice is obtained by two-dimensional tiling
using two different types of rhombuses with different angles at the top (in this case, we speak of
Penrose tiling). At first glance, this lattice seems amorphous. But the more detailed analysis of
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figure 1.3 (d) shows that the particles are aligned on parallel lines between them. The distances
between particles aligned on a straight line, as well as the distances between parallel straight
lines, are not regular. There are in fact five preferred directions for the orientation of these
alignments of particles. This two-dimensional quasi-crystalline structure therefore has a form of
symmetry by rotation of order five, which is prohibited in the case of a crystalline structure
obtained by translation of a basic pattern.

Figure 1.3 - Two-dimensional crystalline lattice (a),
amorphous lattice (b) and quasi-crystalline lattice (c) , (d)

The examples given in figure 1.3 are two-dimensional representations. It is therefore still
necessary to generalize these concepts to three-dimensional space. In three dimensions, the
crystal lattices are formed by the translation of a three-dimensional elementary cell which is
called the unit cell of the lattice (figure 1.4). The crystal lattices can be classified according to
the operations of rotational symmetry, reflection and inversion with respect to a point which it is
possible to apply to the elementary unit cell of the lattice. These symmetry operations lead to
the existence of fourteen different lattices, called Bravais lattices, which are shown in Figure 1.4.
These fourteen Bravais lattices can be further broken down into seven crystalline systems
(triclinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal and cubic) by
considering the way in which space is paved by the elementary unit cell. For some of these
seven crystalline systems, there may be different types of lattices (P, C, |/ or F), which
correspond to the different patterns of filling of the elementary unit cell with particles.

It is interesting to note that the pattern of filling of a unit cell by the particles can lead to
different values of the number of alternative sites specific to each unit cell and which can
contain a bound patrticle. For example, in the case of the cubic structures represented in figure
1.4, the number of sites specific to a unit cell is 1 for the simple cubic system, 2 for the centered
cubic system and 4 for the cubic system with centered faces.

In the case of non-ordered solid media, such as amorphous media, quasi-crystalline media
or polycrystalline media with very fine grains, the notion of lattice unit cell no longer has any
meaning. On the other hand, the concept of lattice site retains a precise physical meaning, even
if there is no single elementary unit cell.
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In the case of an ordered solid lattice, structural defects may appear in the regular assembly
of the lattice particles. These structural defects have various origins, such as irregularities in the
chemical species of the objects making up the lattice, or topological singularities, that is to say
irregularities in the topological structure of the lattice, such as dislocations or disclinations which
will be discussed later, and they can be classified into point, linear or planar defects according to
their topology in the lattice.

It is also by observations of the dynamics at the microscopic scale, during the macroscopic
spatio-temporal evolution of the lattice, that it will be possible to understand the objective
reasons for certain macroscopic behaviors. For example, we will see that there are close links
between the macroscopic deformation properties of ordered lattices and the lattice unit cell
distortions induced by the presence of mobile topological singularities within the lattice, such as
dislocations or disclinations.

triclinique

monoclinique
PetC

(P) (©)

(P) (€)

orthorhombique
P,C,1etF

(D (F)

tetragonal
Petl
(P) N

/ rhomboédrique 7
T/X ! (t:'go‘ritag ’ W ‘Tﬁ
/ . {

p, hexagonal — ’l

a\_|va ¢ "‘ ‘/‘
cubique simple cubique centré cubique a face
(P) ) centrée (F)

Figure 1.4 - The seven crystalline systems
and the fourteen Bravais lattices
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In conclusion, a complete description of the spatio-temporal evolution of a lattice which can
be considered as continuous on the macroscopic scale cannot absolutely do without the
description of the phenomena occurring on the microscopic scale. The search for a theory
describing the macroscopic spatio-temporal evolution of a deformable continuous lattice must
therefore be based on the definition of mean macroscopic fields (scalar, vector and tensorial in
nature) deduced from a statistical description of the dynamics at the microscopic scale of a
multitude of objects interacting with each other.

To describe a solid lattice, it is therefore perfectly possible to use the Lagrange coordinate
system or the Euler coordinate system. However, using Lagrange coordinates to describe
deformable solids presents a number of inherent difficulties. From a mathematical point of view,
mathematical objects (tensors) describing the deformations of a continuous solid in Lagrange
coordinates are always very complicated (of order greater than one in the spatial derivatives of
the components of the displacement field), which leads to a mathematical formalism very
difficult to manage when a solid presents strong distortions (deformations and rotations). To
these mathematical difficulties are added physical difficulties when it comes to introducing
certain known properties of solids. Indeed, the Lagrange coordinate system becomes practically
unusable, for example when it is necessary to describe the temporal evolution of the
microscopic structure of a solid lattice (phase transitions) and of its structural defects (point
defects, dislocations, disclinations, joints, etc.), or if it is necessary to introduce certain physical
properties of the medium (thermal, electrical, magnetic, chemical, etc.) resulting in the existence
in real space of scalar, vector or tensorial fields. Given the complexity of the calculations
obtained in the case of the Lagrange coordinate system, which is however generally used to
describe solids, it was desirable to try to develop the description of solids using the Euler
coordinate system, which is generally used to describe fluids. This approach to deformable
solids by Euler coordinates, which is ultimately much simpler and much more rigorous than that
obtained with Lagrange coordinates, was developed and published in 2013 in the book
"Eulerian theory of deformable media™ .

Definition of local quantities in Euler coordinates

In the case of a collection of particles in space in the liquid or solid state, each particle i has
its own velocity represented by a vector v, (figure 1.5). To determine an average local velocity
of the particles, you need to fix a small volume element Vf centered on the space coordinate
r, then measure the velocities V; of all the particles contained in the fixed volume V.

If the instantaneous number of particles in this volume V, is equal to N, and that N is
sufficiently large, the average velocity ¢ at the place 7 and at the time ¢ is defined by the
average of the velocities V; taken on all the particles contained in V.

If an average velocity ¢ other than zero is measured, it also means that, for each particle, it
is possible to find a fluctuation Av, at average velocity (]3 by the relation A\7i = ‘71- —(;3 .

2 G. Gremaud, “Théorie eulérienne des milieux déformables — charges de dislocation et désinclinaison
dans les solides”, Presses polytechniques et universitaires romandes (PPUR), Lausanne (Switzerland)
2013, 751 pages, ISBN 978-2-88074-964-4

G. Gremaud, “Eulerian theory of newtonian deformable lattices — dislocation and disclination charges in
solids”, Amazon, Charleston (USA) 2016, 312 pages, ISBN 978-2-8399-1943-2
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In the case of a solid lattice, the existence of an average velocity (ﬁ(?,t) other than zero
implies that the solid lattice of particles is subjected to a collective movement. The velocity
q3(7,t) therefore represents the average local velocity of movement of the particles linked to
the lattice sites, therefore the average velocity of the lattice sites (figure 1.2), while the A, are
the velocity fluctuations of the particles linked to the lattice around each of these sites. For
example, in a real solid, such fluctuations are due to the disordered movements of the thermal
agitation of the particles, which are in direct relation with the temperature of the medium.

x, A

&(F.t)=%29,(t)

ieV;

~|

Figure 1.5 - Velocity and average local densities of a medium

Apart from the average local velocity (})(F,t) of a solid lattice, there is another quantity which
will be called upon to play a fundamental role in Euler coordinates: it is the volume density of
elementary substitutional sites of the lattice, which will be written with the symbol 7, and which
represents the number of lattice sites contained in the volume unit of the lattice. In the case of
figure 1.5, this number n represents then the number of particles contained in the volume Vf
when one chooses a volume Vf equal to the unit. This choice implies then to define all the
physical quantities characterizing the solid lattice like average values taken on each site in the
lattice. It is also clear that, in the case of unordered lattices, the quantity n can also be related
to the density of elementary sites of the unordered lattice.

The volume density n(r,t) of substitutional sites of the solid lattice presents a direct link
with the notion of volume expansion of the medium, since n — 0 for intense expansions and
n — oo for intense contractions. This notion of expansion of the lattice volume can be
expressed even better by introducing a quantity v defined as the inverse of n, that is to say
v=1/n.Indeed, this quantity v has for dimension a volume. It represents the average volume
occupied by a solid lattice site. This volume v translates well the notion of volume expansion of
the medium, since v — oo for intense expansions and v — O for intense contractions.

But it is even more interesting to introduce a dimensionless value using the natural logarithm
of v thanks to the relation 7=—In(n/n )=In(v /v ). There appears then a dimensionless
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Figure 1.6 - Volumic expansion of the medium

scalar® t(r,t) which will be called scalar of volume expansion, depending on the coordinates
of space ' and time t within the lattice, and this time perfectly measuring the notion of volume
expansion of the lattice, since T — oo for intense expansions (when v — o), T — —oo for
intense contractions (when v — 0) and 7 — 0 when v — v,,. By the construction of the scalar
T, the constants v, and n, introduced here can be adjusted so that the scalar 7 is zero when
the lattice is in the state of expansion of rest. Figure 1.6 illustrates an example of velocity fields
which leads to a uniform volume expansion of the medium which goes from a certain value of T
at the instant t =0 to a greater value of 7T at the instant t >0, without the volume expansion
T depending on the place where it is measured.

Distortions of a solid lattice

In the presence of a non-zero velocity field a)(?,t) in space, a lattice can present
movements which do not lead to any deformation, such as the global translation of the medium
(figure 1.7a) or the global rotation of the medium (figure 1.7b ).

But there can also exist non-zero velocity fields (_f)(?,t) in space which lead to real
deformations of the medium, such as for example the volume expansion of the medium
described above (figure 1.6), the pure shear with zero volume expansion of the medium ( figure
1.8) or the zero volume expansion elongation of the medium (figure 1.9). There may also
appear much more complicated velocity fields leading for example to local rotations with non-
uniform shearing of the medium (Figure 1.10a) or to non-uniform expansions of the medium
which lead to an expansion which depends not only on time, but also space coordinates (figure
1.10b).

In the presence of a non-homogeneous velocity field g?)(?,t) in space, a lattice can therefore
present, in addition to a global translation and a global rotation, movements corresponding to all
kinds of deformation. To explain in detail the behaviors of global and local rotation and the

3 Scalar: a scalar is a mathematical object corresponding to a physical quantity described by a single
number. We speak of a scalar field when a scalar physical quantity takes different values at all points in
space and over time.



16 Chapter 1
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Figure 1.7a - Global translation of the medium
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Figure 1.7b - Global rotation of the medium

behaviors of deformations, which will be called generically distortions of the lattice, it is
necessary to introduce topological quantities having to translate these distortions.

An elegant way of proceeding in Euler coordinates is to note that the scalar volume
expansion field T defined above is already a scalar topological quantity which perfectly
describes the volume expansion of the medium. We can then show that this scalar is in fact
deductible from a more complicated topological quantity, namely a tensor* of second order
which is called the tensor of distortion ﬁl.j. A tensor of order two is a mathematical object
represented by an array 3 of 3 of nine different numbers (figure 1.11).

These nine numbers are then sufficient to describe perfectly the set of global and local
rotations and deformations of the solid lattice. But as the manipulation of this tensor is
mathematically quite complicated, and especially since it generally camouflages the real
physical behavior of the medium, we choose an entirely original way of representing it in the

4 Second order tensor: second order tensor is a mathematical object represented by an array 3 of 3 of
nine different numbers. A tensor of order two actually represents a physical quantity described by nine
numbers. It can be very convenient to represent a tensor of order two using three vectors in the Euler co-
ordinate system. We speak of a tensor field of order two when a tensorial physical quantity takes different
values at all points in space and over time.
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Figure 1.8 - Pure shear of the medium
%A
X, A B
A t=0
— X
e, C
E x A
B
X
D C
(a) (b)

Figure 1.9 - Elongation of the medium without volumic expansion
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Figure 1.10 - Non-uniform local rotations (a) and expansions (b) of the medium
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form of three vectors. Thus, the tensor fleld #of Iﬁttice distortion ﬁij will be represented for
convenience by a field of three vectors 181 , ﬁz , B., remembering that a vector is an arrow
oriented in space composed of three numbers. This vectorial representation of the tensor fields
is completely original and extremely powerful, because it makes it possible mathematically to
call upon the spatial operators of the vector analysis, and it then considerably simplifies the
physical interpretation of the tensor fields.

—- ﬂll /’12 ﬁlS
Tensor of distortion 'Bi B, B, B,
ﬁ!l ﬂjl ﬁ{(
symmetry antisymmetry
E=B-¢nd -] Y2 AP
i i € o=- 5 : AN
Tensor of deformation 8{. C_t) Vector of rotation

without trace trace

S|
a = gl -3 I
3 k k
Tensor of shear strain a,- T Scalar of expansion
Relation with the density n of sites n 4
B T=—-In—=In—
and the volume v per lattice site n, v

Figure 1.11 - The decompositions of the tensor of distortion

It is possible to apply symmetry operations on the distortion tensor Bi to extract the details
of the rotations and the deformations of the medium. The operation of carrying out the sum of
the diagonal elements of the tensor, namely 8, +,,+,,, provides a scalar called the trace
of the tensor and which is in fact nothing other than the scalar of volume expansion 7 .

The operation of taking the symmetrical part of the distortion tensor provides a symmetric
tensor of second order €, called the strain tensor, which represents all the deformations of the
medium, but without the global rotations of the medium.

The operation of taking the anti-symmetrical part of the distortion tensor provides an axial
vector @, called the rotation vector, which represents all the local and global rotations within
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the medium.

Finally, by removing its trace from the strain tensor €, , we obtain a symmetric tensor of
second order without trace ¢, , called the shear tensor, which represents the set of shears of
the medium. These operations of symmetry are described in figure 1.11, where, for the fine
connoisseurs of vectorial computation, one made explicitly appear the mathematical operations
of symmetry used, as well as the relation existing between the scalar of volume expansion, the
density of sites of the network and the volume per network site.

Geometro-kinetics of a lattice in Euler coordinates

In Euler coordinates, we describe the evolution of the solid network in space and time using
the vectors of the velocity field ¢(r,t) of the points of the lattice located at the space and time
coordinates ' and ¢ in the absolute reference frame Oxlxzx3 of the laboratory of the observer
GO (Figure 1.2). However, if there is a non-homogeneous velocity field within the lattice, there
must necessarily appear a spatio-temporal evolution of the distortions within this lattice. In Euler
coordinates, the relationships between the velocity field ¢(r,t) and the evolution of the
distortion tensor B,. , the rotation vector @ and the volume expansion scalar T will be called the
geometro-Kinetic equations. These equations are shown in figure 1.12.

Material derivative Scalar of expansion
d 0 -
—=—+(¢V
dt ot @V dt S =
—==—"+divp
dt n
Tensor of distortion trace
g, S, . —
db, =——"-¢, +grad ¢,
di on Vector of rotation
antisymetric
pare do _ 1.5
r 2

Figure 1.12 - The geometro-kinetic equations
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Geometro-kinetic equations actually link the temporal variations of the distortions of the solid,
which are calculated along the trajectory of the particles of the medium using a mathematical
operator of time called the material derivative®, with the spatial variations of the velocity field
(;)(F,t) of the medium, which are calculated using mathematical space operators from vector
analysis applied to the velocity field, and which are called the gradientt in the case of the
distortion tensor, the curl” in the case of the rotation vector and the divergenceg in the case of
the scalar of volume expansion. In these geometro-kinetic equations, there also appears a
quantity S, which corresponds to the possibility of the existence of a mechanism which can
create or destroy lattice sites. This quantity S, is called the source of lattice sites, and
corresponds to the number of lattice sites created or destroyed per unit of time and per unit of
volume of the lattice. The mechanisms leading to such sources of lattice sites will be discussed
later.

Geometro-compatibility of lattice distortions

We have previously shown that the description of solids in Lagrange coordinates is
characterized by a displacement field u(7,t). Indeed, in Lagrange coordinates (figure 1.1), the
solid is described by a vector 7 locating the initial position of all its points in the reference frame
Ox,x,x, of the observer GO. The Lagrange displacement vector field then makes it possible to
locate in space at the instant ¢ the position of all the points of the solid initially located at the
coordinate 7 in the coordinate system Ox,x,x;, .

It is intuitively clear that the description of the distortions of a solid in Euler coordinates
should also make it possible to find such a displacement field. Indeed, in Euler coordinates
(figure 1.2), the deformed solid is described at instant 7 in the absolute frame of reference of
the observer GO. For a point A of the solid located at the coordinate 7 of this frame of
reference it must be possible to define a displacement vector (7 ,t) which connects this point
A to the place A' where the same point A of the solid was located at the initial instant t =0 .

There is a close link between the particle time derivative of the distortion tensor B,. and the
gradient of the components of the velocity field (5(7,15) as shown in the geometro-kinetic
equation reported in figure 1.12. However, the velocity field q;[F,t) itself must be closely related
to the temporal variation, called the temporal derivative, of the displacement field i, (7',t) . It is
therefore deduced that there must necessarily be a close link between the distortion tensor f3;
apd the gradient of the displacement field ﬁE if the latter exists, and that the distortion tensor
B,. is very probably the gradient tensor ﬁi =—grad u,. of the components of the displacement
field HE .

5 Material derivative operator: it is a mathematical operator of time allowing to calculate the temporal
variations of a physical quantity along the trajectory of the particles of a medium (see glossary).

6 Gradient operator: the gradient of a scalar field f is a mathematical space operator providing a vector
field Ui (see glossary).

7 Curl operator: the curl of a vector field 1i is a mathematical space operator providing another vector
field V (see glossary).

8 Divergence operator: the divergence of a vector field U is a mathematical space operator providing a
scalar field g (see glossary).
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Even if this reasoning seems complicated, it spontaneously leads to a mathematical
condition on the distortion tensor B,. so that there really exists a displacement field ﬁE . Indeed,
in vector analysis, we demonstrate an unavoidable mathematical property, namely that the curl
of a gradient is necessarily zero. Consequently, for there really exists a displacement field ﬁE in
coordinates of Euler, it is necessary that the curl of the tensor of distortion 3; is null, therefore
that rotBI, =0.

This equation is called the geometro-compatibility condition of the distortion tensor ﬁi , and it
ensures that there is indeed a continuous displacement field ﬁE in Euler coordinates. Note
again that if we take the trace of the geometro-compatibility equation for ﬂi , in other words the
sum of the diagonal elements of the tensor rotBi, we find a new geometro-compatibility
condition which then applies to the rotation vector @, namely that the divergence of the vector
of rotation @ must be null so that there exists a field ﬁE of continuous displacement in
coordinates of Euler. These two geometro-compatibility equations are essential to ensure that a
solid does not tear and that there do not appear any cavities during its space-time evolution.
The various operations performed on the distortion tensors are summarized in figure 1.13.
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Figure 1.13 - The complete system of distortions of a solid lattice

The physical interpretation of these two geometro-compatibility conditions can be illustrated
quite easily by the drawings shown in figures 1.14 and 1.15. The compatibility condition
r_othl. =0 for the distortion tensor Bl. implies that the displacement field iiE has good
continuity properties. To show it, it suffices to consider a closed contour C within the medium,
and to transfer the vectors of displacement ﬂE along this contour (figure 1.14). If the medium
presents a field of distortions satisfying the condition of compatibility rot[)’i =0, the vector of
closure E’, called dislocation of the medium, is null, which effectively means from a topological
point of view, that there are no discontinuities of displacements, called dislocations, in the
medium.

The existence of a displacement field HE without discontinuities makes it possible to ensure
the topological connectivity of the medium, that is to say from a physical point of view the fact
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Figure 1.14 - Singularity by dislocation of the displacement field
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Figure 1.15 - Singularity by divergence of the rotation field

that there was no localization of the distortions, such as tears followed by a sliding of the jaws
relative to each other, as well as the topological compactness of the medium, that is to say from
a physical point of view the fact that it does not appear cavity formations or overlaps within the
medium. In summary, the condition rot [3[. =0 ensures the solidity of the medium.

To find the meaning of the compatibility condition diva =0 for the rotation vector @, we
draw the rotation vector @ on a closed surface S surrounding a volume V of solid (figure
1.15). The compatibility condition for the rotation vector @ then stipulates that the flow of the
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rotation field crossing the closed surface S is zero, which implies that there is no divergent
singularity of the rotation field within the solid, such as that shown in the drawing in figure 1.15.

Contortions of a solid Ilattice

In a solid lattice, the fields Bi, E,Q;,®, T represent the set of distortions, deformations,
shears, rotations and volume expansions that the lattice unit cells undergo locally. If each unit
cell is subjected to a field of distortion, which can vary from one cell to another, it must also
appear effects of flexion and torsions on a more macroscopic scale of the solid medium, related
to the lattice continuity.

These "curvatures" of the solid will be called the contortions of the lattice. In a geometro-
compatible medium, they depend in fact only on deformations of the lattice, and are therefore
deduced as spatial variations of the deformation field .§i in the manner illustrated by the
diagram in figure 1.16. A contortion tensor )Zl. then appears, which can be broken down by
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Figure 1.16 - The complete system of distortions
and contortions of a solid lattice
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Figure 1.17 - Flexion of the medium
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Figure 1.18 - Torsion of the medium

symmetries into a flexion vector ¥ and a transverse symmetric tensor (without trace) of torsion
(%]

In a geometro-compatible medium, the contortions of the lattice are also closely linked to the
spatial derivatives of the rotation vector @ as shown by the mathematical relationships giving
the contortion tensor ¥, and the flexion vector } in figure 1.16. These must therefore also
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measure variations in rotations within the solid, such as twists or bends. We can therefore
define more precisely the meaning of these tensors ¥, and ¥ using two typical examples of
spatial variations of @ .

In the first example, a bent medium presents a rotation vector parallel to the axis Ox,, and
which increases in the direction of the axis O)C2 , as represented in figure 1.17. In this case,
there is a non-diagonal component y,, =dw, /dx, #0 of the tensor ¥, which is not zero, and
this component is associated with the bending of the solid as well illustrated by the figure 1.17.

2y |

Singularity by disclination
of the rotation field by deformation
if rotz #0

X,

Figure 1.19 - Singularity by disclination
of the rotation field by deformation

* A % dS

Singularity by
Y S divergence of the
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Figure 1.20 - Singularity by divergence
of the flexion field
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But in the case illustrated in figure 1.17, the vector @ seems to turn around the axis Ox; so
that there is a non-zero flexion vector y =—rot@ parallel to this axis as illustrated in figure
1.17.

In the second example (figure 1.18), we represent an increase along axis Ox, of a rotation
vector parallel to axis Ox, . For once it is a diagonal component Xy =8602 / axz #0 of the
tensor J, which necessarily becomes non-zero. And we see that this corresponds to a torsion
of the solid medium.

In these two examples, it has been illustrated that spatial variations in the rotation vector @
do indeed lead to bending or twisting of the solid medium. But in a geometro-compatible
medium, these same bends and twists are also deductible directly from the strain tensor El_ .

Geometro-compatibility of lattice contortions

In the table of figure 1.16, we note that there are also two geometro-compatibility conditions
for the contortion tensor )fi and the flexion vector y respectively, in a very similar way as in
the case of the distortion tensor and the rotation vector.

The condition of compatibility rot X; =0 of the contortion tensor y, can be interpreted by
considering a closed contour C within the medium and by plotting the local rotation vector @
deduced from the strain tensor along this contour (figure 1.19). The condition of compatibility
implies then that the closure vector Q , called the Frank vector, is zero, which means from a
topological and physical point of view that there are no discontinuities of rotations by
deformation, which are called disclinations in the medium.

The condition of compatibility divy =0 of the flexion vector ) is interpreted by
considering a closed surface S surrounding a volume V of medium (figure 1.20). The
compatibility condition for the flexion vector y then stipulates that the flow of the bending field
crossing the closed surface S is zero, which implies that there is no diverging singularity of the
flexion field within the solid, such as that shown in the drawing in figure 1.20.

Newtonian dynamics and Eulerian thermokinetics

It has been shown previously that a solid collection of particles in space can present a
collective movement which corresponds to the global movements of
translation, of global and local rotation and of deformation of the
medium in the space of the observer, and that, in Euler coordinates,
these movements are described by an average local speed
(?)(?,t). To go further in the description and prediction of these
movements, we must now introduce the physical principles to which
the environment obeys.

We suppose then that the solid lattice considered behaves in a
Newtonian way in the absolute reference frame of GO, in other

words that the dynamics of the particles of the medium satisfy

Isaac Newton

Newton's law f=ma which implies that the acceleration a of a (1643-1727)

particle is related to the force f that we apply to it via the mass of — —
inertia m of the particle. In addition, we also admit that the physical
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behaviors of the particle lattice obey the first two principles of thermodynamics, which have
never been faulted, namely that energy is a conserved quantity, and that there exists a quantity
called entropy which measures the state of disorder of the lattice.

We are going to introduce here rigorously the Newtonian dynamics and the thermokinetics of
the lattice in Eulerian coordinates, starting from these three completely classic and well-known
basic physical axioms. With this axiomatic and rigorous approach, we are led to define average
quantities per site of the lattice, as well as sources and flows of physical quantities, which must
satisfy three principles of continuity shown in figure 1.21.

Admitting the axiom that the individual movement of each particle of the lattice satisfies a
Newtonian dynamic, namely the Newton's law f:ma , to the movement of each particle at
velocity (5 must correspond a momentum and a kinetic energy. Per particle, according to
Newtonian mechanics, the momentum is written ﬁ:mé and the kinetic energy is written
e. = mq32 /2. These expressions of the momentum and the kinetic energy of a particle of the
medium calls upon a conservative scalar physical quantity, specific to the particle: its mass of
inertia or inert mass m . In Euler coordinates, we show that the conservation of the mass of
inertia leads to a principle of continuity for the mass of inertia which is reported in figure 1.21.

This principle links the local temporal variation dp /dt of the quantity of mass contained in
the volume unit of the medium, which is called the mass density p of the medium, to: (i) the

existence of a volume source of mass S , associated with creation or annihilation of mass

m?
within the medium and which is generally zero due to the principle of conservation of mass, (ii)
the temporal variation d7 /dt of the scalar of volume expansion of the medium along the
trajectory of its particles, (iii) the existence of a source Sn of lattice sites and (iv) the existence

of a mass transport flow J i.e. a mass displacement by

another physical process within the lattice, such as the self-
diffusion which we will talk about later.

The movements of random fluctuations AV, of the medium
particles corresponding to thermal agitation and the attractive or
repulsive interactions that may exist between the particles of the
medium must correspond respectively to an internal thermal
energy and an internal potential energy. It is precisely the

subject of the axiom of the first principle of phenomenological

thermodynamics, which postulates the existence, for a given
physical system, of a function U depending on the state of the Sadi Canot
system, called the internal energy of the system, which is such (1837-1894)
that, for any infinitesimal transformation of the system (any — —
infinitesimal variation of one of the physical quantities of the
system), we have the relation dU=0W +6Q , where dU represents the variation of the
internal energy of the system, 8Q represents the set of heat exchanges between the system
and the outside world, and 0W all of the work exchanges between the system and the outside
world.

In the case of a solid lattice moving at velocity (ﬁ the total energy is linked both to its internal
energy and to its kinetic energy of global movement at velocity é In Euler coordinates, we
show that the conservation of the energy of the deforming solid leads to a principle of continuity
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for the total energy which is shown in figure 1.21. By expressing the average internal energy u

and the average kinetic energy e per lattice site, the continuity principle of energy states that

the sum of the variations of internal energy 1 and kinetic energy e, taken along the trajectory
of the particles depends on: (i) the existence of an external work source va’“ corresponding to a
supply of mechanical energy from outside the medium, (ii) the work flow]w, i.e. exchanges of
mechanical energy within the medium, (iii) the heat flow ]q , that is to say heat exchanges within
the medium, and (iv) the source Sn of lattice sites, that is to say the creation or annihilation of a
certain number of lattice sites per unit of time.

The second principle of phenomenological thermodynamics postulates the existence, for a
given physical system, of a function S depending on the state of the system, called the entropy
of the system. This function in fact characterizes the state of disorder reigning within the system,
and it is such that any infinitesimal transformation of the system satisfies the relation
dS>0Q /T where dS represents the variation of the entropy of the system, 8Q represents
the set of heat exchanges between the system and the outside world and T is the temperature
of the system.

In Euler coordinates, we show that the second principle of phenomenological
thermodynamics leads to a principle of continuity for the entropy which is reported in figure 1.21.
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Figure 1.21 - The three Eulerian continuity principles deduced
from the Newtonian dynamics and from the two basic principles of the thermodynamics
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By expressing the average entropy s per lattice site, the principle of continuity of entropy
stipulates that the variation of entropy s taken along the trajectory of particles depends on: (i)
the existence of a volume source of entropy Se , that is to say, the local creation of entropy
within the medium, (i) the heat flow ]q within the medium, (iii) the temperature T of the
medium which characterizes the state of thermal agitation of the medium particles and (iv) the
source S of lattice sites.

These three physical principles are absolutely essential in solid media, and they are the only
fundamental physical principles absolutely necessary for a complete description of Newtonian
geometro-dynamics and of phenomenological thermodynamics of deformable media in Euler
coordinates.

Physical properties specific to the medium

The equations of geometro-kinetics (figure 1.12) and geometro-compatibility (figure 1.16), as
well as the three principles of continuity deduced from Newton's laws and phenomenological
thermodynamics (figure 1.21) are the basic concepts for the treatment of deformable solid
media in Euler coordinates, and remain the same whatever the solid considered. But we know
very well that the physical properties and the macroscopic behaviors that we can observe on a
solid medium can be very different from one medium to another. These physical properties are
called the phenomenological properties of the medium. We will therefore now discuss the most
important phenomenological physical properties of a solid lattice, namely the mechanical
properties of the lattice, such as elasticity and anelasticity, and the mass transport properties
within the lattice, such as self-diffusion.

It is common experience that you can bend a hacksaw blade strongly without great effort,
and that it resumes all its straightness when you release the force that you applied to it. This
typical phenomenological behavior is called the elasticity of the solid. The elasticity of the
medium is due to the internal bonding forces between particles of the solid, so that bending the
saw blade amounts to storing internal energy in the medium, in fact in the bonds between its
particles, energy which is then used to return the blade to its original shape when released.
Thus, to introduce this property of elasticity in the Eulerian equations of the medium, one will
use the average internal energy u per site of lattice which one defined in the preceding
paragraph, and one will express that this one depends on the deformations applied to the solid,
in other words elastic deformation fields Bie’, Eiel, 551_31, @, 7% appearing in the solid when it is
deformed. We express this situation by saying that internal energy u is a function
u(Biel,s): u( Ef’, @ ,s)=u( 071,"’1, @, t%,5) depending on the state of elastic strain tensors,
but also on the local entropy of the network, via the average entropy s per lattice site. This
dependence on entropy reflects the effect on internal energy of the existence of a spatial and
kinetic disorder within the medium, and in particular the effect of thermal agitation of the
particles under the effect of heat.

When a solid is deformed, elasticity is an immediate response of the solid. But there can
sometimes be another response from the solid which is generally added to the elastic response
and which is delayed in time compared to the solicitation of the solid, but which is also
recoverable with delay when the solicitation is released. Such a response of the solid is called
the anelasticity of the solid. While the elastic response does not release thermal energy into the
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solid, the anelastic response releases thermal energy when activated, and is said to be a
dissipative process.

It is this type of process which dissipates the vibration energy of certain metals, such as cast
iron for example, which are used in industry precisely for this property of damping vibrations and
noise. When anelastic deformation phenomena are activated in a solid, these also store internal
energy in the solid, energy which is then used by the solid to restore its initial shape, as in the
case of elasticity. Anelastic deformations Bi‘"', Ei””, &i“”, ™ can therefore appear in a solid,
which, as in the case of elastic deformations, also modify the function of the internal energy of
the solid u(B¢, B, s)=u(", €™, &, &, s)=u(a,a", &",ad", t",s). This means
that the internal energy of the solid is a function of the state of both elasticity and anelasticity of
the solid. It will be noted here that, for the sake of simplification, it has been assumed that it
does exist anelastic volume expansion, that is to say that 7" =0.

In principle, the existence of a non-zero source Sn of lattice sites would violate the
Newtonian principle of mass conservation, unless there is a phenomenon of self-diffusion by
intrinsic point defects within the lattice. An intrinsic point defect of the lacunar type, simply called
a vacancy, is a site of the particle solid lattice which has no particles (figure 1.22). It is therefore
a "hole" in the lattice. An intrinsic point defect of interstitial type, called simply a self-interstitial, is
a particle which is in the solid lattice, but which does not occupy a regular substitutional site of
this lattice (figure 1.22). It is therefore an "additional” particle in the lattice.
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Figure 1.22 - Self-diffusion by vacancy and by self-interstitial

It is simple to understand how the presence of such intrinsic point defects can lead to the
existence of mass transport phenomena by lacunar and / or interstitial self-diffusion. These two
mass transport mechanisms can be illustrated in a lattice moving at absolute velocity ¢ in the
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space of the external observer GO (figure 1.22). The movement of a vacancy at velocity AQ,
relative to the lattice in a given direction leads to a relative mass flow in the opposite direction,
at velocity —A(ﬁL, while the movement of a self-interstitial at velocity AQB, relative to the lattice
in a given direction causes a mass flow in the same direction, at velocity A(f), .

To transcribe mathematically the existence of these point defects, we must first introduce the
volume densities of vacancies and self-interstitials, i.e. the number n, =n (r,t) of vacancies
and n,=n, (7,t) of self-interstitials per volume unit of lattice. From these densities, it is possible
to define atomic concentrations of vacancies and auto-interstitials with respect to the density n
of network sites by relations C, =n, /n and C,=n, /n. Contrary to appearances, there is a
certain asymmetry between vacancies and auto-interstitials, which is expressed in the fact that
the maximum atomic concentration of vacancies is always limited to 1, when all the sites of the
lattice are locally unoccupied, while the atomic concentration of auto-interstitials depends on the
number of interstitial sites accessible in each unit cell of a lattice with a given structure, and on
the number of interstitials that it is possible to fit on each of these sites.

We can also introduce the diffusion flows J ., and J ; of vacancies and interstitials with
respect to the lattice, defined by relations ]L = nCLAg?)L and ]1 =nC, A(,T)I, and which measure
the number of vacancies and interstitials that cross the unit surface per unit of time within the
lattice. We can then deduce the self-diffusion equations reported in figure 1.22, which allow to
calculate the temporal variations of the atomic concentrations of vacancies and auto-interstitials
along the trajectory of the medium, on the one hand by the introduction of volume sources of
vacancies S, and interstitials S, associated with the number of creations and annihilations of
vacancies and interstitials per unit of time and per unit of volume, and on the other hand the
introduction of fluxes J , and J ; of vacancies and interstitials associated with the number of
mobile vacancies and mobile interstitials crossing per unit time a unit surface within the lattice.
The principle of mass conservation is then satisfied if the source of lattice sites is directly linked
to the local creations and annihilations of vacancies and interstitials, that is to say linked to the
sources S, and S, of vacancies and interstitials, via the relationship S =S, —§, .

In an elastic and anelastic network with self-diffusion, it is intuitively clear that the atomic
concentrations C, and C, of vacancies and auto-interstitial must also influence the energy
state of the lattice, so that the internal energy state function has to be written now as a function
u(B, B".C,.C5)=uE", €™, @, d™,C,C, s)=u(a, a", &, a" " .C,C,s) of
the set of thermodynamic variables that characterize the state of the medium.

The presence of vacancies and self-interstitials in the lattice will modify the expressions of
kinetic energy and momentum expressed as an average value per particle or per lattice site, as
shown in figure 1.22.

The function u( 0?1,"’[, 551,"", @, c?)a",z'el,CL,Cl,S) which characterizes the internal energy
state of the solid lattice is a phenomenological quantity of the considered medium, in the sense
that it must be established for each medium and that it is specific to each medium. It is
essentially this which will control the space-time behavior of the medium via thermodynamic
potentials. Indeed, if we express the temporal variation of the internal energy along the
trajectory of the medium, we obtain an equation which is called the thermokinetic equation of
the medium, which is expressed from the relation u( 551.91, 071."", @?, @“",TEI,CL,CI,S) as
shown in figure 1.23.
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This thermokinetic equation reveals mechanical potentials s, ,m,p,s “"*,m** called the

stress tensors s, and sk“’”s conjugated respectively to the elastic and anelastic shear tensors
5{["’1 and ™, the moment vectors m and m“™ conjugated respectively to the vectors of
elastic and anelastic rotation @° and ", the pressure p conjugated to the scalar of volume
expansion 7% . These mechanical potentials represent the internal mechanical forces inside the
medium, which tend to eliminate the deformations of the medium to restore the undeformed
state of the solid medium. These mechanical potentials can be deduced from one another

according to the graph shown in figure 1.23.
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Figure 1.23 - Thermokinetics equations

The thermokinetic equation also reveals the chemical potentials y, and u,, conjugated with
the atomic concentrations C, and C, of vacancies and auto-interstitials respectively. These
chemical potentials represent in fact the internal chemical forces acting on the vacancies and
the auto-interstitials within the medium, which tend to eliminate spatial variations in atomic
concentrations C, and C, of vacancies and auto-interstitials, in order to restore the chemical
equilibrium state inside the solid medium.

Finally, the thermokinetic equation still reveals a significant quantity of the medium, namely
its temperature T , which is conjugated with its entropy s, and which measures the thermal
agitation within the medium.
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Potentialities of the Eulerian representation of deformable media

To end this chapter, we represent by a graph in figure 1.24 all the potentialities of the Eule-
rian representation to describe the spatio-temporal evolution of deformable Newtonian media,
potentialities which are developed in detail in my first book written in French.
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Chapter 2

Dislocation and disclination charges in a lattice

The description of structural defects, or topological singularities, which can appear within a
solid, such as dislocations and disclinations, is a field of physics, initiated mainly by the idea of
macroscopic defects of Volterra® in 1907, which has experienced very fast development during
its very rich century of history, as Hirth2 illustrated very well in 1985.

In this chapter, in order to describe the plasticity of solid lattices, we introduce an innovative
concept of density of dislocation and disclination charges in Eulerian lattices, then we present a
review of the macroscopic and microscopic topological singularities of the lattice which can be
associated with dislocation and disclination charges. We then discuss the movement of
dislocation charges within the lattice, by introducing the notion of dislocation charge flow, and
we deduce the force acting on a dislocation charge, called the Peach and Koehler force. Finally,
we present the potentialities inherent in this original approach of topological singularities within
solid lattices in Euler coordinates.

Macroscopic concept of plastic distortion charges

In the previous chapter, we introduced the elastic and anelastic behaviors of a solid. There is
yet another behavior that we will deal with now. If you take an aluminum bar and bend it slightly,
it returns to its initial state if you release the stress that was applied to it, and this is elastic be-
havior. On the other hand, if it is folded very strongly and the stress is released, it no longer re-
turns to its original state, but remains definitively folded. We speak in this case of plastic beha-
vior and plasticity of the aluminum bar.

The description of the plasticity of a solid lattice is sometimes undertaken
phenomenologically using a plastic distortion tensor Bip’ . However, this approach is extremely
limited, in particular by the fact that there is no unequivocal relationship between the local state
of plastic deformation and the microscopic state of the network of structural defects responsible
for this plastic deformation. This is the reason why the way of expressing the presence of plastic
distortions in a lattice must be approached so that it is possible to take into account the
microscopic state of the network of structural defects. A very elegant way of carrying out this
modification is to introduce the concepts of densities and fluxes of dislocation charges,
responsible for the plastic distortions of the solid, as well as densities of disclination charges,
responsible for the plastic contortions of the solid.

The concept of charges of plastic distortions of the solid, which will henceforth be called
simply dislocation charges by language shortcuts, is intuitively simple to grasp, if one uses the
approach' developed in 1907 by the Italian physicist Vito Volterra. The latter had the idea of

1 V. Volterra, «L’équilibre des corps élastiques», Ann. Ec. Norm. (3), XXIV, Paris, 1907

2 J.-P. Hirth, «A Brief History of Dislocation Theory», Metallurgical Transactions A, vol. 16A, p. 2085, 1985
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considering a pipe of solid material and imagining, either that it is cut and that it is subjected to a
certain distortion before being glued, or that one removes part of it before being glued again, as
shown by the examples in figure 2.1. In these two examples, the deformations undergone by
the solid after gluing are irreversible and irrecoverable, therefore of plastic nature.

On the other hand, it is intuitively clear that internal forces have developed inside the solid
after gluing. These appeared during the elastic deformation which
was imposed on the rest of the solid to make the two jaws to be
bonded coincide. In fact, everything happens exactly as if a
localized topological discontinuity had appeared in the center of
the pipe after gluing, discontinuity which would be the source of an
elastic distortion field in the macroscopically continuous medium
which composes the pipe. And this distortion field, by its presence,
is itself a source of a field of conjugate stresses, which can be
called internal stress field.

Mathematically, the discontinuity due to gluing should be able

to be translated in terms of a local density of ‘plastic charges’, Vito Volterra
source of an elastic distortion field, and therefore of an internal (1860-1940)
stress field, in a completely similar way that in electromagnetism -

where the presence of a local density p of electric charges is

responsible for the appearance of an electric displacement field D as shown by Maxwell's
equation p= divD, and consequently of a conjugated electric field E,since D= SOE The
aim of this chapter will therefore be to show how it is possible to mathematically translate the
phenomena of plasticity inside a solid, not only by introducing densities of plastic charges, but
also flows of plastic charges, by analogy with the flow of electric charges ] appearing in the
equatlon] ——aD/8t+rotH of Maxwell's electromagnetism, in which H represents the

magnetic field.

displacement

5 reboundings
cuts

material removal

Figure 2.1 - The famous "Volterra pipes"
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In figure 1.2, one saw that the condition of compatibility ;%Bi =0 prohibits the singularity by
dislocation of the field of d_isplace:nent HE . Consequently, if the compatibility condition was no
longer zero, therefore if rot,[)’i =/1i #0, the course on the closed contour C will result in the
existence of a quantity B, which is called macroscopic Burgers vector, defined on the contour
C and which corresponds to the macroscopic translation necessary to accommodate the
medium to the presence of density charges ):i, in order to ensure compatibility of total
deformations and rotations (the absence of voids and overlaps of matter within the solid).

The discontinuity B is called a macroscopic dislocation of the solid, in the sense of Volterra,
and one will consequently call density of dislocation charges the tensorial density of charges /il.
responsible for plastic distortions.

screw dislocation edge dislocation

SSSSAAA A

!
S

N

t=0)

singularity of
(a) the distorsion field (b)

Figure 2.2 - Realization de screw (a) and edge (b) dislocations by cutting and gluing

Such macroscopic dislocation is carried out in a continuous solid by locally cutting this solid
and by moving the two jaws of the cut parallel to each other, before gluing them again. This pro-
cess is illustrated schematically in figure 2.2a using a pipe of material which is cut along the
plane abcd and which is glued after parallel sliding of the interfaces in the direction of the cut.
There then appears a one-dimensional topological singularity of the distortion field located on
the axis cd . This macroscopic singularity, characterized by a translation vector B parallel to the
line of singularity, is called screw dislocation.

On the other hand, if the two jaws are glued together by parallel translation of the jaws, per-
pendicular to the plane of the cut, and with the addition or subtraction of a parallelepiped of ma-
terial (figure 8.2b), there appears another one-dimensional topological singularity of the distor-
tion field, located on the axis cd . This macroscopic singularity, characterized by a translation
vector B perpendicular to the line of singularity, is called edge dislocation. Another way of pro-
ceeding to achieve an edge-type dislocation, but without adding or subtracting material, is to
glue the two jaws together after parallel translation of the jaws in the plane of the cut, perpendi-
cular to the direction of the cut, as shown in figure 2.3. Under the sine qua non condition that
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the elastic volume expansion of the medium remained zero during the plastic deformation pro-

cess, the Burgers vector B, obtained by the course on a contour C' surrounding the singularity,
corresponds exactly to the macroscopic translation which has undergone the jaw abcd .

edge dislocation

singularity of
the distorsion field

Figure 2.3 - Other realization of an edge dislocation
by cutting and gluing

Under the condition that the elastic volume expansion 7 of the medium remained zero du-
ring the plastic deformation process, the Burgers vector B, obtained by the course on the
contour C surrounding the singularity, then corresponds exactly to the macroscopic translation
which the jaw a'b'cd underwent. As the vector B must remain constant if we vary the diame-
ter of the integration contour C or if we move this contour vertically, we deduce that the disloca-
tion charges must be confined to the immediate vicinity of the axis of the pipe, and that their
tensor density must be a constant along this axis.

One can also imagine that within a continuous solid one cuts a vacuum within the material in
the shape of a torus, as illustrated by the section represented in figure 2.4a, then that one cuts
the median plane located in the center torus. The two jaws ab and a'b' thus formed can then
be moved relative to each other, then glued.

The first possible case is to move the two jaws parallel to the cutting plane by a distance B
as shown in figure 2.4b. After gluing, the medium is deformed by shearing and the torus
contains a macroscopic dislocation of slip loop type, composed of edge, screw and mixed
dislocation portions.

You can also insert additional material in the form of a thin disc with a thickness B between
the two jaws and weld this disc to the two jaws (figure 2.4c). We then obtain a deformation of
the medium responsible obviously for a curvature of the medium on both sides of the torus. The
torus is then the site of a macroscopic dislocation, of the prismatic loop type. In this case, the
prismatic loop is said to be interstitial, because it contains additional material, and it is
composed of a single edge dislocation which closes on itself. A very similar case is obtained if,
instead of adding a disc of material, we subtract a thin disc of material with a thicknessé, as
illustrated in figure 2.4d. We also obtain a macroscopic dislocation, of the prismatic loop type,
but this loop is said to be lacunar, because it lacks a certain amount of matter. Within the torus,
there is also a single edge dislocation which closes on itself.
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(a) ! (c) prismatic loop \

‘Material removed:
or added ]

(b) slip loop (d) prismatic loop

Figure 2.4 - Initial cutting of a torus and its median plane to form loops (a)
and making a slip dislocation loop by sliding the jaws (b)
and prismatic dislocation loops by addition (c) or subtraction (d) of material.

All the singularities thus obtained are obviously responsible for a field of distortion within the
solid. Consequently, they require a non-zero formation energy. They are stabilized within the
solid by re-bonding the two jaws of the cut, therefore by the bonds within the solid.

Definition of density and flow tensors of plastic charges

In figure 1.12, we represented the geometro-kinetic equations of the medium, which in fact
connect the temporal variations of the distortions of the solid, calculated along the trajectory of
the medium particles using the material derivative, with the spatial variations of the velocity field
@(r,t) of the medium particles, calculated using the gradient of the components of the velocity
field in the case of the distortion tensor. And in figures 1.13 to 1.15, we had introduced the
geometro-compatibility equations, which ensured the continuity of the Eulerian field of
displacement within the solid, therefore the absence of discontinuities of displacements like
dislocations. In the presence of displacement discontinuities, like those which we have just
described on the macroscopic scale, it becomes necessary to redefine the geometro-kinetic
equations and the geometro-compatibility equations of the medium, in order to take into account
the presence of these topological singularities of distortion.

Using the definition of the distortion tensor, as it was obtained in the previous chapter in the

“t are the sum of elastic, anelastic and

presence of plastic deformation, the total distortions BI,
plastic distortions, such as Bimt = Biél +BI,”" +B,-p1 . Another notation for these distortions can be
introduced, which makes it possible to separate the contributions of plastic deformation from the
contributions of elastic and anelastic deformation, by simply writing that B,-m — Bi +ﬁi”1 with
Bl. = Biél + Bl.“" , as illustrated in figure 2.5 (a).

This simple change of name makes it possible to introduce, by analogy with the equations of
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electromagnetism, the concept of tensor denSIty l of charges, responS|bIe for plastic
distortions, by assuming a priori the relation /1 = rotﬁ”l of definition of 7L from the plastic
distortion tensor ﬂi” , as well as the concept of tensor flow Jl. of charges, responsible for the
temporal variation of plastic distortions, by supposing a priori the relation jl_ =dBi”1/dt of
definition of jl., starting from the temporal derivative a’B{’l / dt of the tensor of plastic distortion
Bl.”l. It should also be noted here that the concept of charge flow is defined as a flow with
respect to the lattice, because it is deduced from the material derivative of Bf' ! , that is to say
from the temporal derivative of Bi” ! taking along the trajectory of the solid lattice.

The geometro-kinetic equation for the distortion tensor Bi in figure 1.12 already contained a
source S, of lattice sites, which actually represented a source of plasticity related to the volume
expansion of the lattice. The geometro-kinetic equation for the distortion tensor B,- obtained in
figure 2.5 (a) generalizes this fact, by including the source of lattice sites in the concept of
tensor flow J ; of plastic charges.

dg* — —
—_—t = — - - rot .tot =0
dt ¢l ﬂ, — ﬂiﬂ RIS 'an ﬂ i
B = BB B = BBy
dp’ _ df, — .
/=T 4orad —rot B,” =rot
i 5 Ferade, B; B;
tensor flow j = d B,’” Z,. g B, pl tensor density
of charges Yoodt of charges
geometro-kinetics - d[i — = —— =  geometro-compatibility
=——o-+grad¢ =
equation J g dt gra ¢' l‘ rot ! equation

Figure 2.5(a) - Introduction of the tensor of density and flux of plastic charges
in the presence of elasticity, elasticity and plasticity

The introduction of these new tensors of density and flow of charges is not free, because
these answer at best the requirement to find a way to express the presence of plastic distortions
in a solid so that it is possible to take into account the microscopic state of the network of
structural defects in the solid. It will also be verified a posteriori, during the interpretation of
these tensors in the rest of this chapter, that this way of proceedmg is indeed judicious. With this
approach to the phenomena of plasticity by tensors J and l , the topological equations
describing the geometro-kinetics and the geometro-compatibility of the distortion tensor
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Bl. = Biél + Bi“" of an elastic, anelastic and plastic solid are now written in a much more general
way, as illustrated in figure 2.5(a).

This new version of topological distortion tensors and geometro-kinetic equations is in fact
nothing more than a simple change of terminology for plastic distortions, based on an analogy
with the two Maxwell equations of electromagnetism p = divD and j=—85/8t+rotﬁ.
Finding all the potentialities contained in this formulation of topological equations will therefore
be the subject of the rest of this chapter.

The density il. of dislocation charges and the flow J ; of dislocation charges are tensor
quantities, on which it is possible to apply symmetry operations to reduce their tensor order, i.e.
to make them vector quantities and scalar quantities. These symmetry operations are shown in
figure 2.5 (b).
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Figure 2.5(b) - Breakdowns of charge densities and charge flows,
and charge continuity and charge conservation equations

Concerning the geometro-compatibility equations, we note that the tensorial density)ﬁle of
dislocation charges contains a vector density 1 of bending charges and a scalar density A of
rotation charges. We will return later to the interpretation of vector bending charges, but we can
already give an interpretation of the effects of scalar rotation charges. Indeed, if we consider
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figure 1.15, we know that the compatibility condition divao =0 prohibits the singularity by
divergence of the rotation field, which means that, if divad=A#0 within the volume V, there
can appear a field of rotation vectors which diverge, of the same way that the local presence of
a non-zero density of electric charges at a place in space induces a diverging electric field.

Concerning the geometro-kinetic equations, we note that the tensor flow j[ of dislocation
charges contains a vectorial flow ] of rotation charges and that it re-appears the scalar volume
source S, of lattice sites.

The mathematical combination of the material derivative of the geometro-compatibility
equations with the rotational or the divergence of the geometro-kinetic equations makes it
possible to deduce the continuity equations of figure 2.5(b) for the plastic distortion charges,
which link the temporal evolution of the densities of charge along the trajectory of the medium to
the spatial variations of the charge flows. These continuity equations reveal rather surprising
terms of sources of plastic charges, in the sense that these terms are associated with the
possible existence of a non-commutativity of the temporal operator of material derivative with
the space operators. Finally, as regards the tensorial density il. of dislocation charges, we note
that it is linked to the curl of Bi , SO that it obligatorily satisfies the relation divii =0 of the
vector analysis which we will call the conservation equation of the dislocation charges, equation
which will be called thereafter to play a considerable role in the topological interpretation of the
charges of dislocation.

Macroscopic concept of plastic contortion charges

In Figure 1.16, we reported the complete system of distortions and contortions of a solid
lattice in Euler coordinates, in the case of a geometro-compatible solid. The same diagram, if it
is drawn in the case of a solid with a non-zero density of dislocation charges i,., becomes
clearly more complex as illustrated in figure 2.6.

Apart from the tensor density )jl. of dislocation charges, the vector density ﬂt of bending
charges and the scalar density A of rotation charges, which we will call 1st order charges
associated with plastic distortions, there appear to be 2nd order charges, associated with plastic
contortions, which will be called the tensor density éi of disclination charges and the scalar
density @ of curvature charges.

We also note that the expressions of contortions ,, flexions ¥ and torsions[ X ]S of the
solid lattice become much more complicated since they now call in their respective expressions
for the existence of charge densities of contortion, of flexion and of torsion of 1st order, deduced
as combinations of the charge densities of dislocation ):i , of flexion A and of rotation A .

In figure 1.19, one saw that the condition of compatibility rotf(i =0 prohibited the singularity
by disclination of the field of rotation @’ deduced from the deformation tensor. Consequently,
if the compatibility condition is no longer zero, then if rot )21, = éi #0, the course on the closed
contour C will result in the existence of a nonzero closure vector €2, called the Frank vector.
This means from a topological and physical point of view that there will be discontinuities of
rotations by deformation. The discontinuities Q are called disclinations within the solid lattice.

Concerning the geometro-compatibility equations for 2nd order charges, we can also give an
interpretation of the effects of the scalar charges 6 of curvature. Indeed, if we consider figure
1.20, we know that the condition of compatibility div;?z 0 prohibits the singularity by



Dislocation and disclination charges in a lattice 43

-

Distortions ﬁi anti-symétrie D) Rotations
rotationnel divergence
v
< symeétrie
S =1 — = -
1= = ot ltrace [A)=div@
= - ~
R% o .
Q Charges Charges
de dislocation ) de-rotation
Deformations — .
First order
Shear strains O, 5@ g trace T  Expansions charges
i trace i
transposée anti-symetrie
. du rotationnel du rotationnel .
Contortions Flexions
X = gradw, + m anti-symeétrie Z =—rot & +
Charges Charges
de contorsion rotationnel divergence | de flexion
" Second order
= _ —
K] symérie charges
+
P a1 - A - - LA P
= — — = 4 trace = A=
S rot(/l, AL ,/l) rot 7, divA=div y
<
(o]
O Charges Charges
de désinclinaison Torsions de courbure
—ah = 1. —_ |5 1. = _ -
[X,] :gradw,—ge,/\rotw+ A,—Ee,/\l—e,/l trace Zz‘=0
) k
B First order
de torsion charges

Figure 2.6 - The system of distortions and contortions
in the presence of plastic charges

divergence of the flexion field, which means that, if divfg:GiO within the volume V, it can
appear a field of vectors of curvature which diverge, in the same way as the local presence of a
density of non-zero electric charges at a place in space induces a diverging electric field.

The operations by symmetry and by vector analysis operators, making it possible to deduce
from the tensor charge density /il. of dislocation all the charge densities reported in figure 2.6,
are summarized in figure 2.7.

It is quite simple to imagine carrying out a macroscopic scale disclination in a solid
continuous medium by locally cutting this solid and turning the two jaws of the cut relative to
each other, before putting them glue back together. This process is illustrated schematically in
figure 2.8 using a pipe of material which is cut according to abcd and which is glued in two
different ways:

- either by shearing the plane a'b'cd of one of the jaws without adding or subtracting material
(figure 2.8a), which leads to a unidimensional topological singularity located on the axis cd ,
called twist disclination,
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- either by rotation of one of the interfaces around the edge c¢d with addition or subtraction of
material (figure 2.8b), which leads to a one-dimensional topological singularity located on the
axis cd , called wedge disclination.

Under the condition that the elastic volume expansion T of the medium remained zero
during the plastic deformation process, the vector Q , obtained by the course on the outline C
surrounding the singularity, then corresponds exactly to the macroscopic rotation which the jaw
a'b'cd underwent. As the vector £2 must remain constant if one varies the diameter of the
integration contour C or if one displaces this contour vertically, one deduces that the charges
of disclination must be confined in the immediate vicinity of the axis c¢d of the pipe, and that
their tensor density must be a constant along this axis.

The topological singularities thus obtained are responsible for a distortion field within the
solid. Consequently, they require a non-zero formation energy. They are stabilized within the
solid by re-bonding the two jaws of the cut, therefore by the bonds within the solid.

By comparing figures 2.2 and 2.8, we can see an astonishing resemblance between screw
dislocations and disclinations, as well as between edge dislocations and disclinations. This
resemblance is not accidental, since the operations used to generate these discontinuities are
very similar. It is interesting to note in particular that the macroscopic disclinations also present
a displacement vector B going from a to a' (figure 2.8), just like the macroscopic dislocations
(figure 2.2). However, this vector B, in the case of disclintions, increases linearly with the
diameter of the integration loop that is used to calculate it. This means that in the presence of a
macroscopic disclination, associated with a density of disclinations charges distributed along the

(c)

Material removed
or adde

Q Q Q
a' b'
a

b \
(a) . twist (d) wedge
disclination disclination
loop loop
(b)
(e)

Figure 2.9 - Realization of a twist disclination loop by rotation
of jaws (a) and (b) and a wedge disclination loop by removal (or addition)
of a piece of conical material (c), (d) and (e)
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axis cd of the pipe, there must also exist a density of dislocation charges. But this, instead of
being located on the axis of the pipe as it is the case for a macroscopic dislocation, will be found
homogeneously on a surface located in the cutting plane abcd (figure 2.8), such that the
Burgers vector B increases linearly with the diameter of the integration loop C'.

One can also imagine that within a continuous solid one cuts a void of material in the form of
a torus, as illustrated by the section represented in figure 2.4a, then that one cuts the median
plane located in the center of the torus. The two jaws ab and a'b' thus formed can then be
moved relative to each other, then glued. We can proceed as in figure 2.9a, and move the two
jaws in parallel by a rotation Q of one relative to the other in the cutting plane. After re-
bonding, the medium is deformed by rotation 0 and the torus then contains a macroscopic
disclination loop of the twist type.

Note here that the field of displacement of the medium on either side of the cutting plane is
tangential to this plane and that the curvilinear vector of displacement B on the cutting plane
increases from a zero value in the center to a value maximum on the edges of the torus. At the
level of the torus, the local displacement field B looks like it can be mistaken for the
displacement field of a screw dislocation closed on itself, but it is in fact a pseudo-dislocation
because the curvilinear Burgers vector, tangential to the dislocation line is not preserved in this
case, as shown in figure 2.9b.

One could also remove a piece of medium in the center of the torus, of lenticular or conical
shape and with an angle €2 at the base, as illustrated in figure 2.9c. In this case, the gluing
plane has a local displacement field B corresponding to perpendicular Burgers vectors whose
lengths have a circular symmetry (figure 2.9d). At the level of the torus, the deformation required
for re-bonding is a rotation Q tangential to the torus, which would therefore correspond to a
macroscopic wedge disclination loop, but which is in fact a pseudo-disclination since the vector
of Frank, always tangential to the line of disclination, is not preserved along the line (figure
2.9d).

Quantified dislocations in a lattice

Having described the macroscopic dislocations and disclinations that can appear in a conti-
nuous medium, we can now ask ourselves how it is possible to introduce these topological de-
fects on the microscopic scale of a solid lattice. It is clear that the presence of a lattice must ne-
cessarily imply a form of quantification of these defects, in the form of topological singularities of
the lattice.

It was not until 1934 that the search for this type of singularity in solid lattices really started,
and therefore that the theory of lattice dislocations was born, following three famous papers
published independently and each describing in its own way the edge dislocation. These are the
publications of Orowan3, Polanyi4 and Taylors. Then it was in 1939 that Burgers® described

3 E. Orowan, Z. Phys., vol. 89, p. 605,614 and 634, 1934
4 M. Polanyi, Z. Phys., vol.89, p. 660, 1934
5 G. I. Taylor, Proc. Roy. Soc. London, vol. A145, p. 362, 1934

6 J. M. Burgers, Proc. Kon. Ned. Akad. Weten schap., vol.42, p. 293, 378, 1939
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screw and mixed dislocations. And it was finally in 1956 that the first experimental observations
of dislocations in metals were reported, simultaneously by Hirsch, Horne and Whelan? and by
Bollmanns, thanks to the electron microscope. As for the disclinations, it was in 1904 that
Lehmann® observed them for the first time in molecular crystals, and it was in 1922 that
Friedel10 gave their first physical description. Then, from the middle of the twentieth century, the
physics of defects in solids took on a considerable scale.

As the tensor density Zi of dislocation charges must satisfy the conservation equation
divi,. =0, it is impossible for it to appear in point form and it must be in the form of three non-
diverging vector fields. This strong condition implies that the tensor density )ji of dislocation
charges must always occupy a non-zero volume domain within the solid medium, which must
have a form of tubular cord, which has necessarily to cross the solid right through, or have a
shape of an O-ring.

The area of charges )jl. of tubular or toric shape can be modeled in the form of a line of
dislocation, commonly called dislocation, representable by a central one-dimensional fiber
located at the center of the string of non-zero density )ji of charges. This line of dislocation
must then necessarily either cross the solid right through, or form a closed on itself dislocation
loop.

The closely related domains of non-zero density of dislocation charges can be modeled in
the simplest way in the form of thin strings. If the dislocation string is sufficiently thin (of
sufficiently small section), the density charge i[ can be represented by a single quantity
confined to the immediate vicinity of the central fiber of the cord, which will be called dislocation
line, by introducing the concept of linear tensor charge ]\i of dislocation, namely a set of three
vectors defined on the central fiber.

We can then show that the rectilinear strings appearing in a solid lattice are quantified on the
microscopic scale of the lattice (figures 2.10 and 2.11), and that these strings then represent
elementary plastic singularities of the distortion fields, in other words "elementary particles" of
the plastic deformation of the lattice.

If we consider the case of an ordered lattice of particles on a microscopic scale, we can
introduce dislocations by cutting the bonds on a lattice plane, parallel displacement of the jaws
and reconstruction of the bonds, as illustrated in figures 2.10 and 2.11 in the case of a simple
cubic lattice.

The Burgers vector B of the singularities thus obtained, that is to say the microscopic
discontinuity of the displacements of the lattice due to the presence of the dislocation, is
deduced by considering a closed circuit C on the lattice of the real solid, surrounding the
singularity, and by searching for the closing vector B of the corresponding open circuit in the
undistorted virtual network.

Thanks to figures 2.10 and 2.11, we can see that the microscopic lattice singularities have an

7 P. B. Hirsch, R. W. Horne, M. J. Whelan, Phil. Mag., vol. 1, p. 667, 1956
8 W. Bollmann, Phys. Rev., vol. 103, p. 1588, 1956
9 O. Lehmann, «Flussige Kristalle», Engelman, Leibzig, 1904

10 G. Friedel, Ann. Physique, vol. 18, p. 273, 1922
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essential characteristic: their Burgers vector is quantified, that is to say that its components B,
can only be integer multiples of the step a of the virtual lattice, thus of the lattice in
homogeneous volume expansion of value T .

The nature of the microscopic plastic singularity can change according to the respective

directions which take, in the system of local coordinates, the Burgers vector B and the unit
vector tangent to the line:
-when B is parallel to { (figure 2.10), the linear charge]\i of dislocation presents a non-zero
trace (A #0), therefore a charge of rotation, and a null antisymmetric part (A #0). One
speaks in this case of screw dislocations, and of linear charge A of rotation of the screw
dislocation, and one symbolically represents this by a screw located on the line of dislocation.

Like A=—Bf /2, when the screw dislocation has a right rotation, identical to the direction
of rotation of a normal screw or a corkscrew, A is positive and the vectors { and B are

linear charge of rotation A
-

non deformed virtual lattice

Screw dislocation line

Figure 2.10 - Screw dislocation line quantified
in a cubic lattice
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non deformed virtual lattice

Edge dislocation line

Figure 2.11 - Edge dislocation line quantified
in a cubic lattice
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oriented in opposite directions. On the other hand, if the screw dislocation has a left rotation,
therefore in the opposite direction of rotation to that of a normal screw or a corkscrew, A is
negative and the vectors ¢ and B are oriented in the same direction (figure 2.12) . Note that
the choice of a given direction {is perfectly arbitrary since only the sign of A is fixed.

-when B is perpendicular to £ (figure 2.11), the linear charge 7\[ of dislocation presents a
null trace (A = 0), therefore no charge of rotation, but a non-zero antisymmetric part (]\ #0).
One speaks in this case of edge dislocations, and of linear charge A of flexion of the edge
dislocation, and one symbolically represents this one by a sign L on the line of dislocation,
oriented so as to represent the additional plane of particles. The vector A always has the
direction of the additional plane of the edge dislocation (figure 2.13).

Left-handed screw dislocation / Right-handed screw dislocatior/
f -
; t

A=-Bf/2>0

Figure 2.12 - Burgers vectors of screw type dislocations,
«left-handed» and «right-handed>» respectively

Edge dislocation Edge dislocation
A . L L
t
Al

Figure 2.13 - Burgers vectors of edge type dislocations

-when B is neither parallel nor perpendicular to f, the linear dislocation charge ]\i has a
non-zero trace (A # 0), but also a non-zero asymmetric part (7\ #0), so that it behaves at the
same time as a source of elastic and anelastic rotations and flexions. We speak in this case of
mixed dislocations.

In a discrete network, a dislocation can perfectly change direction. In other words, along the
dislocation line, the tangent vector f is not necessarily preserved. In this case, as the Burgers
vector B is kept in the local frame, this means that the dislocation must change in nature. For
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example, in figure 2.14, a simple cubic lattice model is shown in which a screw dislocation
enters the left face, turns becoming mixed within the lattice and emerges as an edge dislocation
on the right adjacent face.

Quantified dislocations are the most basic vectors of the plastic deformation of a lattice. In
this sense, we could call them the "elementary particles" of plastic deformation. Besides, any
dislocation string has its "anti-string". Indeed, it is easy to see that two parallel dislocations of
the same direction £ and vectors of Burgers B and -B respectively annihilate completely if
they come to meet within the lattice.

Figure 2.14 - Dislocation passing from screw to edge type in a cubic lattice

We also note that screw dislocations, carrying a scalar linear charge A # 0, are sources of
a field of divergent local rotations, which is, as we have seen, the analog of the electric field. So,
at a distance R from the string, the norm of the rotation field is simply |cT)| = |A| /27R .

As for the corner dislocations, which carry a fexion charge A#0 , they are sources of a
lattice flexion, therefore of a local curvature of the lattice in their vicinity as well illustrated by the
dislocation emerging from the cubic crystal in the figure. 2.14.

Dissociation of quantified dislocations

The dislocations appearing in structures a little more complex than the simple cubic lattice,
such as for example cubic lattices with centered faces, cubic centered or hexagonal, generally
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present much more complicated core structures. It can thus appear, essentially for energetic
reasons, and according to the crystalline system considered, a dissociation of the core of the
dislocation into two or more partial dislocations, of which the individual Burgers vectors are
fractions of the translation vectors of the lattice.

2nd layer 1st layer -
-‘t:: 3rd layer
Q

perfect dislocation

Figure 2.15 - Dissociation of a perfect dislocation into two partials
and a stacking fault ribbon in a face-centered cubic lattice

For example, in face-centered cubic metals (CFC), the stacking of atoms is characterized by
sequences abc abc abc ... (figure 2.15). The Burgers vector l§p of a perfect dislocation must in
principle connect two nodes of the lattice. But for energy reasons, the most favorable Burgers
vectors are those that have a minimum length, because the distortion energy stored in the
lattice by a dislocation is proportional to the square of its Burgers vector. Thus in the case of
figure 2.15, the dislocations have interest to dissociate on their gliding plane in two partial of
Burgers vectors I§1 and B, , so that Bp = E’I + I§2 . In the case of this dissociation, we have
indeed B, B, >0, so that Bﬁ =B’+ B, +2B,B, > B’ + B, . The two partial obtained in
figure 2.15 by this dissociation are called Shockley type. The distance between the two partials
is then controlled by a competition between the decrease in energy associated with the increase
of the distance between the partials which repel each other, and the increase in energy due to
the formation of an energy ribbon of crystalline stacking fault (abc ac abc abc ...) located
between the two partial dislocations, as shown in figure 2.15.

Since the stacking fault ribbon has an energy ¥ per unit area, the total energy E,(d) per
unit dislocation length for a dissociated dislocation over a distance d is written
E(d)=yd+E,d), where E,(d) is the energy of the two partials as a function of the
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distance d separating them, which is a monotonic function decreasing from E; ford =0 to

AE@

2E, /3

~Y

O
d(l

d

Figure 2.16 - Total energy of two partial dislocations
depending on the distance between them,
source of a "strong force" of attraction between them

2E, /3 for d — o in the case of Shockley partials illustrated in figure 2.15.

The energy E,(d) therefore presents a minimum for the distance d =d,, (figure 2.16),
which is the equilibrium distance between the two partials, controlled by the competition
between the energy decrease associated with the distance increase between the repulsive
partials, and the energy increase due to the formation of a stacking-fault ribbon between the two
partials. We see here appear a behavior of the energy E,(d) which induces an interaction force
between the two partial which one could qualify as “strong force”, in the sense that the energy of
the pair of partial presents a minimum which fixes the equilibrium position d, , but that it
continues to increase if we try to increase the separation distance beyond d, . The qualifier
"strong force" is proposed here because the attractive behavior of the interaction force between
partial at long distance presents a very interesting analogy with the strong force acting between
quarks in the Standard Model of elementary particles.

Figure 2.17 - Model of a mixed dislocation in a face centered cubic lattice
presenting a dissociation into two partials,
as well as kinks on the two partial dislocations
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By way of exemplary illustration, figure 2.17 shows the model of a mixed dislocation, with an
edge and a screw nature at the same time, dissociated into two partials in a cubic face centered
structure. We can clearly see the existence of a stacking defect between the two partials. And
since this is a mixed dislocation, the two partials show a series of kinks in it. In addition, we can
even observe the bending of the network induced by the edge part of the dissociated
dislocation.

All of the consequences linked to the structure of the lattice are obviously too specific for
each conceivable crystal structure to be dealt with in detail here. But they can be approached in
any book dealing with dislocations in crystalline structures.

Quantified dislocation membranes

A thin interface which contains dislocation charges and which separates two media
containing no charges is called a charged membrane. These membranes can be any surfaces
in space (infinite surfaces, closed spheroidal or toric surfaces, ribbons or hollow tubes, thin
plates, etc.), with the only topological condition that, on any point of the membrane, the equation
of conservation of the dislocation charges div):l. =0 is satisfied and that the disclination
charges derive from the dislocation charges through the relation él. = ﬁ[/i —€ A - Elﬂ,] .

If a dislocation charged membrane is very thin, it is possible to introduce the notion of
surface tensor charge l:II. of dislocation. The existence of a surface charge of dislocation l:Il. in
the membrane leads to a discontinuity of the tangential components of the distortion vectors Bi
on either side of it, and it is subject to the condition that there is a gradient of the components of
the Burgers vector on the surface of the membrane.

Two-dimensional modeling of a thin membrane obtained with surface charges is generally
called a joint. The joint is then entirely characterized by the data of the surface tensor lzll. of
dislocation charges, the vectors of which are tangent to the surface of the membrane, which is
in fact a direct consequence of the equation of conservation diviiEO of the dislocation
charges. But it can also be characterized by the data of the anti-symmetrical part I1 (the
surface charge of flexion of the joint) and of the trace Il (the surface charge of rotation of the
joint) of the load tensor I:[,., as in the case of the one-dimensional lines of dislocation. This point
is perfectly illustrated in figure 2.18, in which three thin membranes are presented whose
Burgers vectors, growing linearly along the axis Ox, , are oriented respectively along the axes
Ox,, Ox,, and Ox, . Since these thin dislocation membranes actually disorient or
accommodate the solid grains on either side of the membrane, they are generally called grain
boundaries.

We can for example consider that these membranes are in fact charged by edge dislocations
or screw dislocations oriented parallel to the axis Ox, . We can then simply represent each
individual dislocation by a linear vector charge A ifitis an edge dislocation or by a scalar linear
charge A ifitis a screw dislocation. We then verify that:

- the thin edge type membrane with a Burgers vector perpendicular to the surface and
increasing along the axis Ox, (figure 2.18a) can be entirely characterized by a vector surface
charge I of flexion, the vector of which is tangent to the plane of the membrane, directed
according to Ox,, and worth M= 7\/d . As this type of edge membrane makes it possible to
disorient the solid grains located on either side of the membrane, it is called a disorientation
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bending joint
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Figure 2.18 - Edge type dislocation membranes:
bending joint (a) and accommodation joint (b)
or screw type dislocation membranes: torsion joint (c)

joint, and in this particular case, as the disorientation corresponds to a flexion of the solid, we
speak of a bending joint.

- the thin edge-type membrane with a Burgers vector parallel to the surface and increasing
along the axis Ox; (figure 2.18b) can be entirely characterized by a vector surface charge I of
flexion, whose vector is perpendicular to the membrane, and being equal I:Izj\/d . As this
type of edge membrane in fact makes it possible to modify in the direction Ox, the density of
the crystalline planes of the solid grains situated on either side of the membrane, it can be
qualified as an accommodation joint.

- the thin screw type membrane with a Burgers vector parallel to the membrane and increasing
along the axis Ox, (figure 2.18c) is entirely characterized by the scalar surface charge 11 of
rotation, being equal IT=A/d . This type of screw membrane also corresponds to a
disorientation joint between the solid grains located on either side of the membrane. In this
particular case, as the disorientation corresponds to a rotation of the grains relative to one
another, we speak of a torsion joint.

Quantified disclinations in a lattice

As the charges of disclination always derive from dislocation charges through relationship
0. = rot[/li —éAA— Eil] , there can be no dislocation strings in an isolated state. But strings
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Figure 2.19 - Dislocation ribbons bordered by disclination lines
of wedge type (a) and twist type (c).
The dislocation ribbon (b) is not bordered by disclination lines

of disclination can appear in the presence of a large dislocation charge domain, such as a
dislocation membrane in the form of a ribbon.

We can consider for example the case of flat ribbons charged with dislocations, which
abruptly stop along the axis Ox,, as shown in figure 2.16. The boundaries which border these
dislocation ribbons are then lines of disclination, because it appears on these boundaries
singularities by disclination of the field of rotations by deformations, as described in figure 1.19,
having a non-zero Frank vector Q. In this figure, we see the following points:

- the edge-type dislocation ribbon with a Burgers vector perpendicular to the membrane and
increasing along the axis Ox, (figure 2.19a) corresponds to a localized bending joint. It is
bordered by two wedge type disclinations whose Frank vectors are parallel to the axis Ox, ,
and which are respectively worth Q, =—-Q, =—TIAfi= —‘I:I‘f ,

- the edge-type dislocation ribbon with a Burgers vector parallel to the membrane and
increasing along the axis Ox, (igure 2.19b) corresponds to a localized accommodation joint. As
there is then no discontinuity in the rotational field by deformations, it is not bordered by any
disclination and f)l = f)z =0,

- the screw-type dislocation ribbon with a Burgers vector parallel to the membrane and
increasing along the axis Ox, (figure 2.19c) corresponds to a localized torsional joint. It is
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bordered by two twist-type disclinations whose Frank vectors are parallel to the axis Ox,, and
which are worth respectively (21 = —@2 =-Iln.

It will be noted that the disclination of figure 2.19a corresponds to the macroscopic
disclination represented in figure 2.8b, while that the disclination of figure 2.19¢ corresponds to
the macroscopic disclination of figure 2.8a. The quantification on a cubic lattice of a ribbon of
disclination similar to that of figure 2.19c is illustrated in figure 2.20, in which one has reported
the two disclinations bordering a quantized dislocation ribbon composed of three aligned lattice
screw dislocations.

surface charge of rotation H

twist disclination

non deformed virtual lattice
screw ribbon boarded

with twist disclinations

Figure 2.20 - Quantized two-dimensional dislocation ribbon
composed of three screw lattice dislocations

Although there cannot be isolated disclinations, it is possible to imagine structured solid
media which would contain rectilinear disclinations quantified on their lattice in the case of
wedge disclinations, as shown in figure 2.21. In this figure, we have represented two wedge
disclinations with Frank vectors £2=7F90° in a simple cubic lattice, and we have also
reported the curvature vector y due to the charge ©.

We can then imagine that there could be different families of quantified wedge disclinations
by considering solid media with different arrangements of the particles in a secant plane of the
disclination line. For the example, we will consider here simple arrangements like the
arrangement on a quadratic network. But we could obviously also consider more complex
arrangements, such as three-dimensional centered cubic, hexagonal or face centered cubic
structures.

In the case of a quadratic arrangement, there can exist at most 3 different quantified wedge
disclinations, which will be called CI, C2 and C3, with angles of rotation £2 of + 90 °, +
180 ° and + 270 °, to which correspond 3 quantified wedge anti-disclinations, Cl, C2 and
C3 , with rotation angles of -90 °, -180 ° and -270 ° (figure 2.22).
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Figure 2.22 - Family of quantified wedge disclinations
in a quadratic planar arrangement
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In the case of figures 2.22, we have reported the disclinations with a calculated size so that
the volume expansion 7 is identical in all the figures. Note also that the tilt of + 270 ° in the
quadratic arrangement could exist or not exist depending on the imaginary medium considered,
because their existence is linked to the possibility of connecting two bonds of the same
"particle" in the solid structured medium that we consider.

It has been shown that there cannot be isolated disclinations with non-zero Frank vector.
Consequently, it is necessary to combine several disclinations close to one another so that the
Frank vector obtained on a contour surrounding all these disclinations is zero.

-

surface charge of flexion 1'[

wedge disclination

]
\

:Virtual edge ribbon boarded
with wedge disclinations

Figure 2.23 - Doublet of quantified wedge disclinations
with virtual edge dislocation ribbon

The example shown in figure 2.23 illustrates this fact perfectly: by coupling two quantified
wedge disclinations of typeCI and CI in a simple cubic structure, the total Frank vector
becomes zero, and a virtual edge dislocation ribbon appears between the two disclinations, of
non-zero global Burgers vector B.The edge-type dislocation ribbon is similar to that shown in
figure 2.19a and therefore contains a vector surface charge I1 of flexion. But this real flexion
charge I1 is not associated with real quantized dislocations of the lattice, but with a virtual
ribbon of edge dislocation. In the case of this wedge disclination doublet, it is fairly easy to
imagine that the distortion energy increases extremely quickly if the two disclinations are moved
away, so that these two disclinations can be considered to be linked by a "strong force", that is
to say an attractive force which increases when an attempt is made to distance the two
disclination.

We can find the multiplets of zero Frank vector disclinations which it is possible to construct
on the basis of the quantified wedge disclinations that we have described in the case of the
simple quadratic lattice. The basic zero vector Frank multiplets, i.e. those which can no longer
be further decomposed into two or more zero Frank vector multiplets, are shown in figure 2.24.
We note that, in a simple quadratic lattice, there can exist 3 doublets, 4 triplets and 2



Dislocation and disclination charges in a lattice 59

quadruplets.

In table 2.24, the multiplets composed with disclinations C3 of + 270 ° are grayed out,
because they might not exist, for example in structured media which do not allow two bonds of
the same "particle" to be connected together.

3 doublets

+90°/-90°
+180°/-180°
+270° / -270°

4 triplets
+90°/ +90° / -180° -90°/-90°/ +180°
+90° / +180° / -270° -90° /-180° | +270°
2 quadruplets
+90° / +90° / +90° / -270° -90° / -90° / -90° / +270°

Figure 2.24 - The multiplets of quantified wedge disclinations
in a quadratic planar structure

Solid lattices with axial symmetry

Mixed strings resulting from the combination of a string or a line of disclination with a string
or a line of dislocation are called strings or lines of dispiration, or simply dispirations. Note that
the term "dispiration" is an Anglicism and that there is no French translation of this term.

One can imagine lattices which have a certain axial symmetry of the particles composing it,
like the cubic networks (a) and (b) illustrated in figure 2.25. This axial symmetry of the particles
can simply present a privileged direction of the particles in the planes of the structure, as in case
(a), which has an alternating structure of successive layers a, b, a, b, a, b,... The axial
symmetry can also have a preferential direction and way as in case (b) which has an alternating
structure of successive layers a, b, ¢, d, a, b, ¢, d, ...

Moreover, in case (b), the direction of rotation of the axes of the particles along the vertical
axis produces an oriented medium, which is qualified as right-handed (clockwise) in case (b)
illustrated in figure and left-handed (counter-clockwise) in the case where the planes rotate in
the opposite direction.

If it is forbidden to break the axial orientation of the particles in a plane, it is not possible to
introduce a vertically oriented screw dislocation with any Burgers vector. Indeed, if the distance
between the horizontal planes is worth a, in order to ensure the continuity of the orientation of
the particles, and also of their direction in the case (b), it is necessary that the length of the
vector of Burgers Bm of the dislocation vis is equal to *2a in case (a), and +4a in case (b).

In media with axial symmetry such as those shown in figure 2.25, we have just explained
that the screw dislocations must have Burgers vectors Bm whose lengths are multiples of the
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length of the lattice pitch. In this case, the screw dislocations may have an interest in splitting
into partial with Burgers vectors of length a, forming respectively 2 or 4 partial in cases (a) and
(b) respectively. Between the partial dislocations, ribbons of connection faults are formed
between axial planes ab, bc, cd, etc. The partial separation distance then depends on the
energy Y per unit area of the connection fault.
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Figure 2.25 - Cubic lattices with axial symmetry,
simple in case (a), and oriented of dextrorotatory type (right-handed) in (b)

If the connection fault ribbon has an energy ¥ per unit area, the total energy E,(d) per unit

length of a dissociated screw dislocation over distances d is written:
- E,(d)=yd+E (d) in case (a), where E,(d) is the energy of the two partials as a function
of the distance d separating them, which is a monotonic function decreasing from E, for
d=0to E, /3 for d — oo,
- E (d)=3yd+E (d)in case (b), where E,(d) is the energy of the four partials as a function
of the distance d separating them, which is a monotonic function decreasing from E, for
d=0to E, /3 for d — 0.

The energy E, (d) therefore has a minimum similar to that shown in figure 2.16 for the
distance d = d,,, which is the equilibrium distance between the two or the four partial, controlled
by the competition between the decrease in energy associated with the increase in distance
between the partials and the increase in energy due to the formation of an energy ribbon due to
lack of connection between the partials. This behavior of the energy E,(d) induces a force of
interaction between the partials which one can quite qualify as strong force, in the sense that
the energy of the triplet of partials will increase if one tries to increase the distance of separation
beyond d, . This strong force therefore presents in its behavior an interesting analogy with the
strong force acting between quarks in the Standard Model of elementary patrticles.

We can immediately imagine that there must also be connection conditions ensuring the
continuity of the axial symmetry if we want to introduce a disclination in such a network. In fact,
to ensure this continuity, it will necessarily be associated with the disclination a screw
dislocation with the correct Burgers vector B. It therefore appears here a structural necessity to
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introduce dispirations in such environments.
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Figure 2.26 - Dispiration of + 90 ° introduced into the axial lattice of figure 2.25 (b)
showing the need to add a translation vector B to ensure axial continuity

Figure 2.26 illustrates this point perfectly. Indeed, to introduce an disclination €2 =+90 ° in
the medium represented in figure 2.25(b), it is necessary to add to it a correctly oriented screw
dislocation, of Burgers vector B and of length a, which ensures the continuity of the axial
orientation of the particles on the planes of the medium.

Note that screw dislocation of Burgers vector of opposite direction and length 3a could also
have ensured the continuity of the axial orientation of the particles on the planes of the medium,
so that there are two different dispitations with rotations £2 =+90 °, both with a linear charge of

(¢ s Ag)ewovre) A%mm)
vis 0 +2a t4a t4a
Cl /2 +a +a ,-3a —a ,+3a
Cl +m/2 +a —-a ,+3a +a ,-3a
c2 - 0,%2a +2a ,-2a +2a ,-2a
C2 | +7 0,+2a +2a ,2a +2a ,-2a
C3 =3 /2 ta —a ,+3a +a ,-3a
C3 | +3m/2 +a +a ,-3a -a ,+3a

Tableau 2.27 - Linear charges of curvature O and rotation A of the dispirations
in the cubic structures of figure 2.25 (a) and (b)
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curvature of ® = —m /2, but differentiated by their Burgers vector B associated with a linear
charge of rotation A being equalto A=a or A=-3a.

It is not too difficult to find out which linear torsion charges A should be associated with the
different wedge dispirations of linear charge of curvature ® that can be introduced into the
cubic structures shown in figure 2.25.

In Table 2.27, these loads are reported for the cubic structures of figures 2.25(a) and (b). In
case (a), the structure shows no difference between a righthanded orientation and a lefthanded
orientation of the particles in the lattice. On the other hand, there appears to be a difference
between these two orientations in case (b), which implies a change in sign of the charge A
between the righthanded and lefthanded environments.

Quantified dislocation and disclination loops in a lattice

To satisfy the conservation equation divil. =0, a dislocation or a disclination string cannot
be abruptly interrupted within the medium. On the other hand, such a string closing on itself to
form a localized loop always satisfies the conservation equation. In this section, we will
therefore present this type of loops as well as their properties in a solid lattice.

For a circular dislocation loop of radius R, the tensor linear charge ]\i of the dislocation
can be related to its Burgers vector using the relation 7\,. = —I?Bl. where £ represents the unit
vector tangent to the dislocation line.

Three types of dislocation loops then appear according to the orientation of the Burgers
vector with respect to the normal n to the surface of the loop, as shown in Figure 2.28:

- the slip loops (figure 2.28a) when Bli, having both edge portions (whereé || m)), screw
portions (where B I ?) and mixed portions. Their Burgers vector can take any orientation in the
plane perpendicular to 7 . They are obtained by the process described in figure 2.4b,
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Figure 2.28 - Slip dislocation loop (a) and prismatic dislocation loop (b)
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- the prismatic loops (figure 2.28) when B || 7, which have their Burgers vector in the imposed
direction of the unit vector n perpendicular to the plane of the loop, and which are obtained by
the process described in figure 2.4c and d.
- the mixed loops when B hasa component in the direction of 7 and a component in the plane
of the loop.

We will see later that it is useful to introduce the notions of global scalar charges of rotation
q, and global scalar charges of curvature ¢, , which will in fact be very important for
characterizing the topological effects at long distance of topological singularities. These global
scalar charges are perfectly analogous to the electrical charge of an electron, for example.

We can define a global scalar charge q, of rotation of a dislocation loop as the integral (the
sum) of its scalar linear density A of torsion charge taken on the contour of the loop:
- in the case of the prismatic loop (figure 2.28b), the global scalar charge ¢, is null because the
linear density A of torsion load is null everywhere on the contour of the loop.
- in the case of the slip loop (figure 2.28a), the linear density A of torsion charge evolves along
the loop according to the cosine of the angle « , becoming positive, null, negative and null on a
complete turn, so that the global scalar charge ¢, of rotation is also zero (g,=0) for this type
of loop. On the other hand, as the linear density A of torsion charge is positive for =0 and
negative for =180° in the case of the slip dislocation loop shown in figure 2.28a, we deduce
that the slip dislocation loops have a dipolar momentum of rotation charges.

We can also define a global scalar charge q, of curvature of a dislocation loop as the
integral (the sum) of its scalar linear density ® of curvature charge taken on the contour of the
loop:
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Figure 2.29 - Quantified loops of dislocations in a cubic lattice
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- in the case of the slip loop (figure 2.28a), as the linear density © of curvature charge is null all
along the loop, its total scalar charge q, of curvature is null.
- in the case of the prismatic loop (figure 2.28b), the linear density © of curvature charge is not
zero and is worth @ =—7iB / R, so that the total scalar charge q, of curvature of the prismatic
loop is worth q, = —27tﬁ(f A 7\) =21 Aint

At the microscopic scale of a solid lattice, the Burgers vector of dislocation loops are
quantified, as shown schematically in figure 2.29 for two prismatic loops and for one slip loop
within a cubic network. In this figure, we also clearly observe the following facts:
- the prismatic dislocation loops are obtained by adding or removing a plane of particles within
the loop (translation perpendicular to the plane of the loop), so that the network presents "extra-
matter" on the plane of the loop; note that the overall scalar charge ¢, of divergent curvature of
the prismatic loop is directly linked to the existence of this "extra-matter”,
- the slip dislocation loops are obtained by sliding (translation parallel to the plane of the loop) in
the direction of the Burgers vector, so that the lattice does not present any "extra-matter" in this
case. On the other hand, the presence of a screw component in the regions where B ¥
induces a dipolar field of rotation in the vicinity of the slip loop.
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twist disclination loop surrounding
a screw dislocation membrane

Figure 2.30 - Twist disclination loop with its charged membrane

In Figure 2.9, we have shown the macroscopic realization of a screw disclination loop. But
what are its main characteristics? For this, consider a loop consisting of a screw disclination
generated by a rotation QW.S of the upper plane by an angle & relative to the lower plane, as
shown in figure 2.30. The fact that two planes which have been displaced relative to one
another are glued together within the loop must show on the plane of the loop a surface charge
I1 of dislocation. On the contour of this surface charge, a twist disclination loop appears, the
Frank vector of which is directly linked to the surface charge Il of dislocation because
f)m =—nll, which is itself linked to the angle of rotation &t = 2 . =—II imposed on the two
jaws.

The surface charge I1 of rotation rotation can be integrated (summed) on the surface of the

loop, and there then appears a global charge ¢, of rotation of such a loop, which is worth
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ql:ﬂRZH. This global charge ¢, is actually the rotation charge of the twist disclination loop
as seen from a long distance from the loop. This means that such a loop can behave as the
source of a divergent field @ of rotation within the solid medium.

Note that it is possible to see a disclination loop somewhat differently. Indeed, the fact of
carrying out the rotation of the two planes one with respect to the other induces a displacement
along the string similar to that of a screw dislocation. The Burgers vector and the linear charge
of this screw pseudo-dislocation would then be worth AW,S :—Ew,s?/ 2=RII/2, so that the
global charge of this pseudo-loop would be written ¢, ==27RA = 7RI . One thus obtains
the same value of the global charge ¢, as that obtained by considering the surface charge,
which makes it possible to consider either this singularity as a twist disclination loop or as a
pseudo-loop of screw dislocation.
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Figure 2.31 - loop of doublet of wedge disclinations
linked by a dislocation ribbon

In figure 2.9, we have shown the macroscopic realization of a wedge disclination loop. But
what are its main characteristics? For this, we consider a loop consisting of a doublet of wedge
disclinations linked by a virtual dislocation ribbon, as shown in figure 2.31, in particular in the
illustration of a section along a plane perpendicular to the plane of the loops. The linear
densities of scalar charge of curvature ©, and ®, of the two disclinations are given by
©,=-Qf=-Tlm and ©,=-Qf =—Tln=-0,.

We deduce that the existence of these two densities ©, and ©, on either side of the
dislocation ribbon generates a dipolar flexion field ¥, » located essentially in the vicinity of
the two disclinations. This dipolar field is illustrated in figure 2.32 in the case of a doublet of
quantized disclinations of £90° in a cubic structure. We can clearly see the positive and

negative curvatures around the two disclinations.
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It is then interesting to see that the dislocation ribbon of surface flexion charge I1 can be
reduced, by integration over the distance d separating the two disclinations, to a linear charge
A of virtual edge dislocation distributed over a radius loop R+d /2. Thus, this loop of a
doublet of disclinations can be considered similar to a loop of of edge dislocation with a linear
charge A suchas A =Tld =—d©,m.

Tk

Figure 2.32 - |ocal dipolar field of flexion due to charges ©, and ©,
and divergent field of flexion due to the charge ¢,
of two loops of wedge disclinations

Such a loop of doublets of disclinations then has a global scalar charge g, of curvature
linked to the virtual edge dislocation ribbon which it contains, and its value is written
q,= 272?7\171=27TB3 =2ndTlim =-27wd®,. We can still imagine that the diameter of the
internal disclination loop tends towards zero and that only the external disclination loop, of linear
charge ©, and radius d remains. In this case, the global charge of curvature g, remains
unchanged and is always given by the same relation. This global charge of curvature ¢, is that
which is due to the entire dislocation ribbon, and that which is seen at a sufficiently large
distance from the loop so that it is no longer possible to distinguish this loop from a simple edge
dislocation loop. The charge ¢, is then responsible for the global flexion ... of the lattice at
long-distance, as illustrated in figure 2.32 in the case of a doublet of quantized disclinations of
190° in a cubic structure.

Clusters of dislocations, disclinations and dispirations

Since the dislocation, diclination and dispiration strings containing non-zero densities of
tensor charges can be closed on themselves in the form of loops, it is quite possible to imagine
the existence of small very localized clusters of such loops within a solid medium. Such clusters
are in principle entirely characterized by their tensor density ):i of dislocation charges, which
take a non-zero value within the strings, in the field of the cluster.

As the cluster is composed exclusively of loops closing in on themselves, there are no
vectors B and / or Q with non-zero value on any contour surrounding the cluster without
crossing it, which implies that there is no discontinuities of the virtual displacement field i nor
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discontinuities of the local rotation field @ in the part of the solid surrounding the cluster, and
that, consequently, the solid remains perfect outside the cluster.

However, the presence of the cluster within the solid must certainly imply a field of elastic
and anelastic distortions of the perfect solid surrounding the cluster and up to a certain distance
from it, just like the presence of a density p of localized electric charges implies an electric
displacement field D remote from these electric charges.

To find this field, it is necessary to bring into play here the fact that there is, apart from the
conservation equation divft[ =0 of the tensorial charge, no restriction on the scalar densities
A and 0 of charges of rotatio and flexion. Consequently, it is entirely possible that, depending
on the nature of the charges making up the cluster, it may have non-zero global scalar charges
of rotation @, and curvature Q,, defined by the sums on all the closed loops of the global
charges ¢q,,, andg,;, as defined above for each individual loop in the previous section. One
can imagine, for example, that the charge of curvature of a cluster could be due to prismatic
dislocation loops, of lacunar or interstitial nature (figure 2.29) and / or wedge disclinations loops
(figure 2.31), and that the rotation charge could be due to twist disclination loop (figure 2.30).

These considerations then make it possible to find the fields of elastic and anelastic
distortions implied at a great distance by the presence of a localized cluster of charges. The
presence of a non-zero global scalar charge Q, of rotation in a localized cluster of charges
behaves as the source of a divergent field of rotation @ within the perfect solid surrounding the
cluster of charges (figure 2.33). The field of rotation then presents a topological singularity at the
place where the cluster of charge Q, is located, and its norm |6?)| presents a decrease in
1/ R? atlong distance from the cluster.

radial field
@® ou X‘
[0)

— cluster of charges

Q,0uQ,

e

=

! divergent fields
of rotation and flexion

Figure 2.33 - Divergent fields of rotation and flexion
in the vicinity of a cluster of charges
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Everything in fact happens exactly as in electromagnetism, where a localized density p of
electric charges, leading to a localized macroscopic electric charge Q , behaves like a
singularity responsible for a field of electric displacement D diverging in the surrounding space.

A macroscopic scalar load Qe of nonzero curvature behaves as the source of a divergent
field y of flexion within the perfect solid surrounding the cluster of charges (figure 2.33). The
bending field then presents a fopological singularity at the place where the cluster of charges
0, is located, and its norm (), also presents a decrease 1/ R® at long distance from the
cluster. In other words, in the vicinity of a global localized load Q, of curvature, the solid
presents curvatures by bending of spherical symmetry around the singularity.

rotation and flexion fields

6 A 0345“ 4 X
l 7 < (?QA@

& ® Q ° -
localized clusters of charges

Figure 2.34 - Description of a solid containing localized clusters of charges

Let be a hypothetical solid in which the charges are confined in localized clusters, as
illustrated for example in figure 2.34, and therefore in which there are no dislocation and
disclination strings propagating over great distances compared to the scale at which solid is
studied. It is clear that, depending on the complexity of the internal structure of these clusters, in
other words the complexity of the entanglement of the loops making up these clusters, the
description of the fields of distortion and contortion within the clusters themselves can be very
complex. But if these clusters have stable internal structures and they can move individually
within the solid, but without interacting enough between them to modify their internal structure, it
is possible to greatly simplify the description of the distortion fields prevailing in this solid.

In this case indeed, and insofar one is essentially interested in describing the elastic and
anelastic distortion and contortion fields in the domains of the perfect solid, that is to say at a
certain distance from the outside the clusters of charges, the problem can be solved much more
simply by considering only the scalar charge densities A and 6 inside the clusters, which can
result at great distance by the existence of two macroscopic scalar charges @, ,, and Q,,, for
each cluster number (n).
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In fact, the knowledge of the distribution of charge density A and 6 inside a cluster makes it
possible to find purely topological conditions, and consequently independent of the elastic
properties of the solid considered, which are imposed on the fields of rotation @ and flexion ¥
reigning in the perfect solid outside the cluster. These conditions are simply expressed by the
scalar equations of geometro-compatibility A =div@d and 6 =div)y . Depending on the
inhomogeneity of the internal distribution of charge densities A and 6 in the cluster, it can then
appear dipolar or multipolar fields @ and 5( at short and medium distance from each cluster.

On the other hand, at large distances from clusters of charges, it is essentially the presence
of macroscopic scalar charges @, and Q,,  which are different from zero which will be
responsible for the appearance of monopolar radial fields of rotation @ and flexion ¥ , as
already illustrated in figure 2.33.

Thus, in this particular case of charges located in clusters, it is the two invariant vector fields,
namely the fields of rotation @ and flexion J , which are affected at a certain distance from the
clusters of charges. And it is quite remarkable that each of these clusters can be individually and
completely characterized, as for its long-range effects on the fields of distortion and contortion,
by its only two macroscopic scalar charges @, ,, and @, , even so these clusters can have
very complex core structures, of tensorial nature, therefore very strongly dependent on their
spatial orientation in the local frame of reference.

In the analogy previously developed with electromagnetism, the field of rotation @ is the

analog of electric displacement D, and the macroscopic charge of rotation Qum is the analog
of the macroscopic electric charge Q of a corpuscle in electromagnetism. But is there also a
similar analogy for the flexion field ¥ and the overall charge Qe(n) of curvature?
A partially positive answer can be given here. Indeed, the presence of a cluster of macroscopic
flexion charge @, is responsible for a non-zero and divergent vector flexion field y in its
vicinity, therefore for a spatial curvature of the solid lattice surrounding this cluster, which results
in the appearance of non-zero shear strain fields and volume expansion fields. Thus, the
presence of a cluster of charges such as Qe(n) #0 implies, vis-a-vis the solid lattice, a result
presenting a certain analogy with that stipulated by the theory of general gravitation of Einstein
vis-a-vis the space-time in the presence of matter, namely that a cluster of matter located in a
place of space is directly responsible for a curvature of the neighboring space-time. We will
come back to this analogy in detail later.

Flow of dislocation charges

The macroscopic interpretation of the density tensors ﬂjl. of dislocation charges as well as
the conservation equation divii =0 which these tensors satisfy have revealed the notion of
strings and loops of dislocation, disclination and dispiration. It has also been shown that at large
distances from clusters of plastic charges, it is essentially the two invariant vector fields, namely
the fields of rotation @ and curvature ) , which are affected by the scalar components A and
0 of charges. It now remains to make the link between these quantities and the charge flows
-7,- and J introduced into the geometro-kinetic equations of figure 2.5.

Let us therefore consider a tube filled with a density ):i of dislocation charges, which moves
at relative velocity V with respect to the lattice, where the velocity is measured perpendicular to
the direction of the tube. We can show that the relation existing between the tensor density of
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Figure 2.35 - The charge flows associated to a dislocation line
moving at velocity V in the frame Ox x,x,

charge /TL in motion at speed V with respect to the lattice and the tensorial flux .7 of charges
which is associated with this movement is then written J /1 AV, from which we also deduce
the vector flux of charges ] ]u)_,_](/l) —/1V+(/l/\v)/2 and the scalar source of sites
S /n= —V.

We can apply this relation to the case of dislocation lines. We consider a dislocation line like
the one shown in figure 2.35, which moves to the velocity V relative to the lattice. It is clear
that, in the case of a line, the velocity V can only be perpendicular at all points to the direction
f  of the line. In the case of a line, one can integrate (summate) the vectorial flow ji of
charges on the surface of the contour C' surrounding the dislocation line and mobile with it. The
integrations on the surface of the contour of the charge fluxes .7 and J will give the linear
fluxes associated with the mobile dislocation, that is to say the total fluxes per length unit of
dislocation, which will be represented by the symbols Y’ and Y. As the flows J and J
have as dimension the inverse of a time (1/s), the linear flows Y'l. and Y will have as
dimension a surface per unit of time (m2/s). As for the source S, /n of network sites, its
integral will also represent a surface per unit of time (m2/s), and we will write it Y . It then
comes the relations reported in figure 2.35, which connect the linear fluxes Y’i and Y , as
well as the linear source Y of sites to the linear densities of charge ]\l. , A and A of
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Figure 2.36 - The movements of gliding (a) and of climbing (b) of an edge dislocation

dislocations. We also deduce the relations directly linking the linear fluxes Y’i , Y and Y to
the Blrgers vector B of the dislocation.

If the dislocation has only one screw component, the flux Y’mw will be given by the relation
reported in figure 2.36. This relation shows that, as the velocity V is always perpendicular to
the direction ¢ of the line, the purely screw dislocations can move in all the directions
perpendicular to the direction f . In this case we speak of a gliding movement of the screw
dislocations, and the planes on which the screw dislocation moves are called gliding planes.

In the case of a purely edge dislocation, two possible types of movement appear, leading to
linear flows Y‘iﬁgji”g] and Y(e;';’:“ whose mathematicgl expressions are shown in figure 2.36:

- the movement for which V is perpendicular to A, and which is responsible for a vector
charge flow Y’g‘zggi"g) . This movement is shown in figure 2.36a. It corresponds to a conservative
movement of gliding of the edge dislocation on its gliding plane, defined as the plane
perpendicular to K, therefore the plane which contains at the same time the Burgers vector
Egdge , the direction £ of the line and the veIo<iity vector V.

- the movement for which V is parallel to A, and which is responsible for a scalar charge
flow Ti;’;’:b] . This movement is shown in figure 2.36b. It corresponds to a non-conservative
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Orowan’s relationships connect
the macroscopic plastic deformation
with the charge movements
within the solid

Figure 2.37 - The Orowan’s relation which connect the plastic distortions
to the movements of the charges

movement of climb of the edge dislocation perpendicular to its gliding plane. Dislocation «is
climbing» in the lattice, creating or destroying a lattice plan. This movement is therefore non-
conservative in the sense that it destroys or builds the lattice, and it is this movement which is
responsible for the existence of a source §, of lattice sites in the geometro-kinetic equation of
the volume expansion reported in figure 2.5, which is written as S, = —nVKcoin = n(f A me)ﬁ .

It is the movement of dislocation charges that is responsible for the macroscopic plastic
deformation of a solid. From the knowledge of the dislocation charge flows .71., it is then
possible to go back to the macroscopic plastic distortions Bl.” ' of the solid thanks to the
famous Orowan relations. The total derivatives along the medium trajectory of the macroscopic
plastic distortions Bipl, EM, a’, @ and "' of the charged solid are reported in figure 2.37,
as a function of the volume densities of charges Zi , 2 and A, as a function of the linear
densities of charges Y’i , Y and Y associated with the movement of dislocation lines, and
finally as a function of the Burgers vectors of dislocations in place of the linear densities of
charge of the dislocation lines.
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Figure 2.38 - The Peach et Koehler force 17’,,,( acting on the topological singularities

Force of Peach and Kohler acting on a line of dislocation

By establishing the energy balance equation of a solid containing dislocations, a power term
:§] +r717—p5 /n appears which is nothing other than the power supplied to the

charges by the stress fields s,,m,p appearing within the deformable solid.In this term of
power, it is possible to replace the fluxes Jk , J and S,/ n by their expressions according to
the velocity V of the charges, taken from figure 2.35. There comes an expression of P,
containing this time the charge densities ik, 2 and A. The power P, supplied to the
charges is therefore the product P f V of a velocity by a term which can only be a force
fPK acting on the charge densmes ),k, Z A per volume unit. The expression obtained for this
force is shown in figure 2.38.

This force which depends on the stress tensors s,, m and/or p is generally called the
Peach and Koehler force. As the dimension of /Ttk, Z, A is the inverse of a length (1/m) and
since the dimension of the moment vector is a moment per unit of volume, namely (Nm/m3), the
force has for dimension a force by volume unit (N/m3). The last term containing a vector Ais
added here because it is a force term which would not produce work, and therefore would not
appear in the expression of power P, . We will see later that this term actually corresponds to
a relativistic force analogous to the Lorentz force in electromagnetism.

The force of Peach and Koehler can also be written in the case of a dislocation, by
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integrating the relation giving f,,,( on the surface of a section of the string. It then comes,
neglecting for the moment the term containing the vector A , the expressions of the Peach and
Koehler force acting on a dislocation line which are shown in figure 2.38, expressed respectively
from the linear charge densities ]\i, A and A of the dislocations, and from the Burgers vector
B of the dislocation.

The dimension of the force FPK acting on the dislocation is a force per unit of length (N/m).
This is actually the force per unit length of the line in the presence of the stress fields s, ,m,p .
The writing of the Peach and Koehler force F’PK using the stress tensors p, m, s, is very
interesting, because it allows to make a much clearer representation than with the notation
usually used in the literature which exclusively uses the symmetrical stress tensor G, . Indeed,
suppose a solid in which the volume expansion is zero, and therefore which would have a
negligible pressure p . In this case, we know that we can replace the shear strain tensor @,
with the rotation vector @, so that the force becomes a gliding force which can be written
F,. = Ain+ (ﬁ1 A 7\) /2, in which the term  Am is the force acting on the screw component
of the dislocation and the term (ﬁ1 A ]X) /2 is the force acting on the edge component of the
dislocation. As the component m, of the moment of rotation is associated with the components
0, and O, of the shear strain tensor, one can immediately make a very clear
representation of the forces acting on a dislocation. The same goes for the pressure force Ap,
which acts only on the edge component A of the dislocations and which corresponds, given
its direction (figure 2.36), to a climbing force on the dislocations.

In the case of a localized charge @, of rotation, one obtains the force of Peach and
Koehler by integrating the force on all the volume of the localized charge. The result is shown in
figure 2.38. In this case, the dimension of FPK =Qir71 is that of a pure force, expressed in (N),

and which is the analog of the electric force F = qE acting on a localized electric charge

électrique

in electromagnetism.
Potentialities of the Eulerian representation of charged lattices

The tensor density )1. and the tensor flux ],. of dislocation charges defined in this chapter
make it possible to find the set of fundamental and phenomenological equations of spatio-
temporal evolution which must be satisfied by an anelastic and self-diffusing solid lattice
containing dislocation charges. This development is done with many details in my first book. We
will only describe here very briefly two important aspects which can be treated in the context of
the Eulerian representation of solid media containing plastic charges.

It is possible to combine all the results described so far to obtain the complete space-time
evolution equations of a solid self-diffusing lattice, presenting phenomenological behaviors of
elasticity and anelasticity, and containing dislocation charge densities and flows. As figure 2.39
shows, this system of equations is quite complex, especially at the level of the large number of
phenomenological state equations and phenomenological dissipation equations necessary for a
complete description of all possible phenomena in such an environment, and which we will not
tackle in this book.

The concepts of densities and flow of dislocation charges make it possible to describe the
phenomena of plasticity and anelasticity at the microscopic level of the discrete solid lattice, by
introducing into it an evolutionary microstructure of plastic charges which should make it
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Figure 2.39 - Synoptic representation of fundamental and phenomenological equations

necessary for the description of the spatio-temporal evolution of a solid medium

presentig elasticity, anelasticity and self-diffusion, and containing mobile plastic charges.
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possible to translate the non-Markovian behaviors of plasticity. In addition, the approach using
plastic charges at the microscopic level of the discrete solid lattice also makes it possible in
principle to find exact local expressions for the dissipative equations linked to plastic charges.

By introducing the simplest solid which it is possible to consider, namely the isotropic perfect
solid, one can obtain the Newton's equation of this solid. We can then show that this solid is
perfectly described by equations similar to Maxwell's equations when the volume expansion is
homogeneous within the solid.

One can also calculate the fields of distortions, the energies and the interactions of the
dislocations in this perfect solid. In the case of stationary dislocations in the solid lattice, the
static distortions of the lattice induced by them store elastic energy within the lattice. This stored
energy can then be considered as the rest energy of the dislocations. In the case where the
dislocations are mobile in the lattice, the displacements of the lattice induced by the movement
of the dislocations are associated with kinetic energy. At low speed, this kinetic energy is directly
linked to the rest energy of these dislocations via relations similar to the famous expression of
Einstein E, = M0c2 , which makes it possible to introduce in a completely classic way the
concept of mass of inertia of the dislocations.

From the distortion fields induced by the dislocations and from the Peach and Koehler force,
we can also describe the interactions that can occur between dislocations.

Finally, we can also introduce the string model, which will allow us to deal with the dynamics
of a dislocation that moves in the lattice while being deformed. The string model has proven to
be extremely useful and efficient in dealing with plasticity and anelasticity problems due to the
movement of dislocations and occurring in common solids, such as metals for example. But it is
not within the purview of this book to deal in detail with the problem of these phenomena, which
can be addressed in many books dealing with this particular subject. However, to arouse the
interest of the reader, we have plotted the equation of the string of a dislocation in figure 2.40a,
and, by way of example, two typical applications:

- the thermally activated interaction of a dislocation with a field of punctual obstacles: to
introduce this type of interactions into the string model, it is necessary to know the spatial
distribution of obstacles in the solid, as well as the internal stress fields generated by them.
These stress fields due to obstacles can be expressed and visualized at the level of the gliding
plane of the dislocation, as illustrated in figure 2.40b, where it appears many Peach and Koehler
forces Zf"(xl,u(xl,t)) combining to act on the dislocation. But the string equation in figure
2.40b in the presence of interactions with obstacles is a purely mechanical equation, which
cannot take into account temperature effects, such as the migration of obstacles by diffusion or
the crossing of obstacles by thermal activation. Introducing the effects of temperature into the
string equation is theoretically possible by developing a “Brownian” image of the dislocation, that
is, by introducing a term of local thermal fluctuations F

Sfluctuation

equation, as illustrated in figure 2.40c, modeled on the term of thermal fluctuations in the model

(xl,u(xl,t),t) into the string

of the Langevin equation. It is clear that such an approach to the dynamics of dislocation quickly
proves to be very complex.

In general, these problems of dislocation interactions with obstacles are approached in a
much more pragmatic way, by developing, on the basis of the string model, simplified models
judiciously adapted to the problem to be treated. To deepen this subject, one will find examples
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Some applications
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Figure 2.40 - The string model and some of its applications

of mechanisms of interaction of dislocations with obstacles, illustrated by experimental results
and theoretical models, in many books dealing with dislocations, or in a more summarized way
in review articles such as "Dislocation-point defect interactions"!! and "dislocation-lattice
interactions»12,

- the source of Frank-Read dislocations: we now suppose a dislocation segment of length L
anchored on its gliding plane at two points A and B located on the axis Ox, in x, =0 and
x, =L, as illustrated in figure 2.40d. Such anchoring points can be due to the existence of
strong and localized interactions of the dislocation with obstacles (other dislocations,
precipitates, etc.). Using the string equation in the static case, it is fairly easy to show that the
deformation of the dislocation segment under the effect of a static stress is a portion of a circle
whose radius depends on the stress s,, applied to the solid. In fact, the radius of curvature of

1 G. Gremaud, chap.3.3, dans «Mechanical spectroscopy», Trans Tech Publications, Zlirich, 2001, p.178-
246

12 W. Benoit, chap. 3.2, dans «Mechanical spectroscopy», Trans Tech Publications, Ziirich, 2001, p.
158-177
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the segment is inversely proportional to the static shear stress s,, , which means that the latter
decreases as s, increases. However, it is clear that there is a minimum limit for the radius of
curvature, which intervenes for a critical stress s23|cr such that the radius of curvature becomes
equal to L /2. For any value s,, greater than s23|” , there can be no static solution for the
deformation of the string segment. There then appears a complex dynamic solution to the
equation of the string, which in fact corresponds to a Frank-Read source mechanism.

The initial straight segment shown by (7) in Figure 2.40d curves between the two anchor points
until it forms a semicircle (2). Then it continues to extend beyond the anchoring points, steps
(3), (4) and (5), until the strand of the segment leaving from A joins the strand of segment
leaving from B (6) . At this point, as the two strands have the same Burgers vector, they bind
together by forming on the one hand a new segment (7) growing between the anchoring points
Aand B, and on the other hand a closed loop (6) which will not stop growing. This
mechanism therefore constitutes a phenomenon of uninterrupted source of dislocation loops. It
is essentially this phenomenon, which is very well observed by electron microscopy, which
explains why it is possible to carry out significant plastic deformations of certain solids such as
metals. And it is indeed this type of phenomenon which can be responsible for the existence of
a non-zero source of dislocation charges in the equation of continuity of the density of
dislocation charges in Figure 2.5, which induces a non-commutativity of the operator of material
derivative with the operators of space.
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The «Cosmological Lattice» and its properties

By the introduction of an elastic strain energy of the lattice, called the elastic internal energy,
expressed per unit volume of the lattice and dependent at the same time on the volume
expansion, the shear strains and especially on the local rotations within the lattice, we obtain an
imaginary lattice, which we will call "cosmological lattice". This lattice has a very particular
Newton's equation, in which appears in particular a new term of force, which is directly related
to the energy of distortion due to the topological singularities contained in the lattice, and which
will be called thereafter to play a fundamental role in analogies with Gravitation and with
Quantum Physics.

The propagation of waves in the cosmological lattice presents very interesting features. The
propagation of transverse waves with linear polarization is always associated with longitudinal
wavelets, and the propagation of pure transverse waves can only be done by waves with
circular polarization, which will then have a direct link with the existence of photons. On the
other hand, the propagation of longitudinal waves can disappear in favor of the appearance of
localized modes of longitudinal vibration in the case where the volume expansion of the lattice is
less than a certain critical value, which will subsequently have a direct link with quantum
physics.

A curvature of the wave rays also appears in the vicinity of a singularity of the volume
expansion of the lattice. This phenomenon makes it possible to find the conditions which the
expansion field associated with a topological singularity must satisfy so that a trap appears
which captures all the transverse waves, in other words a "black hole».

A finite cosmological lattice in absolute space can exhibit a dynamic volume expansion and /
or contraction, provided that it contains a certain amount of kinetic energy, a phenomenon quite
similar to the cosmological expansion of the Universe. According to the signs and the values of
the elastic modules, several types of cosmological behaviors of the lattice are possible, some of
which present the phenomena of big bang, rapid inflation and acceleration of the speed of
expansion, and which can be followed in some cases of a re-contraction of the lattice leading to
a big-bounce phenomenon. We deduce that it is the elastic energy contained in the lattice and
due to the expansion which is responsible for these phenomena, and in particular for the
increase in the speed of expansion, phenomenon which is observed on the current Universe by
astrophysicists and which is attributed by them to a hypothetical "dark energy".

The «cosmological lattice» and its Newton’s equation

Let us introduce an imaginary solid lattice, which will be arbitrarily called “cosmological
lattice” and whose internal energy of distortion is expressed per volume unit in the form of a
development of the volume expansion 7, the elastic and anelastic shears &f] and ;" , but
also directly from the vectors of elastic and anelastic rotation @“ and @™ . Our initial
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conjecture is therefore a priori the foIIowing' the internal energy of the "cosmological lattcie" is
expressed as a function Udef—Udef[T 7’ (*el) (@ ) (*"”) (@ ™Y } of the state of
distortion per unit volume of the lattice.

Such a lattice in fact corresponds to the most general isotropic perfect lattice that one can
imagine if one makes his energy depend both linearly on the volume expansions and
quadratically on the volume expansions, shear strains and rotations by torsional deformation.
Still in the spirit of simplification, we can also assume that there is no elasticity by volume
expansion in this latticie. The state function per unit volume of this cosmological lattice is
therefore written in the form of the expression presented in figure 3.1, in which appears four
elastic constants K ,K ,K,,K, and two anelastic constants Kf",K;’" which completely
characterize the elasticity and the anelasticity of this lattice.

Conjecture 1 - The internal energy of lattice distortion is expressed per volume unit of lattice,
as a second order development in the distortion tensors

U =nu' ==Kt +K o'+ K, 3 (0,) +2K (@ “F + K" Y (@ +2K"(@
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Figure 3.1 - The first conjecture which leads to the cosmological lattice
and its Newton’s equation

One then deduces from it five equations of state of elasticity and anelasticity, respectively for

= cons

the scalar of pressure p, the symmetrical transverse tensors of shear stresses s; and 5" as

— CONns

well as the moment vectors m and m™" , which are also reported in the figure 3.1. These

state equations can be used to carry out a rather tedious computation which finally provides the
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equation of Newton of the cosmological laticie reported in figure 3.1. This equation is indeed a
Newton's equation because it provides the temporal variation of the amount of momentum per
lattice site, taken along the trajectory of the lattice, according to the spatial variations of the
tensors of distortion, via the elastic and anelastic constants.

We will see later that this Newton's equation will play an absolutely central role on the
behavior of the cosmological lattice. It is quite complicated, in particular by the presence of the
density A of flexion charge, of terms related to the diffusion of intrinsic point defects and
especially of the new term of force depending directly on the volume density of internal
distorsion energy Ut , Which is directly related to the energy of distortion, namely the quadratic
terms of the deformation energy Udéf, due to the topological singularities contained in the
lattice, and which will be called thereafter to play a fundamental role in the analogies with
Gravitation and with Quantum Physics.

The fact of introducing a rotational energy with terms in @ and @ into the expression of
the internal energy of the cosmological lattice, as well as the fact of developing its internal
energy per unit of volume and not per site of lattice, are not not at all elementary to understand,
and really make this lattice a perfectly imaginary lattice of which there is absolutely no
equivalent among the usual solids.

Rather than embarking now on a superfluous search for interpretation of the “hidden face” of
this imaginary lattice, it seems preferable to start by exploring in detail the consequences that
this hidden face implies in terms of the behaviors that the cosmological lattice can present. It is
therefore to this task that devolves the rest of this book, which will be devoted to extracting the
substantial core from this hidden face. To do this, we will show that it is the Newton's equation
that we have just deduced which has spectacular properties and which is at the heart of the very
many analogies that we will develop in the following with the great theories of physics, namely
Maxwell's Electromagnetism, Lorentz Transformation, Einstein's Special Relativity, Newton's
Gravitation, Einstein’s General Relativity, and even Quantum Physics and the Standard Model
of Elementary Particles.

Transverse and longitudinal perturbations in the cosmological lattice

We will first be interested in the transverse and longitudinal perturbations that can reign
within the cosmological lattice. There are quite surprising vibrational phenomena (figure 3.2),
such as the existence of a mode of propagation of linearly polarized transverse waves which are
necessarily coupled to longitudinal wavelets, while circularly polarized transverse waves are
free of these wavelets. There is also the possibility of propagation of longitudinal waves. But,
under certain conditions which strongly depend on the elastic moduli and the state of expansion
of rest of the lattice, the mode of longitudinal propagation can disappear and be replaced by a
very astonishing mode of localized vibrations of expansion, which will play by thereafter a key
role in analogies with gravitation and quantum physics.

To discuss these various modes of mechanical perturbations in the cosmological lattice, we
will make simplifying hypotheses, namely that there are no anelastic perturbations, therefore
that 071_"" =0 and ®" =0, that thereqare no vacancies and self -interstitlals, therefore that
C,=C, =0 and that there is no density A of flexion charges, therefore that A =0.
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We will further assume that the state of the background volume expansion of the lattice is a
constant 7, so that the total volume expansion of the lattice is written 7=7, +7? in which
TP represents the mechanical perturbations of the expansion around the rest value 7,. To
calculate the various perturbation modes, we inject the expression of the momentum of the
perturbations, that is ]3(”) = m(g(”) , into Newton's equation in figure 3.1. We can then describe
four different perturbations modes:

Transverse perturbations in the cosmological lattice

Pure transverse waves with circular polarization

o(x; =0 exp[i(k,x}. - mt)]é‘, tin® exp[i(k,xj - wt)]ék with €, = kg =J%
t

Transverse waves with linear polarization necessarily coupled to longitudinal wavelets

i o |K+K
wl(P)(xj,t) = wlo(P) exp[z(klx/ - a)t)] c,=—= 2" 773
. k‘ h K,+K
e
(p) ~7 () : _ TP =_ 2 3 o
7(xt)=1, exp[z(Zktxi th)] 4 X, /3+2K.(1+T(,)—K0—K3( 7 )

Longitudinal perturbations in the cosmological lattice

Pure longitudinal waves if 4K, /3+2K,(1+7,)-K,>0
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Eigen modes of localized vibrations it 4K,/3+2K,(1+7,)—K, <0
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Figure 3.2 - Transverse and longitudinal perturbations in the cosmological lattice

- the propagation of a linearly polarized transverse wave in the cosmological lattice, that is to
say of a wave for which the vibration of the particles of the lattice is perpendicular to the
direction of propagation of the wave. Such a wave satisfies a completely conventional wave
equation provided that its amplitude is not too strong. But it must be accompanied by a
longitudinal wavelet which propagates in the same direction and at the same velocity as that of
transverse perturbation. The frequency of this longitudinal wavelet is twice the frequency of the
transverse perturbations, and its amplitude is proportional to the square of the amplitude of the
transverse perturbations. It will also be noted that the speed of propagation of the transverse
perturbations strongly depends on the background volume expansion 7, of the lattice since the
value of the lattice site density n which appears in the expressions of the speed of the
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transverse waves is an exponential function n= n, e " of the background volume expansion
T, of the lattice.

- the propagation of a circularly polarized transverse wave in the cosmological lattice, that is to
say of a wave for which the vibration of the particles of the network rotates around the direction
of propagation of the wave. It is said that such a wave has a positive or negative helicity
depending on whether the direction of vibration of the particles rotates dextrorotatory or
levorotatory at an angle of 360 ° over one wavelength. Circularly polarized transverse waves
are pure, in the sense that they are not coupled to longitudinal wavelets.

- the propagation of a longitudinal wave in the cosmological lattice, that is to say of a wave for
which the direction of vibration of the particles of the lattice is the same as the direction of
propagation of the wave is quite complicated to compute, because the propagation equations
are strongly non-linear and depend directly on the state of rest expansion 7, of the lattice. In

this case, only very small perturbations T

within the lattice are considered, which makes it
possible to linearize the wave equations. The celerity ¢, of longitudinal waves of small
amplitude which appears in figure 3.2 is expressed with the square root of an argument which
must be positive for it to exist. As this argument depends both on the elastic constants
K, K, ,K, and on the state of rest volume expansion 7, of the latttice, directly and
exponentially via the expression n=n e ho , the existence of a longitudinal wave propagation is
subject to the condition 4K, /3+2K 1+TO)—KO >0.

- the longitudinal perturbations in the form of localized eigen modes of vibrations of the volume
expansion. In the cosmological lattice, if the celerity ¢, of the longitudinal waves becomes an
imaginary number (this is what is called the square root of a negative number), there is no
longer any propagation of longitudinal waves. In this case, we can rewrite the complex
perturbation solution in the form shown in figure 3.2. There arises here a very surprising
phenomenon, namely the appearance of localized eigen modes of longitudinal vibrations, which
do not propagate at great distance, but which are on the contrary confined on distances of the
order of 0 . For high amplitudes of these localized modes of longitudinal perturbations, these
will become non-linear and will therefore strongly depend on the amplitude 77 of the
perturbations. The appearance of these "strange" modes is obviously subject to the condition
that 4K, /3+2K, (1+7,)-K, <0.

It is remarkable that in the cosmological lattice, the speedc, =a)/kt of the transverse
waves depend exponentially on the state of expansion 7 of the lattice via the value of a
multiplicative term being worth ef/z/\/g. The same goes for the speed ¢, of the longitudinal
waves, although there is also a dependence on their speed through a term 7 within the
argument of the root.

It is also remarkable that the linearly polarized transverse waves are necessarily coupled to
longitudinal wavelets in the cosmological lattice, and that the only transverse waves which are
pure, not coupled to longitudinal wavelets, are then the transverse waves with right or left
circular polarization, that is to say transverse waves of positive or negative helicity. Strangely,
there is already a property specific to photons in the real universe, namely that photons are
necessarily of non-zero helicity. As photons are quantum objects, we find here an astonishing
peculiarity to which we will return.

The existence of domains of volume expansion of the cosmological lattice in which the
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propagation of longitudinal waves is not possible, when 4K, /3+2K, (1+’L’0)—K0 <0,
corresponds well by analogy with the fact that there is no propagation of longitudinal waves in
thge theory of Einstein's General Relativity. Indeed, in the latter, the gravitational waves are
transverse waves, defined as the propagation of perturbations of the space-time metric. These
waves have a tensorial symmetry, with two independent polarizations perpendicular to the
direction of propagation, contrary to the longitudinal perturbations which have a scalar
symmetry.

The condition 4K, /3+2K, (1 +’L’0)— K, <0 that there are no longitudinal waves implies
the existence of a critical background expansion T, of the lattice, the limit between the
expansion domains where it exists and where there are no longitudinal waves. In order for the
cosmological lattice to present analogies with Einstein's General Gravitation, with
electromagnetism and with the photons of quantum physics, it is necessary that there are no
longitudinal waves, but that there are pure transverse waves of circular polarization. Hence the
need to make a second conjecture which is shown in figure 3.3.

Conjecture 2 - So that the "cosmological lattice" presents analogies
with Einstein's General Gravitation, with electromagnetism
and with the photons of quantum physics, it is necessary that:

1) there are transverse waves with circular polarization K,+K,>0
K
T <t =—2-—2%-1 (si K >0
0 Ocr 2 Kl 3 K] ( 1 )
2) there are no longitudinal waves K 2
T,>T, =—L-—2- (si K <0)
T 2K 3K

Figure 3.3 - The second conjecture necessary for the cosmological lattice

This conjecture implies, so that there are no longitudinal waves, that the volume
expansion T, of the cosmological lattice is smaller or greater than the value of the critical
expansion T, depending on whether the elastic modulus K is positive or negative.

In the absence of longitudinal waves, the cosmological lattice then presents localized eigen
modes of longitudinal perturbations, therefore local vibrations of the scalar 7 of volume
expansion. Such modes immediately make one think of the ideas of quantum fluctuations in
gravitation on a very small scale since they affect the scalar T which undeniably has a link with
the gravitational field. But these localized perturbations of the scalar of volume expansion also
make one think of the quantum fluctuations of the vacuum described by quantum physics. We
can therefore, on the basis of this analogy between T and the gravitational field, ask the
following question: "is gravity that must be quantified on a very small scale, or is it gravitation,
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on a very small scale, responsible for quantum physics? ” We will try to provide some answers
to this topical question of the most relevant.

Curvature of the wave rays by a singularity of expansion and black holes

Among the surprising behaviors that a cosmological lattice can exhibit with regard to wave
propagation, there appears a non-dispersive curvature of the wave propagation rays by a
gradient of volume expansion due to the presence of a strong topological singularity of the
expansion T . This curvature can go as far as the formation of "black holes" absorbing all the
waves passing in its proximity, or of impenetrable "white holes" repelling all the waves passing
in its proximity.

The fact that the celerities of the transverse and longitudinal waves increase non-linearly

with the value of the static volume expansion 7 via the value of the site density n=n, e © will
cause a curvature of the rays of propagation of these waves if they pass in the direct vicinity

from a singularity of volume expansion within the lattice, as illustrated in figure 3.4.
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Figure 3.4 - The curvature of the wave rays in the vicinity
of a singularity of the volume expansion of spherical symmetry

Indeed, imagine a motionless cosmological lattice in the absolute frame of reference of the
GO observer and containing a singularity of volume expansion of spherical symmetry located at
the center of the coordinate system O& &, . Let us also consider a longitudinal or transverse
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wave, initially planar, arriving towards this singularity in a given initial direction. The speed of
propagation increases or decreases as it approaches singularity, under the effect of lattice
density n=n, e " . According to whether the singularity of T is "positive" (passes through a
maximum at the origin) or "negative" (passes through a minimum at the origin), there will appear
a curvature of the rays of propagation of the waves, so that the wave seems repelled by a
"positive singularity" or attracted by a "negative singularity».

This phenomenon does not depend on the shape of the field around the singularity, but only
on its gradient, that is to say on the slope of the function 7(r). For a plane wave incident on the
singularity, this phenomenon of acceleration or develeration of the wave will then cause a
deformation of the wave planes similar to the effect of a diverging lens in the case of a "positive
singularity" or a converging lens in the case of a "negative singularity». In addition, as this
phenomenon does not depend on the frequency of the wave, the singularity behaves like a
converging or diverging lens of a non-dispersive nature in the cosmological lattice, that is to say
which does not depend on the frequency of the incident wave.

Now imagine that in a motionless cosmological lattice in the absolute frame of reference of
the GO observer, and containing a "negative singularity” of the volume expansion, of spherical
symmetry, located at the center of the coordinate system, it passes a transverse wave (¢, = ¢, )
or a longitudinal wave (¢, = ¢, ). In the vicinity of the singularity, at a distance r=r,, from the
origin of the singularity, the wave planes are always parallel to a line passing through the origin
of the singularity, so that the radius of the transverse or longitudinal wave located in r =7, isin
fact a circle centered on the origin, as illustrated in figure 3.5. The condition of existence of this
sphere of perturbations around the singularity effectively depends on the slope of T(r) as
explained in figure 3.5.

Thus, if a transverse or longitudinal wave passes at a distance satisfying this relationship
r <r,., it becomes impossible for it to escape from the virtual sphere of radius r,, . If the field of
singularity has a monotonous gradient increasing from its origin, the curvature of the wave rays
located inside this critical sphere will be further accentuated, so that all these waves will be
definitively trapped by the singularity. By analogy with the “sphere of photons” surrounding a
black hole in general relativity, one will call “sphere of transverse and longitudinal perturbations”
the layer located at a distance r =7, from the heart of the singularity. It is clear that the
existence of such a sphere of perturbations is subject to the condition that it lies outside the
"object" responsible for the negative singularity of the expansion field. If the radius of this
"object" is R, we deduce that the condition r,, > R must also be part of the conditions of
existence of a "black hole».

We saw in the previous section that the propagation of longitudinal waves in the perfect
lattice is subject to the condition that the expression 4K, /3+2K1(1+‘L'0)—K0 is positive.
This condition takes the form of a condition on the background volume expansion 7, of the
lattice, which must be greater or less than a critical value 7, given in figure 3.3. If the
propagation of longitudinal waves is possible in the lattice, then the longitudinal waves will also
undergo the phenomenon of trapping at the limit » =7, . In the event that K, >0, there is yet
another phenomenon. Indeed, if the singularity presents a monotonic gradient increasing from
its origin, there could exist a radius 7 =r") <r.surrounding it beyond which the value of 7(F)
becomes less than 7, . In this case, any longitudinal wave initially trapped at the limit » =7,
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will then reach this second limit 7 = r")

cr2

<r, beyond which it will not even be able to propagate,
but will increase natural modes of longitudinal vibrations located inside this volume. In the case
where K, <0, this same phenomenon does not exist since the existence of a propagation
implies that 7(r) <7, <7, in this case.

The cosmological lattice presents a very interesting analogy with the theory of General
Gravitation of Einstein since one can find there, in the vicinity of singularities of the volume
expansion, spheres of perturbations very similar to the sphere of photons surrounding a black
hole. We therefore deduce from this non-dispersive effect of the curvature of the rays by the
gradients of the volume expansion that the scalar of volume expansion undoubtedly has a
strong analog relationship with the gravitational field in General Relativity.

T(r) A

T(r)—

«black hole»
singularity

«black hole»
singularity —~__

rC,>R,,‘

deflected waves

“ \
A

a black
hole

Figure 3.5 - The "sphere of perturbations”, a real "black hole"
in the vicinity of a negative singularity of T

It is also interesting to note that only a negative singularity of T has this property similar to
that of a "black hole" capturing all the waves passing in its proximity, whereas a positive
singularity of T would behave like a "white hole" that is to say as an entity which would repel
the waves, and which therefore could not be penetrated by waves. Hence the third conjecture
for our analogy with Gravitation, reported in figure 3.4.

It is quite remarkable to note that the curvature of the waves by a gradient of volume
expansion and the existence of a sphere of perturbations around a localized singularity of



88 Chapter 3

volume expansion are exclusively due to the development of the internal energy per unit volume
that we used for the cosmological lattice. Indeed, if we try to take a closer look at what would
happen in the case of a perfect solid for which the internal energy would be written as a
development expressed by lattice site, we would see that the speed of the transverse waves
would be " invariant” whatever the state of expansion of the lattice, which obviously cannot lead
to a non-dispersive curvature of the wave rays nor to the appearance of a sphere of
perturbations. This analogy therefore justifies a fortiori the conjecture 1 that we had posed in
figure 3.1, since it is this conjecture which allows the existence of the curvature of the waves
and the sphere of disturbances in the cosmological lattice.

Cosmological expansion-contraction of a sphere of perfect lattice and dark energy

By considering a finite imaginary sphere of cosmological lattice, one can introduce the
concept of "cosmological evolution” of the lattice, supposing that a certain amount of kinetic
energy is injected into it. In this case, the lattice presents strong temporal variations of its
volume expansion, which one can model in a very simplistic way by supposing that the volume
expansion remains perfectly homogeneous in all the lattice during its evolution.

Let us imagine that, in the absolute reference frame O&&,&,, the GO observes a solid, of
spherical shape, of radius R,,, made up of a lattice of cells (figure 3.6), and that this solid has a
homogeneous background volume expansion which depends on time, but not on the position
within the lattice, so that T(t):‘ro(t);ﬁ‘ro(é,t). In this case, the GO will observe that the
radius R,, of this solid sphere depends on time R, = R,,(¢) and therefore that this sphere will

expanding
finite universe

éa é N T
¢u(r)=\/%r(r)=\/%(z-p (7)) F [f):n—o(Klt-Ko)re

¢U(T)=J%(E-§(KII—K0)TJ]

0

Figure 3.6 - "Cosmological" volume expansion T(t) of an imaginary solid sphere
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tend to expand or contract. This behavior, which one could qualify as “cosmological” by analogy
to the cosmological theories of expansion of the Universe, necessarily implies the conservation
of energy, namely that the total energy E of the solid, composed of the elastic energy F (1)
of expansion and the kinetic energy T(7) of expansion, is a constant.

The total kinetic energy T of volume expansion is necessarily linked to the speed of
expansion, which can be characterized by the velocity (EU (t) of the surface of the sphere (figure
3.6). The kinetic energy T can then be obtained by summing (by integration) over the whole
sphere the kinetic energy of the lattice sites located in a spherical cap of radius r and thickness
dr . The speed of expansion in the spherical cap is simply given by ¢(r)=¢, r /R since the
volume expansion was assumed to be homogeneous. From the expression of the kinetic energy
T thus obtained as a function of q3U and of the total number N of sites contained in the
sphere, the dependence of ¢, (7) is deduced as a function of (7). On the other hand, like
T(t)=E—F°(t), we finally get the dependence of ¢,(7) as a function of F°(7). But the
total elastic energy can be calculated quite easily from the state function U of the lattice
since T is homogeneous in the space of the sphere and the other distortion tensors are zero.
With the expression of F é’(‘c) calculated and reported in figure 3.6, one can directly expressed
¢U(T) as a function of 7 and of the total energy E /N per lattice site. The expression shown
in figure 3.6 shows that it is possible to plot q)U as a function of 7, for various values of E/ N .
As this expression also depends on the two elastic constants KO and K1’ we will get eight
different graphs, shown in figure 3.8, depending on whether these two elastic constants are
positive, zero or negative, knowing that the graph in the case where the two constants were
zero has no sense.

As an example, consider the case of the lattice for which K, >0 and K, >0 . The relations
of figure 3.6 allow to deduce its "cosmological behavior" as represented in figure 3.7:

-if E <0, the lattice presents a single possible trajectory, entirely located in the domain 7 >0,
and which corresponds to expand and contract indefinitely between two extreme values of 7,
-if 0<E<F?

max

the network presents two possible trajectories: the first corresponds to
expand and contract indefinitely between a positive value and a negative value of 7, and the
second corresponds to oscillate indefinitely between a negative value of T and an expansion
tending towards T — —oo,

- if E>FY

max

the lattice presents a single very interesting possible trajectory. It pulsates
indefinitely from a big bang to a big crunch. The big bang is followed by a phase of rapid
expansion, followed by a deceleration, then again an expansion at increasing speed, and
suddenly a reversal of the speed of expansion, to contract again by following in opposite
direction every stages traveled during expansion. The contraction ends with a big crunch, which
can only be followed by a bigbang since the lattice has then accumulated a total kinetic energy
equal to E, phenomenon called "big bounce".

In the case of this lattice, one also notes the existence of domains of volume expansion
presenting different behaviors concerning the longitudinal waves: a domain where it coexists
transverse and longitudinal waves, for 7>7,, =K,/2K,—2K,/3K,—1, and a domain
where there exists only transverse waves and localized longitudinal eigen vibration modes, for
T<7,,=K,/2K,—2K,/3K,—1. And the area where there are no longitudinal waves
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Figure 3.7 - «cosmological behaviour» of the elastic energy F"'(r) of expansion
and of the velocity $,,(t) of expansion of a cosmological lattice with K,>0 and K, >0

corresponds precisely to the area of big bang, inflation, slowing inflation, followed finally with an
acceleration of expansion.

In Figure 3.8, we have reported the eight different behaviors that it is possible to obtain with
a cosmological lattice, according to the values that the modules K, and K, can take. Also
shown in this figure are the areas of expansion in which the longitudinal waves cannot exist.

We can see that there are four really different "cosmological behaviors", three of which have
much more convincing analogies with what we know about the cosmology of the real Universe:
- the cosmological lattices with K, <O which are shown in figures 3.8 (a), (c) and (d). These
three types of lattices show a big bang followed by high-speed inflation, a slowdown in inflation
and finally an expansion at increasing speed towards T — +oo, stages which follow one
another in perfect order. The disappearance of longitudinal waves occurs in these lattices for
expansions greater than a critical value 7., which depends on the value of the shear modulus
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K, >0,

- the cosmological lattice of figure 3.8 (b), with K, =0 and K, >0, for which there never

exists longitudinal waves provided that K, >4K, /3, which makes it a very simple and very
interesting case to describe the cosmological behavior of the real Universe,
- the cosmological lattices with K, >0 or K, =0 and K, <0 which are shown in figures 3.8
(e), (g) and (h). These three types of lattices go well through the four stages of the cosmology of
the real Universe, in the absence of longitudinal waves (a “big-bang” starting from a singularity
of space-time, followed by a period of very rapid inflation, then a slowdown in inflation, followed
by an expansion whose speed seems to increase well over time), before entering a phase of
expansion during which the longitudinal waves appear, and which precedes a symmetrical
phase of contraction returning to the state of singularity for T — —oo («big-crunch"). In this
case, there is indeed a region of the diagram, for 7 <7, , which lies in the domain where there
are no longitudinal waves, and in which the lattice is expanding at increasing speed. Note that
the lattice in figure 3.8 (g) could be an excellent candidate to describe the cosmological
behavior of the real Universe, because all of its elastic moduli are positive,
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Figure 3.9 - «cosmological behavior» of the speed of cosmological expansion dt / dt
as a function of t of an imaginary cosmological lattice with K, <0 .
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- finally, the cosmological lattice of figure 3.8 (f), with K, =0 and K, <0, does not present the
stages corresponding to the cosmological evolution of the real Universe, and it always presents
longitudinal waves. It is not able to describe the cosmological behavior of the real Universe.

The “cosmological behavior” of a lattice can be illustrated even more clearly by calculating
the speed dt/dt of the volume expansion as a function of the volume expansion 7, as
shown for case (c) with 7 in figure 3.9, and for case (g) with K, >0 in figure 3.10. The
behavior of the speed d7/dt of volume expansion as a function of 7 can be deduced from
the knowledge of F“(7) as shown by the relation reported in figure 3.9.

Figures 3.9 and 3.10 are very interesting, because they clearly show the existence of an
initial stage of extremely rapid inflation of volume expansion 7 in cosmological lattices since
dt /dt — teo for T — —oo, just after the big-bang stage or just before the big-crunch stage,
and that the speed of volume expansion or contraction goes through a minimum before
accelerating again, just after the inflation stage or just after the re-contraction stage.

It goes without saying that the modeling used here to describe the "cosmological behaviors"
of imaginary lattices is extremely simplified, and one could even qualify it as simplistic. In fact, it
is essentially the initial hypothesis of a homogeneous volume expansion throughout the lattice
that can be questioned, because with this hypothesis we eluded the two major problems which
would lead in principle to much more complicated models: the fact that the solid is subjected to
the Newtonian dynamics in the absolute space of the GO, and the fact that one should in

re-acceleration of the expansion
after the inflation without dark energy

K, >0 K, >0| pig-bang dr(t) 1
b4 —

dt
% inflation
7

expansion

Ocr

domain without
longitudinal waves

J déflation antractron

big-crunch

Figure 3.10 - «cosmological behavior» of the speed of cosmological expansion dt / dt
as a function of 1 of an imaginary cosmological lattice with K, >0 .
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principle have placed a condition on the nullity of the pressure at the external limit of the solid.
But despite the extreme simplifications of our modeling, the global behaviors predicted in figures
3.8 to 3.10 must still remain fairly close to the behaviors that could have been obtained by a
more realistic treatment of the problem.

It is obviously not possible to choose here the cosmological lattice which would come closest
to the known cosmological evolution of the real Universe. But from a philosophical point of view
and from a common sense point of view, the cosmological lattices of figures 3.8 (e) to (h), which
present a big-bang followed by a big crunch, and therefore ultimately a big- bounce seem much
more satisfactory for a Cartesian spirit than the lattices of figures 3.8 (a) to (d), which present an
infinite and unique expansion. We can therefore make a “philosophical” conjecture here, shown
in figure 3.11.

Conjecture 4 - it is more "reasonable" for the mind to imagine that K, satisfies K e 0
so that the expansion of the lattice is not infinite

that's a conjecture
purely "philosophical” in nature

Figure 3.11 - the fourth common sense conjecture

As for the value of K|,, nothing currently allows us to propose a positive, zero or negative
value, because the cases illustrated in Figures 3.8 (e), (g) and (h) are all three very interesting.

Note also that the elastic energy F%(t) contained in the cosmological lattice could well
correspond to the famous "dark energy" of the astrophysicists, introduced to explain the
increase in the speed of the expansion of the Universe recently observed experimentally, since
it is this elastic energy which is entirely responsible for the increase in the speed of the volume
expansion via the relation reported in figure 3.9.

It is again remarkable to note that these behaviors of the volume expansion of a sphere of
cosmological lattice are exclusively due to the development of the internal energy per unit of
volume which we used for this one. Indeed, if we try to look at what would happen in the case of
a perfect solid for which the internal energy would be written as a development expressed by
lattice site, we would see that the behavior of expansion is radically different like shown in figure
3.12:

- if the modulus  k, of the imaginary perfect solid is positive, this can only oscillate indefinitely
between a state of minimum volume expansion 7 . and a state of maximum volume
expansion T, as illustrated by the first figure 3.12. If one reports in the diagrams F(1)
and ¢, (1), the critical value 7, =1+ 2k, /3k, >1 of T, below which there are longitudinal
waves in this perfect lattice, one notes that during its "cosmological evolution" the solid will pass
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alternately from a domain (7 <7,_,) where there coexist transverse and longitudinal waves,
with another domain (T 2 7, ) where there exist only transverse waves and localized modes of
longitudinal vibrations. But in this domain without longitudinal waves, the speed of expansion
can only slow down, which is in disagreement with the observations made on the current

Universe.
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Figure 3.12 - «cosmological behaviors» of the elastic energy F “a (7) of expansion
and of the speed 9, (T) of expansion of an imaginary perfect solid whose internal energy
would be written as a developement expressed by lattice site, for k <0 and k >0

- if the modulus  k, of the imaginary perfect solid is negative, depending on the value of the
total energy E , this solid could have several different "cosmological behaviors" as well
illustrated by the second figure 3.12. If E <0, it can contract and expand in a back and forth
movement between 7 — —oo and T,, or then expand indefinitely from 7 =0. Note that it is
difficult to imagine a solid that would evolve by contracting since T = oo, which is why these
behaviors are reported in a gray area. If E >0, it can expand indefinitely from T — —co . In this
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case, the longitudinal waves appear in the domain 72>7,, =1-2k,/ 3|k1| <l.

The different "cosmological behaviors" deduced for an imaginary perfect solid can also be
compared with the cosmological behavior which is currently attributed to our real Universe.
Indeed, in the case of the real universe, we have a system which does not present longitudinal
waves, as shown by the theory of general relativity, and which pursues, in the light of the last
observations, a cosmological evolution in several stages: a “big-bang” based on a singularity of
space-time, followed by a period of very rapid inflation, then a slowdown in inflation, followed,
according to very recent experimental observations, by an expansion whose speed seems to
increase over time. This last stage is the one that would correspond to the current state of our
Universe.

Among the "cosmological behaviors" deduced from the perfect solid, only the perfect solid
with &, <0 presents any analogy with the cosmological behavior of the real Universe. Indeed,
the perfect solid with &, <0, in the case where E is greater than zero (second figure 3.12),
traverses well the stages of big bang, inflation, slowing of inflation and expansion at increasing
speed in the area where there are no longitudinal waves. But for this solid, the stage of
expansion at increasing speed inevitably continues towards 7 — +oo, which does not satisfy
our fourth conjecture dictated by common sense.

These results in the case of the perfect solid whose internal energy would be written as a
development expressed by lattice site are far from satisfactory if we compare them with the
known expansion of the universe. This therefore justifies again the conjecture 1 that we had
posed in figure 3.1, since it is this one which allows the existence of the cosmological behaviors
reported in figures 3.7 to 3.10, and especially which allows the existence of the curvature of the
wave rays by the volume expansion gradients of figures 3.4 and 3.5.
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Maxwell’s equations of electromagnetism

Maxwell's equations are the fundamental laws of electromagnetism formulated at the end of
the 19th century by James Clerk Maxwell on the basis of the various theorems of Gauss,
Ampére and Faraday which described electric and magnetic phenomena separately before
Maxwell unified them. Maxwell's laws govern all classical phenomena related to electric and
magnetic fields, and thereby represent one of the most beautiful applications of the concept of
fields in physics. But Maxwell's equations of electromagnetism are a postulate deduced from
experimental observations, and we admit them because they correspond to the experimental
observations.

In this chapter, we theoretically demonstrate the existence of a set of equations to describe
the rotations and shear strains of the cosmological lattice in the absence of variations in volume
expansion, and we note that there is a complete and perfect analogy between this set of
equations and Maxwell's set of equations. This analogy not only demonstrates that it is possible
to theoretically deduce the set of these equations on the basis of some fundamental physical
principles applied to the cosmological lattice, but it also makes it possible to consider the
cosmological lattice as a physical support for the electromagnetic fields, and to give physical
interpretations to the various physical quantities of electromagnetism.

We start by showing the separability of the volume expansion field from the other fields in
Newton's equation of a cosmological lattice in the case where the concentrations of point
defects are constants. Newton's equation can be separated into two parts, a so-called rotational
part and a so-called divergent part.

In the case where the volume expansion field can be considered as quasi-constant, the
rotational part then shows a set of equations for the field of macroscopic rotations and local
rotations (associated with the shears of the lattice) perfectly identical to the set of Maxwell's
equations of electromagnetism. This analogy with Maxwell's equations leaves no room for the
existence of magnetic monopoles, but there is however the possibility of imagining the existence
of vector electric charges.

Separability of Newton’s equation partly «rotational> and partly «divergent»

Suppose that the volume expansion field within a cosmological lattice has a homogeneous
background field 7, with an elastic expansion field ¢ superimposed on it, so that it can be
written T = (TO + Té’) . Supposing further that the atomic concentrations of vacancies and auto-
interstitials are homogeneous constants throughout the lattice, and therefore that they do not
depend on time (dC, /dt=dC, /dt=0), we can write Newton's equation of the lattice under
the shape shown in figure 4.1.

Thanks to the hypothesis of homogeneity of the concentrations of vacancies and auto-
interstitials, the linearity of the relationships in the various velocities shows that it is possible to
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split them into two contributions by separating the speeds 43 (ﬁL and (5, into a component,
indexed "rot”, associated with the deformations by shears and rotations on the one hand, and a
component, indexed “div”, associated with the deformations by volume expansion on the other

hand. There thus come two contributions to Newton's equation as shown in figure 4.1:

Separability of Newton’s equation in rotational et divergent parts

t=(r,+7")
Newton’s equation _ _
p ) dc,/dt=dc, /dt=0
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Figure 4.1 - Separability of Newton’s equation in rotational
and divergent parts under conditions of homogenous
concentrations of vacancies and self-interstitials

- a contribution managing the elastic fields of shears and rotation, via the vector field of rotation
@“ . This contribution only depends on the volume expansion T by the presence of the site
density n=n,e @,

- a contribution managing the perturbation field of volume expansion, which is dependent on the
previous solution via the energy density F'” of deformation by elastic and anelastic shears
and rotations.

The density of flexion charges has also been split into two parts: the ‘“rotational” flexion
charges and the “divergent” flexion charges, which satisfy two relationships also shown in figure
4.1, and which allow the equation of Newton for expansion 7% to be related to the flexion
charge density 6 within the lattice.

This splitting of Newton's equation in the case where the concentrations of vacancies and
interstitials are homogeneous constants makes it possible to solve the problems of spatio-
temporal evolution of the cosmological lattice, by separating the resolution of the elastic fields of
shears and rotation of that of the volume expansion field. But as the density of sites
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—(to+7%)

n=n,e intervenes at the same time in the rotational and divergent parts, there exists a
certain coupling between the results of the two partial equations of Newton. However, with
additional simplifying assumptions, it may be possible to solve these two sets of equations
completely independently. This is what we will show in the following, considering the specific

case where the volume expansion field can be considered to be quasi-constant.
«Maxwellian» behavior of the rotational part of Newton’s equation

Let us now assume that the average value <’L’> =T, +<’L'él> of the volume expansion within
the cosmological lattice can be considered as a first approximation as constant and
homogeneous, so that the density n of sites can also be considered on average as a
homogeneous constant. With this hypothesis, Newton's equation is reduced to its purely
rotational part.

In this case, the torque vector 7 derives from a virtual equation of state, the virtual volume
density of free energy of elastic rotation, linked to shear deformations and pure elastic rotations,
(@")=2(K, +K,)(@") . stil by
assumption, we will also assume that the lattice anelasticity manifests itself only by shear and /

without volume expansions, which is written E‘;lmﬁon
or rotation, so that it can very well be represented here by an anelastic rotation vector @ .

The equations necessary for the complete description of the shears and elastic rotations of
the cosmological lattice must still incorporate the topological equations for the elastic vector of
rotation @, namely the geometro-kinetic equation and the
geometro-compatibility equation in the presence of dislocation
charges. As the mass density p of inertia of the lattice is a
constant p = m(n+n, —nL): mn(1+C, —CL)= cste, we
deduce that div(np™)=—0p/dt=0. With all these
considerations, we can finally deduce the complete set of
equations reported in figure 4.2a, which describes the spatio-
temporal evolution of the cosmological lattice in the presence
of pure shears and local rotations.

The relationships thus obtained for the cosmological lattice

James Clerk Maxwell
in the local frame of reference Ox,x,x; mobile with the (1831-1879)

medium are then compared with the Maxwell equations of — —
electromagnetism (figure 4.2b) in an electrically charged,

conductive, magnetic and dielectric medium. We note that there is a very strong analogy
between these two sets of equations, except for the fact that the evolution equations involve in
principle the material derivative, while the Maxwell’s equations involve the partial derivative with
respect to time. However, it should be noted here that the material derivative in a local
referential mobile with the medium can be replaced by the time partial derivative if the
deformations remain sufficiently weak and / or slow in the vicinity of the origin of the local
referential, this that we assumed in the table in figure 4.2a.

The analogy between the equations of a cosmological lattice taken with almost constant and
homogeneous volume expansion and the Maxwell's equations of electromagnetism is quite
remarkable, because it is absolutely complete, as the equations reported in the tables of figures
4.2a and b. The Maxwell’s equations have a precise correspondence with the equations of the
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Figure 4.2a - «<Maxwellian» formulation of evolution equations

J = equation of energetic balance

of the cosmological lattice in a local frame Ox,x,x, mobile with the lattice

rotations in the cosmological network: the Maxwell-Ampére equation corresponds to the
geometro-kinetic equation, the Maxwell-Gauss equation to the geometro-compatibility equation,
the equation of Maxwell-Faraday to the Newton's equation and finally the Maxwell-Thompson
equation to the mass density conservation equation.

In fact, our equations contain an additional term for a “rotational" flexion charge density 1™ in
the second pair of equations, which has no counterpart in Maxwell's equations. Assuming then a
cosmological lattice in which 1™ can be neglected, namely that 1 =0, the analogy between
the equations of the cosmological lattice and the Maxwell’s equations becomes perfect, and
deserves to be commented on in more detail.

Analogy between rotation charges and electric charges

The equations in tables 4.2a and b show a complete analogy between the density A of
rotation charges and the density p of electric charges, which are involved in the geometro-
compatibility equation and in the Maxwell-Gauss equation, as well as between the vector flux J
of rotation charges and the electric current density ] which are involved in the geometro-
kinetic equation and in the Maxwell-Ampere equation respectively.
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Figure 4.2b - «Maxwellian» formulation of the electromagnetism equations

The equation of continuity of the rotation charges is written in these tables considering that the
source of rotation charges S’ =[d(divd)é’)/dt—div(dd)é’/dt)] described in figure 2.5 is
zero (S’l =0), and it then corresponds to the equation of continuity of the electric charges when
it is assumed the absence of creation and annihilation of electric charges. We immediately
imagine that there is certainly a link between the source S of rotation charges due to the non-
commutation of the operators of time and space, and the phenomena of creation-annihilation of
electric charges.

Analogy between anelasticity of the lattice and dielectricity of the matter

The phenomenon of anelasticity introduced here by the term 2@“" becomes, in comparison
with Maxwell's equations of electromagnetism, the analog of dielectric polarization P in the
relation D = & E+P+ ISO(t) , giving the electric displacement D according to the electric
field E and the polarization P of matter. This analogy between the fields 2@“ and P is
very strong since the possible phenomenological behaviors of these two quantities are
completely similar, with in both cases relaxation, resonant or hysteretic behaviors described in
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detail in the book!. For example, in the case of pure relaxation, it is possible to link @ to 7 via
a complex modulus, just as it is possible to link D to E viaa complex dielectric coefficient in
electromagnetism. In fact, a closer comparison would even show that the behaviors associated
with thermal activation, and therefore temperature, also present analogies.

As for the term of homogeneous dielectric polarization ﬁo(t) that we have introduced here,
it is analogous to a term of global rotation 2@, (¢) of the lattice, therefore of the local frame in
the absolute referential of the GO. This term of analogy therefore disappears if the local
coordinate system Ox,x,x, is only in translation (ﬁo(t) with respect to the absolute referential.

Analogy between mass transport in the lattice and magnetism in the matter

As the quantity np"” represents both the average momentum per unit volume of the solid
and the average mass flow within the solid, we deduce that the mass flow within the solid is due

rot rot

at velocity 5
transport nm(C, —CL)(]S”" at velocity 9" by the driving movement of point defects by the

both to a mass transport nm¢7 by the movement of the lattice, to a mass

lattice and to a mass transportm(jl"" —.72”’) due to the phenomenon of self-diffusion of
vacancies and interstitials.
Each of these mass transports has an analog in Maxwell's equations of electromagnetism.

rot

Mass transport nmq3 via the lattice is analogous to the basic term ,uOFI of magnetic
induction in the vacuum. The mass transport nm(C, - CL)(])"” by entrainment of point defects

by the lattice corresponds perfectly to the term 1, (" + )(di“)lrl of magnetism, in which the

magnetic susceptibility consists of two parts: the positive paramagnetic susceptibility ",
which therefore becomes the analog of the concentration of interstitials, and the negative
diamagnetic susceptibility )(di“, which is therefore analogous to the concentration of vacancies.

As for the phenomenon of self-diffusion by vacancies and interstitials, it appears in these
equations by the term np.,, o = m(j,”” — .72"’) = mn(C,A(T),"” — CLA(T)Z”) connecting the
last part of np" to the velocities A@;” and A@;” of self-diffusion of point defects.

The term (.7 - .72‘”)/ n=C,Ap;" —C,A@;" associated with this mass transport by self-
diffusion of point defects becomes, in comparison with Maxwell's equations of
electromagnetism, the perfect analogue of the magnetization M of matter in the relation giving
magnetic induction B . The analogy between the fields C,A¢/" —C,A@," and M is very
strong since there are similar phenomenological behaviors of these two quantities, like
relaxation behaviors described in the book!, which derive from transport equations and which
implicitly assume that the self-diffusion processes are of Markovian type, therefore that they do
not depend on history, that is to say on the previous transport processes, which is the case of
usual solids.

But nothing precludes a priori from imagining solid lattices for which the transport processes
would not be of the Markovian type. As an example, we can imagine a hypothetical lattice in

which the vacancies are very strongly anchored in the lattice, while the interstitials are almost

1 G. Gremaud, “Théorie eulérienne des milieux déformables — charges de dislocation et désinclinaison
dans les solides”, Presses polytechniques et universitaires romandes (PPUR), Lausanne (Switzerland)
2013, 751 pages, ISBN 978-2-88074-964-4

G. Gremaud, “Eulerian theory of newtonian deformable lattices — dislocation and disclination charges in
solids”, Amazon, Charleston (USA) 2016, 312 pages, ISBN 978-2-8399-1943-2
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free to move there. The momentum np™ within the solid would then be written
np"™* :nm[(ﬁmt +(C,—C, )45”” +CIA(5;‘”] and the mass transport np"” would now contain
a term (2C,-C,

coefficient (2C, —CL) is analogous to magnetic susceptibility x in electromagnetism, and

@' associated with both the vacancies and the interstitials, whose

which can take a positive or negative value depending on concentrations C, and C, of point
defects. It would also contain the term nmCIA(ﬁI"’t associated with a mass transport by inertial
conservative movement of interstitials, perfectly analogous to the permanent magnetization M

of ferromagnetic and antiferromagnetic materials in electromagnetism.

—~rot !

The presence of a constant term nmCIA(pI in np" would then correspond very clearly
to a non-Markovian type process, since the value of A(])’I"’t must essentially depend on the
history of this hypothetical solid lattice. One could imagine for example that the movement of the
interstitials is controlled by a dry type friction with the lattice, in which case there would exist a
critical force of depinning of the interstitials, which would lead to the appearance of hysteresis
cycles of AQ;”(t) depending on A@;”(¢), absolutely analogous to the hysteresis cycles of
magnetization ]V[(t) as a function of the magnetic field Ijl(t) observed in ferromagnetic or

antiferromagnetic materials.

The complete analogy with the physical quantities of the electromagnetism theory

The analogy reported in the tables of figures 4.2a and b between the equations of a
cosmological lattice taken with almost constant and homogeneous volume expansion and the
Maxwell’s equations of electromagnetism is quite remarkable, because it is absolutely complete,
and it also calls upon very similar relaxation and hysteretic processes in the two systems. The
complete analogy which exists between the physical quantities of our approach and the
electromagnetic quantities of Maxwell's approach of electromagnetism can be reported in tables
of figures 4.3a and b.

The effects of volume expansion of the lattice in the absolute frame of GO

In this analogy, the existence of a uniform translation at non-zero velocity ﬁo(t) of the
lattice, therefore of the local frame Ox,x,x, of reference with respect to the absolute frame
QEEE, of reference of GO, would have for analogy, in Maxwell's equations, a homogeneous
magnetic field FIO (1) in space. This last remark implies that, if a solid lattice was expanding in
the absolute frame of GO there should appear a field éo(t) in the local frames Ox,x,x; . This
field ng (t) should have for analogous a locally homogeneous magnetic field H o () in space if
the Universe was in expansion, and which would point in the direction of the movement of the
local frame of reference of the observer compared to the absolute space.

Are there "magnetic monopoles" in this analogy?

—rot

The equation div(np™)=0 reflects the fact that we consider a solid with a uniform and
static volume expansion field. The existence of a non-zero and constant value of div(np'™),
such that div(np™)= div[mn(l +C, - CL)(E””J + div[m(j,”” ~J )] # 0 would imply that

rot

there is a constant and divergent field of velocity ¢'" of the lattice sites, and therefore, with the
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@ = field of local elastic rotation
np"™* = field of rotational momentum density
m /2 = field of rotation torque

@™ = field of rotational velocity

2] = flux of rotation charges (loops of twist disclinations)
{24 =density of rotation charges

A = density of rotational flexion charges

1/ (K ,tK 3) = compliance shear and rotation module

nm = density of mass of the lattice

20" = field of local anelastic rotation

(C = c . ) = atomic concentrations of vacancies and interstitials

(]"0‘ - ]L"" ) / n = flux of vacancies and interstitials

-

AM /2 = Poynting's vector

a ‘/(K2+K3)/mn = celerity of transverse waves

rot

o

Figure 4.3a - Complete analogy between the physical quantities of the cosmological lattice
and the electromagnetic quantities of the Maxwell’s equations

assumption that 7 = csfe, a non-zero source S, of lattice sites, or that there would be a
constant and divergent flow of self-diffusion m(j o f”), which would necessarily require
localized and non-zero sources of point defects Sfl and / or S,p', which is very difficult to
imagine.

Within the framework of the analogy with electromagnetism, a relation div(np™) = cste #0
would have for analogy the relation divB=cste #0. However, this last relation reveals the
well-known notion of magnetic monopoles, of particles of unipolar magnetic charge, proposed
by certain theories, but never observed experimentally. According to our analogy with the
cosmological lattice, magnetic monopoles could not be stable particles, but should correspond
to localized and continuous sources of lattice sites or point defects, which is particularly difficult
to imagine. We deduce from this that in our analogy, the existence of magnetic monopoles as

electromagnetically isolated particles is not possible.
Are there "vector electric charges" in this analogy?

One can legitimately wonder what the analogy of the density of "rotational" flexion charges
A™" could be in Maxwell's equations. If there existed a quantity analogous to A" in Maxwell's



Maxwell’s equations of electromagnetism 105

D = electric field of displacement
B = magnetic field of induction

E = electric field
H

= magnetic field

] = electric flux
{ p=density of scalar electric charges

p =density of vectorial electric charges

{ = dielectric permittivity of vacuum

1, = magnetic permeability of vacuum

P = dielectric polarisation of matter

( e+ xdi“) = paramagnetic and diamagnetic susceptibility of matter

—

M = magnetisation of matter

H AE = Poynting's vector

c= ,/1 /(& 1,) = light celerity

Figure 4.3b - Complete analogy between the physical quantities of the cosmological lattice
and the electromagnetic quantities of the Maxwell’s equations

equations, we could hypothetically qualify it as the density /3 of "vector electric charges" by
making the following analogy [)<:>):”’t . Maxwell's equations would then be written a little
differently from known equations, with an additional charge term not in the equation divB=0
as suggested by magnetic monopole theories, but in the Maxwell-Faraday equation as follows
aé/atz—rotﬁﬂcﬁ, in which K is a new electrical coefficient, analogous to the module
2K,: k 2K, .

In the static case, if such a vector charge really existed, the equation containing it would be
written as follows rotE =kp , and would have the analogous equation rot(rﬁ/Z)zZKz;lr”t
in_the cosmological lattice. It would therefore imply for the displacement field that
rotDzsoKf), so that the densityp of “vector electric charges” would be a source of a
rotational electric field £ and of a rotational electric displacement field D , just as the scalar
density p of electric charges is a source of a divergent electric displacement field D by the
relation div D= p . If we now compare the coefficients of the two theories, we obtain, from the
analogies ¢ <:>1/(K2+K3) and k< 2K, , that there is the following analogy
ek < 2K, /(K,+K,) between the coefficients of the two theories.

However, experimental observations have never revealed the existence of such "vectorial
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electric charges". In fact, this can be explained quite simply by the fact that the topological
singularities considered in the cosmological lattice will always be exclusively twist disclination
loops, edge dislocation prismatic loops and mixed dislocation glide loops, and in the case of
such loops, it is easy to see that the overall vectorial charge éi obtained by integrating the
linear flexion charge A on the contour of the loop is zero, so that the vectorial electric charge
density p obtained as the average value of the sum of all the vectorial charges qi contained
per unit volume is necessarily zero, so that p=0. We can therefore introduce here a new
conjecture for our approach, namely:

Conjecture 5 - There are no localized electrical vector charges q i in the cosmological
lattice, so that the charge density p of vectorial electrical charges
is necessarily zero in Maxwell's equations:

p=0

no experimental observation of
vector electric charges

Figure 4.4 - The fifth conjecture that concludes to the non-existence
of "vector electrical charges"

Note that there could perhaps be long "strings" of edge dislocation that would cross the
entire cosmological lattice and that would indeed have a linear density A of vector electric
charge, which would then effectively cause a non-zero density p of vector electric charge to
appear in Maxwell's equations. But this is a somewhat extravagant hypothesis.

The importance of this analogy

In fact, the existence of an analogy between two theories is always very fruitful in physics, by
the reciprocal contribution of each of the theories. In our case, it is clear that this analogy with
the theory of electromagnetic fields will allow us in the following to use for the description of a
lattice all the arsenal of theoretical tools developed since a very long time in field theory, such as
for example the Lorentz transformation or the theory of delayed potentials.

In the other sense, the approach developed here is in fact a much more complex theory than
classical electromagnetism, since it follows from a tensor theory which can be reduced to a
vector theory by contraction on the tensor indices, and moreover, by choosing particular
“restrained” cases of behavior of the solid lattice, such as the constancy and the homogeneity of
the volume expansion. By taking into account the tensorial aspect of the theory of solid lattices
and by renouncing to the "clamping" of the behaviors of these, the analogy will become
particularly interesting and fruitful, as we will see later.
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Topological singularities within the cosmological lattice

Newton's equation can also be separated differently into two partial Newton's equations
which allow on the one hand to calculate the elastic distortion fields associated with the
topological singularities contained in the lattice, and on the other hand to calculate the
perturbations of the volume expansion associated with the elastic distortion energies of these
topological singularities. Using Newton's first partial equation, we can then describe the elastic
distortion fields and energies of topological singularities within a cosmological lattcie. It is thus
possible to find conditions on the elastic modules of this lattice such that it is possible to
attribute in a completely classic way a mass of inertia to the topological singularities, which
always satisfies the famous «Einstein's formula" E, = M ,c” .

Separability of Newton’s equation in three partial equations
in the presence of a topological singularity

Suppose the existence of a localized singularity of dislocation charges of spherical, tubular
or membrane shape, containing charge densities /i. , 71 and / or A, and suppose that one
can neglect the anelasticity and the self-diffusion in the lattice , by assuming that
" =0"=0 and that dC, /dt=dC, /dt=0 . The presence of a localized singularity of
dislocation charges can be introduced into this equation by considering that the fields prevailing
in the lattice are of three different natures: the elastic fields due to the charges of the singularity,
which will be indexed (ch), the fields independent of the singularity within the lattice, which are
due for example to the other singularities, and which will be indexed (ext), the background field
T, of the volume expansion of the lattice and finally a perturbation field 7 of the volume

expansion due to the energy of distortion F, stored in the lattice by the elastic fields of the

ist
considered singularity. These fields represented in figure 5.1 can be introduced into Newton's
equation, which can be developed by judiciously grouping the different terms, and we note that
the Newton equation is in fact composed of three coupled equations which manage the different
fields prevailing in the lattice, and which we have reported in figure 5.1.

Newton's third partial equation deals with fields external to the singularity associated with thw
velocity gﬁ“’ . But this Newton's equation is not in fact perfectly independent of the other fields,
due to the presence of n=n, exp[—(‘ro +T" 4+ +T“’))} in the expression of the

ext

momentum associated with (E . One can suppose, to simplify the problem of the treatment of

can be regarded as constant, that

ext

the fields specific to the singularity, that the external field T
is to say 5
perfectly independent of fields 7 and 77 .

As for the fields @, T and 7', which are associated with the singularity, they then
satisfy two other strongly coupled partial Newton's equations, which we will discuss now.

ext ext

=0 and T =7 (¥), in which case the equation put in its static form becomes

ext
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Separability of the Newton’s equation in the presence of topological singularities

dC,/dt=dC, /dt=0 @”=i"=0

Newton’s equation
=(r,+ 7%+ 77 +7) {

ndp /dt=—2(K,+K)rotd® +grad(4K, /3+2K, ~K, )t +gradF,, +2K,2
E,. =Ko +K,Y (&") +2K,(@ “)

A=(ie+i)
p=m(3*+5=+3)

&' =(ar+a)

ext

o =(0"+@

3 partial equation of Newton for the external fields
nm‘f—j: ~2(K,+K Jrot(@* ) +grad| (4K, /3+2K,(1+7,)-K, )™ |

gra (1) ek B ) ) oz, A
i

1st partial equation of Newton for the fields of elastic distorsions of the topological singularities
£ ch
"'”—dzt =-2(K,+K,)rot(@")+(4K, / 3+ 2K,(1+7,) - K, )grad 7% + 2K, A*

2K, o 2K, P

- > divA” =—
4K, /3+2K,(1+1,)-K, 4K, /3+2K,(1+7,)—-K,

Divergence of the equation  A(7..,,..)=

2nd partial equation of Newton for the fields of expansion perturbations of the topological singularities

(4K, 73+ 2K, (147,477 +2%)-K, )2 + K, ()

do®” —
nme - ~grad +(KZZ(&,‘*)Z+2K3(&‘)"')1+Kl(r“')z]+(2KzZ&f‘&f*+4K3”"‘¢Z)“'+2K11°"1"')
i i
Fit R
Static equation K, (¢7F)) +[4K, 13+ 2K, (14T, + 17()+ %) - K, |17 G) +(F )+ FA(F)) = este =0

Figure 5.1 - Separability of the Newton’s equation in three partial equations
in the presence of topological singularities

Newton's first partial equation is concerned with the fields of elastic distortions @ and T
associated with the charges contained in the singularity. This equation is coupled to the fields
7% andt 7" by the value n=n, exp[—(z‘0+1’”h+1m +T(p))} appearing in the expression
of the momentum associated with (]5”'1 . In the static case, this coupling disappears, so that it
makes it possible to deduce the static fields of elastic distortions @ and T generated by the
“and 7.

One notes also that this first partial equation of Newton depends on the density A" of

topological singularity in a completely independent way from the fields 7

flexion charges of the singularity. The divergence of this equation in its static form then provides
a static equation depending on the density 0" of curvature charges of the singularity, since the
divergence of the density 17 of flexion charges is equal to the density 0 of curvature
charges of the singularity, which is also shown in figure 5.1.

The second partial Newton's equation which can be extracted deals with the problem of the
perturbations 7 of the expansion field by the elastic energy stored in the lattice by the
singularity. It is clear that this last equation is very strongly coupled to the fields @, T, @
and T deduced from the two other Newton's equations. First, there is a dynamic coupling via
the term n=n_ exp[—(l’0 +7 4™ +T(”ﬂ appearing in the expression of the momentum
associated with (]3(”) . There also appears a coupling term associated with the module K, in the
form 2K, (1+7,+7% +7"). But the main coupling terms are those due to the elastic energy
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of the singularity and to the coupling energy of the singularity with the external fields, which
appear in two particular contributions which have very precise meanings:

- the density of elastic energy F dcl,'s’t stored in the lattice by the elastic fields due to the
singularity, in other words the energy density of distortion of the singularity,

- the energy density F;:t of coupling of the singularity with the external fields, in other words the
potential energy density of the singularity.

(7,t) and F (7,t) are obtained by solving the first partial equation

pot

These two terms Fd‘,fi',
and the third partial equation. In the static case, if we have solved these two equations taken in
the static state, and we therefore know the equilibrium values of the fields @ (), T (F),
@"(¥) and T (¥), the second partial equation becomes an equilibrium equation for the static
field of perturbation whose solution is an equation of the second degree in ‘L'(”)(?), which is
also reported in figure 5.1. The constant cste was introduced when passing from the gradient to
the gradient argument. However, as T(")(?) must necessarily be identically zero if the energy

() + Flfoht(?) is zero, this constant can only be zero.

Applications and potentialities of the separability of Newton’s equation

The decomposition of Newton's equation into three partial equations that we have just
presented reveals a partial equation (the 3rd) for the external fields, a partial equation (the 1st)
for the elastic distortion fields associated with the presence of a topological singularity and a
partial equation (the 2nd) for the expansion perturbation fields due to the elastic distortion
energies associated with the topological singularity. The methodology to be used to solve the
problem of fields associated with a topological singularity is then the following:

- in a first step, we must independently solve the first partial Newton's equation, in order to find
the elastic distortion fields @ and T generated by the singularity, without taking into account
the expansion perturbations due to energies F[;ft(?,t) and choht (7,t) of the singularity,

- then, starting from the elastic fields ®" and 77 obtained previously by the first partial
Newton's equation, the additional perturbations T(”)(F,t) of the expansion field due to the
elastic energies F;' (7,t) and F[f:,(?,t) of the singularity are calculated using the second
partial equation, or using the second degree equation in the static case.

At first glance this process seems quite complex, but it contains enormous potential with
regard to the description and interpretation of the behaviors of topological singularities within the
cosmological lattice. Indeed, we will show in the following that it becomes possible to deal with
the following themes:

- the existing link between the "first partial Newton equation" for elastic distortion fields and
Einstein's Special Relativity: the first partial Newton equation allowing to find the elastic
distortion fields associated with topological singularities will allow us to calculate the fields and
energies associated with screw dislocations, edge dislocations, screw dislocation loops, edge
dislocation loops and mixed dislocation loops, and to show that these fields are subject to a
relativistic dynamic, which will lead us to discuss the "ether role" that the cosmological lattice
plays with respect to topological singularities, as well as analogies and differences with
Einstein's Special Relativity.

- the link between Newton's second partial equation for expansion perturbation fields and
Einstein's General Relativity and Quantum Physics: Newton's second partial equation for finding
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the associated volume expansion perturbations is also very important. Indeed, we will see that
this one, if applied to macroscopic clusters of singularities with a rather low mass density, leads
to the existence of a static volume expansion field, which is deduced from Newton's second
partial equation in its static form, and which allows to find the gravitational effects, and to
discuss the analogies and differences of our approach with Newton's Gravitation, Einstein's
General Relativity and the Modern Cosmology of the Universe. Then we will also see that this
partial equation, if applied to microscopic singularities of high mass density, cannot present
static solutions and must therefore be solved in its dynamic form, which allows us to find
Quantum Physics, and to discuss the analogies and differences with Schrédinger's equations,
the concepts of fermions and bosons, Heisenberg's uncertainty and Pauli's exclusion principles,
and the notions of spin and magnetic moment of elementary particles.

The fact that the mass density of clusters of singularities plays a considerable role in the
resolution of the second partial Newton equation in static or dynamic form is quite remarkable,
as this will provide an objective criterion for quantifying the quantum decoherence phenomenon
which is the basis for a realistic explanation of the quantum phenomenon.

Elastic energy, kinetic energy and inertial mass of a dislocation

It is possible to calculate the distortion energy and the kinetic energy of a dislocation string in
the cosmological lattice. The distortion energy is obtained by calculating the lattice distortions
associated with the presence of the dislocation and by summing the elastic energy due to these
distortions in the whole lattice. Similarly, the kinetic energy associated with the movement of a
dislocation moving at low velocity V compared to the celerity ¢, of the transverse waves is
obtained by calculating the velocities of all the points of the lattice associated with the
movement of the dislocation and by summing the kinetic energy which is associated with these
movements in the whole lattice. If these calculations are easy enough to do in the case of a
screw dislocation, they become very difficult in the case of an edge dislocation. We will not dwell
on it here and will give the results obtained in the cosmological lattice in figure 5.2. These
complete calculations can be found in the theoretical book «Universe and Matter conjectured as
a 3-dimensional Lattice with Topological Singularities» published in 2016.

In these relations, we note that the elastic and kinetic energies depend on the proper
dimensions of the cosmological lattice, via the expression In(R_/a), in which R_ is the
external dimension of the cosmological lattice and a is the step of the cosmological lattice, with
obviously R_ >>a . These energies also depend on the squares A? and A? of the linear
densities of charges of the screw and edge dislocations respectively.

By comparing the kinetic energy E°" stored in the lattice by the movement of the line of
screw dislocation with the elastic potential energy E*"*"

dist
this same line, one finds the famous expression of Einstein E

stored in the lattice by the presence of
screw __
dist
mass of inertia to the rest energy of the dislocation via the celerity of the transverse waves. But

M ;mwcf connecting the

this relation is found here without in any way calling upon a relativistic dynamic of the line,
because it is due to the fact that the rest energy and the kinetic energy are nothing other than
elastic potential energy (of shear and local rotation) and kinetic energy stored within the lattice
by the dynamic deformation imposed on this lattice by the elastic distortion fields (shear and
local rotation) of the mobile screw dislocation.
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Screw and edge dislocation lines

screw dislocation line

edge dislocation line
- 2
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Figure 5.2 - Elastic energy, kinetic energy and mass of inertia
of a screw dislocation and an edge dislocation in the cosmological lattice

In the case of the edge dislocation, it is very different. It is observed in fact that the resting
energy depends in a rather complicated way on the four elastic modules KO,Kl,KZ,K3, in
particular via a parameter C, and that it also appears a parameter ¢ which depends in fact on
the boundary conditions of the lattice which are used to carry out the computations of energies.
Likewise, the relation between the energy of distortion and the mass of inertia of an edge
dislocation differs quite strongly from Einstein's relation via the term reported between braces,
which depends on the parameter ¢ and the modules K, K|, K,, K, , in particular via the
module C .

To ensure a complete analogy between the topological singularities of our approach and the
particles of the real universe, it would be desirable that the edge dislocations also exactly satisfy
Einstein's relation. However, for an edge dislocation satisfies this relation, the term between
braces in the relation between the energy of distortion and the mass of inertia of the edge
dislocation must be equal to 1.
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Since the lattice under consideration is finite, the conditions at the lattice boundaries are
free. We can then show that the value of the parameter ¢ is the one that will minimize the
distortion energy of the edge dislocation, and this condition implies that ¢ =1. We can then
show that, for the edge dislocations to also satisfy Einstein's relation, the modules
K,.K,,K,, K, must satisfy fairly strict conditions that we will issue in the form of a conjecture,
conjecture 6 in figure 5.3, which states that the modules K, and K, are equal and positive,
and modules K1 and K2 are also positive (or zero), but much smaller than the modules K|,
and K, .

Screw and edge dislocation lines in the perfect cosmological lattice

K,=K,>0,
0<K, <<K, =K,
0<K,<<K, =K,

Conjectures 6 - the «perfect cosmological lattice»

satisfies the following relation ships:

edge dislocation line

2R
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dist K3 2” a
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screw dislocation line

K +K,)A> R KA* R K,B® R
B (z 3) In—==z—3|n—==—3 sy _=
= T a T a 4r a
2( R B’ R
sarew AL R N2 s B f e v2=11‘f;"'“'v2
dn 2 a 8r a 2
Em

Figure 5.3 - Elastic energy, kinetic energy and mass of inertia
of a screw dislocation and an edge dislocation in the perfect cosmological lattice
satisfying the sixth conjecture

This set of conditions expressed by the sixth conjecture will ensure that the screw and edge
dislocations both satisfy real Einstein’s relations, which are deduced in a purely classical
manner, without making appeal to a principle of special relativity, which are written

screw __ pyscrew 2 edge __ rredge 2 . . . .
M ™ =E / ¢, and M =E_/ / c, respectively. The cosmological lattice thus obtained
will be qualified as a perfect cosmological lattice.
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We note that the potential energy and the non-relativistic kinetic energy of an edge
dislocation in the perfect cosmological lattice are both extremely weaker than the potential
energy and the non-relativistic kinetic energy of a screw dislocation since, for a screw

dislocation and an edge dislocation of Burgers vectors of the same norm ‘Be dge’ =|B_ .|, we
2 2
have E<% =2(K, /K,) EX™ <<<E® and E% =2(K, /K,) EX™ <<<E*™ . We wil
dist 2 3 dist dist cin 2 3 cin cin

see later what important role can be attributed, in our analogy with the physical theories of the

Universe, to the facts that edge dislocations exactly follow Einstein's relation and that they also
present much weaker energies than screw dislocations in a perfect cosmological lattice
satisfying the relationships of conjecture 6.

Spherical singularities of rotation and curvature charges

Imagine the existence within a perfect cosmological lattice of a localized macroscopic cluster
of topological singularities, in the form of a sphere of radius Rdum containing a uniform density
A of rotation charges, as shown in figure 5.4. It is possible and quite simple to calculate the
elastic rotation field @ associated with this charge, both inside and outside the singularity.
Let’s introduce the global charge O, given by the integration of the density A in the volume of
the cluster, or given by the sum of the elementary charges ¢, within the cluster, and the
vector 1 which represents the vector normal to the spherical surface. The result of these
calculations is shown in figure 5.4. Outside the cluster, that is to say for r > Rduster , the external
field of rotation @, due to the cluster of charges is independent of the radius R, ... ofthe

1

cluster. But the field @;,
To calculate the elastic energy stored in the lattice by the presence of the field of rotation

, depends on R

cluster *

inside the cluster, that is to say for r <R

t cluster

@ of the singularity, in other words the energy of elastic distortion E\2 of the lattice due to
the charge of the cluster, one should in principle calculate the energy associated with the field of
rotation, increased by the energy of the shear strain fields associated with the field of rotation.
But in the case of a perfect cosmological lattice, we have the relationship K, << K, between
the rotation and shear moduli, so that in principle we can neglect the energy associated with
shear strain. The calculation provides the distortion energy E;iiixt stored outside the singularity
in a quasi-infinite. medium, that is to say a medium for which R_>>R,  and the elastic
distortion energy E;i;i)m stored inside the singularity. The rest elastic energy Eflgj) of the
spherical cluster of rotational charge O, and radius R,  can therefore be written as the sum
of the energies stored outside and inside the singularity. We see that it is finished and depends

essentially on the radius R and the charge O, of the cluster.

A localized macroscopiclu’iz;)ological singularity of radius Rduster, apart from having a global
charge Q, of rotation, can also have a global charge , of curvature. Indeed, such a
singularity can be formed of a cluster of elementary topological singularities of the lattice, such
as prismatic dislocation loops which each have an elementary charge ¢, of curvature. If
0, >0, we are talking about a cluster of vacancy nature because lattice sites are missing
within the cluster, and if @, <0, we are talking about a cluster of interstitial nature, because
there is then an excess of lattice sites within the cluster.

A localized curvature singularity is responsible for a non-zero and divergent flexion field in its

vicinity. Indeed, if we know the density o (7) of curvature charges within the singularity, we
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can easily calculate the divergent flexion field outside the singularity, linked to a spatial
curvature of the lattice. The result of the calculation is shown in figure 5.4.

Spherical singularity of rotation charge
|@|
(External field) (Internal|field) (External field)

0, /47R?

<1/r?

l

(Energy of the rotation field)

L Y0
2 2 ) )
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Spherical singularity of curvature charge

Qo Z%(i)

Xen=7 3= 37—

(External curvature field)
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Figure 5.4 - Fields and energies of a spherical singularity
of rotation charge or curvature charge

The vectors of this flexion field converge towards the singularity if this is of interstitial nature
(excess of lattice sites within the singularity), and diverge from the singularity if it is of interstitial
nature (depletion of lattice sites within the singularity). On the other hand, we also note that the
flexion field due to the cluster of curvature charges does not depend on the radius Rduster of the
cluster apart from the cluster.

Charge, fields, energies and mass of a twist disclination loop (BV)

The simplest topological singularity of a lattice which can have a localized charge ¢, of
rotation, among all the topological singularities described above on the scale of a solid lattice, is
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obviously the twist diclination loop (BV = Boucle Vis in French) described in figure 2.30. Recall
that such a loop is generated by a rotation @BV of the upper plane of a circular cut in the middle
of an angle &, relative to the lower plane (figure 5.5). The fact that two planes which have
been displaced with respect to each other by rotation are glued together, is the cause of the
appearance of a surface charge II,, of rotation on the plane of the loop. We then have
QBV =aq n=-nll_, 4= JIR;VHBV = —ﬂR;V_QBV . This charge q,,, is
in fact the global rotation charge of the twist disclination loop as seen from a long distance from

which implies that

the loop. This means that such a loop can effectively behave as the source of a divergent field
of rotation @ within the solid medium. Such a loop can also be seen a little differently. Indeed,
the fact of carrying out the rotation of the two planes one relative to the other induces a
curvilinear displacement Ry, 0, along the loop similar to that of a screw dislocation. The
curvilinear Burgers vector BBV and the linear charge A,, of this screw pseudo-dislocation
loop then has a value I:IBV =R_«a f, which leads to a linear pseudo-charge of the loop with a

BV BV o
value A, =—B, t /2 and to a global charge ¢, =27R, A, =-7R, Bt of the loop.

The same global charge value is obtained as that obtained g‘; ci?siderinsvthgvsurface charge
I1,,, which makes it possible to consider this topological singularity indifferently as a twist
disclination loop or as a screw pseudo-dislocation loop. Considering the loop as a screw
pseudo-dislocation loop then makes it possible to show, in a rather complicated way, that there
is a local rotation field of toric shape around the loop, which is confined up to a distance of the
order r, = 2R, relative to the center of the loop, where R, is the radius of the loop. Outside
this toric confinement space, the far field becomes equal to the divergent field of rotation due to
the global charge ¢, ;, of rotation of the loop.

The distortion energy of a twist disclination loop is the energy which is stored by the rotations
generated by the screw pseudo-dislocation of radius Ry, in a torus whose central fiber is the
disclination loop and whose radius of the section roughly corresponds to Ry, , to which is added
the energy of the external field of rotation of spherical symmetry for distances greater than
r22R,, . The calculation of the exact value of this energy is obviously very complex, in
particular because the field of rotation cancels out exactly in the center of the loop. However, we
can try to approximate the actual distortion energy of the loop, using the energy of a straight
dislocation to calculate the energy of the curved dislocation. In the case where the radius Ry,
of the loop is enormously larger than the core radius a of the screw pseudo-dislocation vis
(Ry, >>a), this approximation must approach the real value of the energy of distortion within
the torus surrounding the loop, and we can correct it by introducing a constant A,, correcting

the value of the external radius of the torus to best approach the real value of the energy. We
BV
dist tore

will therefore write the energy of distortion E of the toric field from the energy of a screw
dislocation per unit of length, like the energy contained in the torus surrounding the twist
disclination loop. This value is reported in figure 5.5, in which a is the core radius of the screw
pseudo-dislocation, of the order of magnitude of the step of the cosmological lattice in the
presence of any expansion field 7, A, R, is the range of the toric field of the loop and A,
is a constant which can only be obtained by the exact calculation of the energy of the loop, but
which must be very close to unity according to our previous discussion. To simplify the rest of
our presentation, as the ratio Ay, R,, /a does not depend almost on the background

expansion, we will consider it to be approximately constant, and introduce a constant {,,
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specific to the twist disclination loop, and being equal to  {,, = ln(ABVRBV /a)z cste with
A,, =1 so to be able to write the energy of the toric field in the form shown in figure 5.5.

The loop of twist disclination (BV)

Conjecture 7 - the radius of a loop of twist disclination is much greater
than the step of the cosmological lattice:

ln(A,,VR,,,, /a) >>1

@, 5v=27R, Ay, =—TR,, st; (rotation charge)

~BV _ q/lBV L

(divergent field of rotation)

Y
E et = E it iome = 2(K2 + K})gﬂvRBvAfw = %(Kz + KB)CBVRBVBlZW
Eg:/ = E:::mre = mnCBVRBVAZVVZ = im"{anﬂv B;vvz
J
m = Bae
C

1

| Cov = ln(ABVRBV /a) (4,,=1)
Figure 5.5 - Charge, fields, energies and mass of a twist disclination loop

We can then compare this energy of the toric field of the loop with the energy associated
with the spherical field of rotation at great distance from the loop, which occurs beyond the
distance 2R, of the loop, which is due to its rotation charge ¢, ;, , and which is simply worth
E¥ =gKR B /4. By comparing this value with the energy of the toric field reported in

figdLIJTZtS.S, WZ ggtafr: the ratio E(isvmre /Efi:text EZln(ABVRBV /a)/n' . If we admit here a new
and seventh conjecture, reported in figure 5.5, namely that the radius of a twist disclination loop
is much larger than the step of the cosmological lattice, therefore that ln(ABVRBV /a) >>1, the
energy associated with the spherical external field of rotation becomes perfectly negligible with
respect to the energy of the toric field of the loop. Therefore, the energy E;;.Svt of the twist

disclination loop is essentially contained in the toroidal field of the loop, and we can write that
BV __ BV

dist — " dist tore "

The non-relativistic kinetic energy of a moving twist disclination loop is the energy that is
stored by the lattice movements generated by the moving screw pseudo-dislocation. Using the
relation obtained in the case of a screw dislocation, and admitting the seventh conjecture, the
kinetic energy Eg: of the loop is fairly easily calculated, which is shown in figure 5.5. Again, the
kinetic energy of the external rotational field is negligible compared to this kinetic energy, so we
can consider that the kinetic energy of the loop is essentially confined to the toric field of the
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loop. We therefore deduce that Einstein's relation applies perfectly to the twist disclination loop
. BV __ BV 2
inthe form M ™ =E  /c;.

We know from the separability of Newton's equation described at the beginning of this
chapter that the existence of elastic distortion fields induces, via their energy, a perturbation field
of expansion. We will return later in detail to this expansion perturbation field associated with the

twist disclination loop.

“Coulomb-type” interaction between localized topological singularities
with rotation charges

Assume first of all two loops of twist disclinations with rotation charges g, ., and g,y ,,-
There is an interaction force between these two loops, of electric type, and this interaction force
can be deduced very generally using the Peach and Koehler force.

Indeed, the spherical external field of rotation generated by a charge ¢q,;,,, located at the
center of the coordinate system is given by the relation of figure 5.5. If a twist disclination of
rotation charge ¢, ,(,, is then at the position marked by a vector 7=d in the coordinate
system, the interaction force acting on this charge on the part of the charge ¢, is the
Peach and Koehler force, which is exerted in the direction of the vector d and whose intensity
is worth prj‘(/z) = [(K2 +K3)/7r]qu(1)qu[2) /d>.

Thus, the reciprocal force between the two charges is repulsive if q; 4,4, 5y, >0 and
attractive if ¢, 5, (g, 5y, <0 . This force of interaction between the rotation charges of twist
disclination loops is the perfect analog of the force of interaction F 4 :qmqma / 47r£0d3
between two electric charges ¢,,, and ¢,,, in electromagnetism, and thus fits perfectly with the
analogy developed in the previous chapter with the equations of Maxwell. As the previous
relation of the force of Peach and Koehler is perfectly independent of the size of the loops, it
can be generalized without problem to two macroscopic clusters of topological singularities
which would have macroscopic charges of rotation Q,,, and @, ,, which would be distant
fromd, under the form F, = = [(K2 +K3)/7r}QM1)QM2) /d”. In this case of two macroscopic

PK(2)
clusters, the "electrical" interaction force between them therefore does not depend on the
respective radii R, ., and R, of the two clusters.

Charge, fields, energies and mass of a loop of prismatic edge dislocation (BC)

If we consider a prismatic loop of edge dislocation (BC = Boucle Coin in French) with a
radius R,. (figure 2.28), the distortions induced in the lattice are those of an edge dislocation.
We can therefore calculate approximately the elastic distortion energy of this loop as the energy
which is stored in the lattice by the elastic distortions generated by the edge dislocation in a
torus centered on the loop.

By using the same arguments as for the twist disclination loop, we deduce that, in a perfect
cosmological lattice, the elastic energy of distortion of a prismatic loop is essentially contained in
the toric fields surrounding the loop, and reported in the figure 5.6, in which A,. is a constant
close to unity, which should be calculated exactly by the exact integration of the energy of the
fields within the torus, and where . =ln(ABCRBC/a) is a constant proper to the edge
dislocation loop.
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The prismatic loop of edge dislocation (BC)

Conjecture 7 - the radius of a prismatic loop of edge dislocation is much greater

than the step of the cosmological lattice:

In(4,.R,. /a)>>1
[ Gope =—2mii({ AR, )=27A it = 21, (flexion charge)
] -
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Figure 5.6 - Charge, fields, energies and mass of a prismatic loop of edge dislocation

Outside the loop, the fields due to the edge dislocation loop are reduced to a divergent
flexion field of spherical symmetry. It is clear that this flexion field must be associated with a
perturbation in the volume expansion field which must have a certain energy. We will come back
to this problem later, and we will show that the energy associated with this flexion field is
perfectly negligible compared to the distortion energy reported in figure 5.6, so that the energy
of the edge dislocation loop is essentially contained in the toric fields in the immediate vicinity of
the loop.

The non-relativistic kinetic energy of this loop is essentially the kinetic energy stored in the
lattice by the dynamic distortions generated by the edge dislocation in the torus centered on the
loop. Using the relations deduced previously for the edge dislocation, we deduce the
approximate value of this kinetic energy, and we note that Einstein's relation applies perfectly to
the non-relativistic kinetic energy of the prismatic dislocation loop since Mfc = Efift /Ct2 . As for
the expansion perturbation field associated with this loop, we will come back to this in detail
later.

Charge, fields, energies and mass of a slip loop of dislocatiopn (BM)

The slip loop of mixed dislocation (BC = Boucle Mixte in French) with a radius Ry (figure
2.28), of a “vector” nature, is obtained by gliding (parallel translation to the plane of the loop) in
the direction of the Burgers vector, so that the lattice does not present any "extra-matter" in this
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case (figure 2.28). On the other hand, the presence of a screw component in the regions where

BM
dipolaire

EBM || £ induce a dipolar rotational field @ (r,0,0) in the vicinity of the slip loop.

The slip loop of mixed dislocation (BM)

Conjecture 7 - the radius of a slip loop of mixed dislocation is much greater
than the step of the cosmological lattice:

ln(ABMRBM /a) >>1

Q=0 & q,,,=0
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Figure 5.7 - Charge, fields, energies and mass of a slip loop of mixed dislocation

If we consider a slip loop with a radius Ry, , the distortions induced in the short distance
lattice are those of a screw dislocation for the angles ¢ =0 and o =7 , and those of an edge
dislocation for the angles @ =7 /2 and o =31 /2. We can therefore consider that we pass
continuously as a function of the angle o« from a screw dislocation to an edge dislocation via
mixed intermediate states. The distortion energy associated with the bent string is stored mainly
in the torus centered on the loop. However, since the two edge parts and the two screw parts of
the loop are respectively of opposite charges, the fields associated with the edge parts and the
screw parts of the loop decrease very quickly at great distance from the loop. For example, the
modulus of the rotation field in the plane of the loop and over a diameter passing through the
OC’BBM R, /(4nr®) at great
distance (r>> RBM) . If the radius Ry, of the loop is very much greater than the step of the

screw parts of the loop behaves approximately as follows ‘6);1;

lattice, we can roughly take into account this rapid decrease in the dipole field by imagining that
the field in the vicinity of the string is that of a dislocation. We can thus roughly calculate the rest
energy of such a loop by integrating the energies per unit length of string within the torus for the
screw and edge components of the string as a function of the angle « . It therefore comes
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approximately, in the perfect cosmological lattice, the expression of the energy reported in figure
5.7. An exact calculation of the energy should lead to the value A,,, of the constant proper to
the geometry of the mixed loop, and which must approach the value 1.

It would also be necessary to take into account the energy of distortion associated with the
dipolar field of rotation outside the loop. However, this is obviously lower than the distortion
energy associated with the external field of rotation of a twist disclination loop, so that this
energy can be perfectly neglected in comparison with the distortion energy contained in the
torus. This again means that the energy of the mixed dislocation loop is essentially contained in
the immediate vicinity of the dislocation loop.

The non-relativistic kinetic energy of the slip loop of dislocation is calculated approximately in
the same way as its elastic distortion energy.

It can be seen that the energies E.

and Efy are in fact those supplied by the screw parts
of the slip loop, and that these are essentially contained in the immediate vicinity of the
dislocation loop. Einstein's relation therefore applies perfectly to the slip dislocation loop since
M(?M =E§Z /¢ . As for the expansion perturbation field associated with this loop, we will come
back to this later in detail in chapter 24, where we will see that the energy associated with this

field is negligible compared to the distortion energy contained in the torus.
"Topological bricks" to build the world of elementary particles

In Figures 5.4 to 5.7, we have reported all the results obtained for the three most basic types
of loops that can be found in the perfect cosmological lattice. In our analogy with the real world,
the three loops of disclination and dislocation which appear there could well constitute the most
elementary topological bricks of the cosmological lattice, which could make it possible to work
out loops of more complex structures which could be analogues of elementary particles of the
Standard Model.

The twist disclination loop is the most basic topological singularity at the origin of an
electrical charge. At a certain distance from the center of a twist disclination loop, greater than

approximately 2R, , the external rotation field of the disclination loop behaves exactly like the

BV
external field of a spherical charge of value g, ,, = 2T R, A, .

One can then wonder what should be the radius R, of the spherical charge so that it has an
elastic energy of global distortion equal to the energy of distortion of the loop. With the charge
value ¢, ,, ensuring a long distance field similar to that of the twist disclination loop, the energy
of a spherical charge of radius R, is worth E"* =12K wR’ A’ /(5R_). For this global energy
of the spherical charge to be equal to that of the distortion loop of radius R, and linear charge
A, , that is to say that E;ﬁt EEZ;, the radius R, of the charge must satisfy the following
relation R = RBV67t/[5 In(4,R,, /a)} , obtained by recalling that in the perfect cosmological
lattice K, << K.

By using conjecture 7, we note that the radius of a spherical charge which would have an
energy of the rotation field equal to the energy of the toric field of a twist disclination loop should
be considerably smaller than the radius of the twist disclination loop. As the twist disclination
loop is the most basic microscopic lattice singularity that it is possible to find which has a non-
zero rotation charge ¢,,, , the twist disclination loop therefore corresponds to the most

elementary structure of an electric charge in our analogy with the real world.
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The prismatic dislocation loop is the most basic topological singularity responsible for a
spatial curvature charge. When we compare the elastic distortion energy of a prismatic loop with
the elastic distortion energy of a twist disclination loop, with the same radii and the same
modules of their Burgers vector, we see that in the perfect cosmological lattice with K, << K,
we have M EZ(KZ /1(3,)2 M;" <<<M;" . Thus, the mass of inertia of the prismatic edge
dislocation loop is considerably lower than the mass of inertia of the twist disclination loop.

On the other hand, as the prismatic dislocation loop has a nonzero charge of curvature

q93C=—27rﬁB which can be positive (loop of the lacunar type) or negative (loop of the

BC
interstitial type), it is necessarily associated with a flexion field Zﬁf at long distance by lattice

ict ol g /(4rr®) . Thus, the prismatic dislocation loop is the most basic

microscopic lattice singularity which is the source of spatial curvature of the lattice by the

curvature, given by ¥

divergent flexion field which is associated with it, while the twist disclination loop is the most
basic microscopic lattice singularity which is a source of spatial torsion of the lattice by the
divergent field of rotation associated with it.

As one tried at first sight an analogy between the rotation charge of the twist disclination loop
and the electric charge of the electron of the physics of particles, then the loop of prismatic edge
dislocation, which does not present a field of rotation and which is of rest mass much weaker
than the twist disclination loop, could very well, at first glance, be identified by analogy with the
real-world neutrino, which is actually an electrically neutral particle and of much lower mass
than the electron.

If we accept this analogy, the neutrino would in this case be the source of a spatial curvature
by flexion of the perfect cosmological lattice, in other words the source of a field of curvature of
space, while the charge of the electron would be the source of a spatial torsion by rotation of the
perfect cosmological lattice, corresponding to the electric field of electromagnetism. This
analogy with the two basic leptons of particle physics is obviously very sketchy at the moment,
and it could very well intervene in fact more complex combinations of these elementary loops in
the form of loops of dispiration of complex structures to explain the different elementary particles
of the real world.

The slip dislocation loop is the most basic topological singularity at the origin of an electric
dipolar moment. Unlike the twist disclination loop and the prismatic dislocation loop, the slip
dislocation loop has no field at a long distance like a divergent rotation field or a divergent
flexion field. However, this loop has a dipolar moment of rotation d)z':mr(r,e,(o) in its vicinity,
linked to the two opposite rotation charges located on either side of the loop. Thus, the slip
dislocation loop is the most basic microscopic lattice singularity that can be the source of a
dipolar moment of rotation.

In our analogy with the real world, a slip dislocation loop in the perfect cosmological lattice
could correspond to the most elementary structure which could generate an electric dipolar
moment for an elementary particle. However, it turns out that the research and measurement of
an electrical dipole moment of elementary particles is currently an important research subject of
the Physics of elementary particles.

The various physical properties transported by loop singularities

From the previous discussion, it would therefore seem that the twist disclination loop could
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transport the electric charge, the prismatic edge dislocation loop the curvature charge and the
slip mixed dislocation loop the electric dipolar moment. We can add to these three properties
another property which could be of enormous interest. In our analogy with the real world, it is
quite difficult to imagine, to find the analog of the spin of a charged particle and the magnetic
moment associated with it, that a symmetrical spherical singularity of rotation charge like that
described in figure 5.4 can turn on itself. However, if we consider that the analog of an electrical
charge is indeed the twist disclination loop shown in figure 5.5, the topology of this singularity,
consisting of a screw pseudo-dislocation, makes it possible to imagine very naively that it can
rotate around one of its diameters. In this case, the distribution of the rotation charge,
analogous to a distribution of the electric charge in the form of a ring along the perimeter of the
twist disclination loop, would necessarily impose the appearance of a magnetic moment of the
loop associated with this real movement of rotation. We will come back to this subject later.
There is still a fifth fundamental and very important property of elementary particles which

could be explained with our analogy. It is the fact of being able to calculate the elastic distortion
loop
dist
their inertia masses Mé”"” , and that these are contained essentially in the immediate vicinity of

energies E” and the kinetic energies Ei‘i’;’p of the loops, and to be able to deduce therefrom
the loops. But it is also and above all the fact that they all satisfy, in the perfect cosmological
lattice, the famous relation of Einstein, which is a fundamental property of these loops which has
been demonstrated without in any way appealing to a principle of special relativity.

On the other hand, the mass of inertia of the loops is a property linked to the mass of inertia
of the cosmological lattice in the absolute reference frame of the external observer GO. In an
analogy with the real world, the mass of inertia of the topological lattice would then correspond
to the famous Higgs field that had to be introduced into the Standard Model to explain the mass
of elementary particles, and the Higgs particle would then be the only one real particle of the
real world since it would correspond to a constituent particle of the perfect cosmological lattice,
while the other elementary particles of the Standard Model would correspond to topological
singularities of the perfect cosmological lattice.

There is certainly still a huge way to go to find an analogy which would provide, by judicious
combination of the different elementary topological loops in the form of different dispirations of
more or less complex structures, the set of elementary particles of the Standard Model and their
physical properties. But the major problem that we will address in the following will be above all
to find the analogies which explain the gravitational behavior of real world objects on a
macroscopic scale (Newton's gravitation, General Relativity), as well as the quantum behavior
of the real world at the microscopic scale (Quantum Physics).

We will retain for the moment in this chapter that several of the fundamental properties of
elementary particles in our real world find a very simple and perfectly classic explanation using
the analogy with the elementary loop singularities of a perfect cosmological lattice.
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Lorentz transformation and special relativity

Thanks to Newton's first partial equation in the presence of topological singularities, it was
possible to obtain the elastic distortion fields associated with the various elementary singulari-
ties of the cosmological lattice. In this chapter, we will show that these elastic distortion fields
satisfy the Lorentz transfomation, and that they reveal a new interpretation of the special relati-
vity.

We have deduced the kinetic energy associated with the movement of a dislocation or of a
dislocation or disclination loop within the perfect cosmological lattice, by implicitly supposing
that the distortion perturbations due to the moving charge are transmitted within the lattice with
almost infinite speed compared to the speed of the charge within the lattice. However, it is well
known that perturbations within a solid lattice are actually transmitted at the finite speeds of
transverse or longitudinal perturbations. To take into account the propagation effects of pertur-
bations with finite speed within the solid lattice when the speed of displacement of the charge
becomes significant in comparison with the speed of propagation of transverse and / or longitu-
dinal waves, we demonstrate here the Lorentz transformation to go from a stationary reference
frame in the lattice to the mobile reference frame associated with the moving charge. This trans-
formation is then applied to the singularities in movement at relativistic speed within a perfect
topological lattice, namely the screw and edge dislocations, the localized charge of rotation, the
twist disclination loop, the prismatic dislocation loop and the slip dislocation loop. We calculate
their total energy, due to the sum of the potential energy stored by the lattice distortions genera-
ted by the presence of the charge and the kinetic energy stored in the lattice by the movement
of their charge, and we show that those satisfy a relativistic dynamic. In addition, there is a very
elegant explanation of the famous «electron energy paradox» which says that the mass asso-
ciated with the electromagnetic fields of the electron does not satisfy the principles of special
relativity.

We then show that the Lorentz transformation also reveals a term of relativistic force acting
on the rotation charges in motion, a term which is perfectly analogous to the Lorentz force in
electromagnetism.

On these bases, we discuss the analogy between our approach and the theory of Special
Relativity. We note that the cosmological lattice behaves in fact like an ether, in which the
topological singularities satisfy exactly the same properties as those of Special Relativity, not
only concerning the contraction of the measuring rods and the dilation of time, but also
concerning the Michelson-Morley experience and the Doppler-Fizeau effect. But the existence
of the cosmological lattice then makes it possible to interpret the concept of special relativity
quite differently, and to explain for example very simply some somewhat obscure sides of
special relativity, such as the famous «paradox of twins».
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Mobile charges and Lorentz transformations

When topological singularities of charge densities i[ , 2 or A move in the frame Ox,x,x,
fixed to the solid lattice at significant speeds compared to the celerities of propagation of
transverse and / or longitudinal waves, it would obviously be very useful to be able to find the
dynamic fields 7(7,t), @(¥,t) and o,(7,t) generated by these singularities in the frame
Ox,x,x,. Finding a solution of differential equations for singularities
moving in the reference frame Ox,x,x; is not at all easy. On the
other hand, using a mobile referential with the singularities, in which
the singularities seem immobile, should allow us to calculate the
static fields in O'x,'x,"'x;' much more simply, then to obtain the
dynamic fields in Ox,x,x, using transformation laws which have
yet to be defined.

Consider for example an infinite screw dislocation along the axis
Ox, and suppose that it moves at velocity V in the direction of the
axis Ox, . The choice of screw dislocation is not free, because it

turns out that it is the only singularity which does not induce lattice Hendrik Anton Lorentz
distortions by volume expansion, but only a divergent field of (1853-1928)
rotation, which must greatly simplify the calculations. In the e T—
reference frame O'x,'x, 'x;' moving with the dislocation string, the

displacement field u’ " must be that of a static screw dislocation, as shown in figure 6.1.

In order to transform this static field in O'x,'x,"'x;" into a dynamic field associated with the
mobile screw dislocation in Ox,x,x;, we must establish the transformation laws which will
provide us with the dynamic fields in Ox,x,x,. And the dynamic fields thus obtained must
satisfy the space-time evolution equations in Ox,x,x;. As there is translation of the coordinate
system O'x,'x,'x," with respect to the coordinate system Ox,x,x;, the transformation laws
must transform the coordinate x," of O'x,'x,'x;"' into a coordinate which must depend on
speed and time, in the form (x,—Vt), in the coordinate system Ox,x,x,. We can a priori
hypothesize that the transformation laws are written x, '=a(x,—Vvt), x '=fx  and
x3'= ﬁx3 according to the three respective axes. With these transformation laws, the static
displacement field u’ "' becomes a dynamic field u’ ' (r,t) which depends on the factor
(x,—Vt) and the constants & and 3 in Ox,x,x,.

From the dynamic field u;,“"(F,t) thus obtained in Ox,x,x,, one can directly calculate the
fields of rotation @’ (F,t) and speed ¢~ (r,t) in Ox,x,x, via the rotational and the time

- screw

derivative of u**"(r,t) . But in the reference frame Ox x,x,, the fields thus obtained must

satisfy the spazg-tempora/ evolution equations, namely the second pair of Maxwell's equations.
For this requirement to be satisfied, the parameter ¢ introduced into the transformation laws
must necessarily be written oc=f /(1-v* /cf)l/2 = /7, in which it appears the well-known
factor y, =(1-v* /cf)l/2 of Lorentz transformations. By introducing this relation for ¢ in the

- screw
(0

expressions obtained for 5;:” (¥,t) and (7,t), we obtain the expressions of the fields of
the screw dislocation in Ox,x,x,, as represented in figure 6.1. It is then remarkable that these
fields, which perfectly satisfy the equations of spatio-temporal evolution in the reference frame

Ox,x,x,, do not depend absolutely on the parameter 3, but only on the parameter ¥, of the
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Lorentz transformations, so that the parameter [3 can be chosen freely, and we will admit here
the value of 1, so that it is shown that the laws of spatial transformation are indeed the Lorentz
laws represented in figure 6.1.
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Figure 6.1 - The Lorentz transformation deduced using a moving screw dislocation

Contraction of lengths in the direction of movement

The expressions in figure 6.1 for dynamic fields u " (F,t), @’ *"(r,t) and ét;irew(F,t)
are effective solutions of topological equations and Newton's equation for a screw dislocation
moving in the reference frame Ox x,x, . It is interesting to take a look at the behavior of these
fields as a function of the velocity V of the dislocation. One can take for example the projection
@, of the external vector field of rotation in the direction of the movement of the dislocation, and
report its value @,(t =0,x,=0), taken at the instant 7 =0 and for the coordinate x, =0, as a
function of X, for different values of the ratio V /¢, , as illustrated in the figure 6.2. We then
observe that the horizontal component of the rotation field seems to contract along the axis
Ox, . It is easy to calculate that a certain value of wz(t :O,x3 =0) is observed at a distance
AX2 from the origin which depends on the velocity V of the dislocation, given by
Ax (V)=Ax,(v=0)(1-v* /Cf)l/2 , so that the field of rotation of the moving screw
dislocation is effectively contracted along the axis Ox, of a factor ¥, .

Now imagine a cluster of rotation singularities which are linked to each other via their fields
of rotation (it should be recalled here that the field of rotation corresponds to the electric field in
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our analogy with the real world). If the cluster moves along the axis Ox, in the reference frame
Ox,x,x, of the GO, the fields of rotation associated with this cluster must contract along the
axis Ox, with a factor ¥, in order to satisfy the topological equations and the Newton equation
of the lattice. The consequence is then that the cluster itself, which is linked by these fields of
rotation, must contract along the axis Ox, . If this cluster represents an “object” for the great
observer GO located outside the lattice, this “object” will contract along the axis Ox, . But if it is
observed in its own frame of reference by a hypothetical observer who would be located inside
the lattice, this “object” will remain exactly the same as it is at rest in the absolute frame of
reference Ox,x,x,, and its shape will not change in the reference frame O'x, 'x, x;'
regardless of the speed of this “object” in Ox,x,x;.
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Figure 6.2 - Contraction of the component ®,(t=0,x,=0) of the rotation vector
of a screw dislocation in Ox x,x, in the direction of its movement, depending on its velocity v

Time dilation of a mobile cluster of topological singularities

Now imagine that the observer measures the time 7, it takes for a transversal wave to travel
the distance d,, in the absolute frame of reference Ox,x,x,, be reflected on a mirror and return
to its point of emission. It is clear that the observer measures a time equal to 7, =2d, /c, .
Such a time measurement system based on an “object” constituted by a cluster of singularities
linked by the fields of rotation can be used by the observer GO as a time base, a clock giving
the basic time lapse T, .

Imagine that the clock system, based on the same "object", but now moving at a velocity V
along the axis Ox, in the base reference frame Ox x,x,, is observed by the GO. If the
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transverse wave is emitted in the mobile reference frame O'x,'x,'x;' in the vertical direction
within this frame of reference, this same wave is seen by the GO as a non-vertical wave in its
frame of reference Ox,x,x;, as illustrated in figure 6.3 (a). For the GO observer, the time T it
takes for the wave to travel at celerity c,,viathe reflection on the mirror of the moving “object”
is easily calculated using the triangle in the plane Ox,x;, and we just gets that T=T, /yt . This
means that the base time of the mobile clock in the reference frame O'x,'x, 'x,"', measured by
the GO in its own reference frame Ox,x,x, seems dilated as a function of the velocity V with a
factor 1/, , and therefore that the clock of the mobile “object” slows down compared to the
GO's absolute clock.

Figure 6.3 - (a) the trajectory of the transverse wave emitted vertically by the local clock
of the mobile «object» in the frame, as observed by GO in his reference frame
(b) the trajectory of the transverse wave emitted horizontally by the local clock
of the mobile «object» in the frame, as observed by GO in his reference frame

One can still wonder if the time in the reference frame O'x,'x,'x," of the "object" remains
isotropic in this reference frame, in other words if a clock based on a horizontal trajectory of the
transverse wave, gives the same time as the vertical clock. If the horizontal clock is observed by
the GO in its frame Ox,x,x,, the wave path can be illustrated by the path diagram in figure 6.3
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(b). In this diagram, the trajectories of the moving mirrors are represented by two lines with a
slope V , separated by a distance d in the direction Ox,. The trajectories of the transverse
wave lines are represented by two lines with slopes +c¢, and —c, respectively, for the two
directions of propagation of the wave.

In this trajectory diagram, we can again geometrically calculate the time T required for the
wave to travel a round-trip path via a reflection on a mirror of the mobile “object”, knowing that
the distance d between the two mirrors associated with the mobile “object” is contracted by a
factor Y, as we have seen previously, which provides the following relationship
d:j/tdo=do(1—vz/ct2)1/2 between the distance d and the distance d, at rest which
separate the two mirrors, and we then obtain again T = T0 /7/: as result of this calculation.

The two diagrams in figure 6.3 clearly show that the two mobile clocks, operating
respectively with a vertical and horizontal wave propagation in the frame O'x,'x,'x;' provide
exactly the same local time, meaning that there is indeed a local time t' and that this local time
t' remains isotropic in the mobile frame of reference O'x,'x,'x,", regardless of the direction of
movement of the "object" in the lattice.

In the mobile frame O'x,'x,'x;", the length the wave has to travel along O'x," or O'x;,'

inside the clock system is measured as a length d,, , and the local time to go back and forth via
reflection on a mirror is measured as being 7|, both in the case of a wave propagating vertically
as horizontally. This means that the speed of the wave measured by an observer linked to the
mobile frame of reference O'x, 'x, 'x,' has exactly the same value c, as that measured in the
frame of reference Ox x,x,, regardless of the velocity V of the frame of reference
O'x,'x,'x;' relative to the frame of reference Ox, x,x; .
Imagine then that a transverse wave @'= a)()§3'sin[a)'(xl /¢, —t')} propagates along O'x;,'
in the frame of reference O'x,'x,'x,' moving at speed V in the direction O'x,' relative to the
frame of reference Ox,x,x,. To express this wave in the frame of reference Ox,x,x;, we use
the space transformation x '=(x —Vt)/y, already obtained before and a new time
transformation relation '= &t +5)c1 , in which the parameters € and 0 have yet to be
determined. By introducing these two relations in the expression of the wave in the frame
O'x,'x,'x;', this one must obligatorily take the simple form @ = ¢, sin[a)(x1 /¢, —t)] in
the frame Ox,x,x,, which implies that the constants must take the values 5=—V/}/tct2 and
8=1/7t, and that consequently the law of Lorentz for the transformation of time is written
t'=(t-vx, /Ctz)/)/t, as it has already been reported in figure 6.1.

Lorentz transformation for a mobile “object” linked by the rotation fields

The fact that the fields of rotation, and therefore the mobile “objects” linked by the fields of
rotation, are actually contracted in the direction of movement by a factory, :[1—V2 /ctz)l/z,
that the isotropic time measured by the clocks of the mobile “object” is really dilated by a factor
1/y, and that the velocities of the transverse waves measured in Ox,x,x; and in
O'x,'x,"'x;" have exactly the same values ¢, , mean that the transformation laws reported in
figure 6.1, allowing to pass from one referential to the other, are the same as the well-known
Lorentz transformations of electromagnetism.

It should be noted here that these transformations were used initially as simple mathematical

tools making it possible to calculate with Maxwell's equations the electromagnetic fields
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generated by mobile electric charges. Later, these transformations were used in special
relativity by Einstein, by postulating that Lorentz relations are applicable to any frame of
reference moving at speed V relative to another, hence the term "relativity"” which corresponds
in fact to axiomatically admitting the constancy of the speed of light in any frame of reference.

Here, in the case of a solid lattice, the Lorentz transformation is obtained by a quite different
approach based on the existence of a solid lattice in the absolute frame of reference Ox,x,x; of
GO, which is the support (we then speak of ether) for the propagation of transverse waves. This
approach makes it possible to demonstrate the reality of the physical consequences of the
Lorentz transformation, such as the spatial contraction and the dilation of time measured in
Ox,x,x, for mobile “objects” made up of topological singularities linked by fields of rotation. And
this demonstration is based on the initial assumption that the GO can introduce a relative frame
of reference O'x,'x,'x;' associated with the mobile "object" into its absolute frame of
reference Ox,x,x, . The use of the Lorentz transformation in the case of the cosmological
lattice is therefore limited only to transforming the fields between a mobile relative reference
frame O'x,'x,"'x;" with respect to the lattrice and the absolute GO reference frame Ox, x,x;,
which is fixed to the lattice. Consequently, there is absolutely no axiomatic hypothesis of
"relativity" here stipulating that the Lorentz transformation is applicable to any referential moving
relative to another. We will see that this remark is very important, because it implies a point of
view radically different from that of Einstein's special relativity.

Uniqueness of the Lorentz transformation according to the background expansion

In conjecture 6, we stipulated that the module K1 must be necessarily positive for the edge
dislocations to satisfy the same Einstein relation as the screw dislocations in the cosmological
Lattice. This conjecture therefore implies that the existence of longitudinal waves is subject to
the fact that the background expansion of the cosmological lattice satisfies the hypothesis
T, > T, - In this particular case, as transverse and longitudinal waves can propagate within the
lattice with different celerities ¢, and ¢, respectively, the fields associated with a mobile
“object” which would be made up of topological singularities like edge dislocations which are
linked both by fields of rotation and expansion, would become immensely more complicated to
calculate. Indeed, supposing that the displacement of the linked charges in the reference frame
Ox,x,x, takes place at velocity V in the direction Ox,, one should define two mobile reference

!

frames O'x,'x,'x;" and O"x,"x,"x;" which move with the charges, by assigning to each of
these reference frames the Lorentz transformation laws with velocities ¢, and ¢, respectively,
therefore with two Lorentz factors 7, =(1-v* /¢’ )2 and y,=(1-v? /612)1/2 :

We can imagine quite easily that the complete resolution of this type of problem for any
density Z,. of mobile charges in Ox,x,x; can prove to be extremely complex, especially if
there is still a non-homogeneous expansion field within the lattice, and especially as longitudinal
perturbations can propagate like waves.

This is why we will treat in the following only the particular case, which is in fact the really
interesting case for our analogy with the universe, of topological singularities which move in the
perfect cosmological lattice presenting a homogeneous and constant background volume
expansion which satisfies the relationship 7, <7, . In this case, we know that the longitudinal
waves do not exist, meaning that any disturbance of the distortion fields can only propagate at
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the speed of the transverse waves, and that the problem of determining the fields generated by
mobile singularities can be solved by applying the unique Lorentz transformation for the frame
of reference O'x, 'x, 'x,", the one shown in figure 6.1. The problem of expansion perturbation
fields linked to topological singularities will be dealt with later, in the chapters dealing, on the
one hand, with “gravitational fields” namely static perturbations of the expansion field due to
topological singularities, and on the other hand “quantum fields” namely the dynamic
perturbations of the expansion field due to mobile topological singularities when 7, <7, .

If we now consider mobile rotation charges, of charge density A, which move within the
lattice with velocity V along the axis Ox, , the fields @ generated by these charges will be
dynamic fields which will evolve according to the movements of the charges. As the
transmission of information of the mobile charges at any point of the solid lattice is done in this
case at the speed ¢, of the transverse waves, one can use the transformation of Lorentz
deferred to figure 6.1 by associating a mobile reference frame O'x,'x,'x;"' with the charges. It
is interesting to show here the transformation relations concerning the pair of Maxwell equations
managing the dynamics within the lattice, outside the charges, in the case where the volume
expansion is homogeneous and constant (n = cste ).

These relations of transformation of the fields of momentum (np) and torque m in the
frame of reference Oxx,x; in the fields (np)' and m' in the frame of reference
O'x,'x,'x," are obtained by fairly simple calculation, and are reported in figure 6.4. Thanks to
these transformation relationships, we will be able to calculate the fields associated with
movement within a solid lattice of different types of rotation charges, as well as their total
energy, composed of their elastic potential energy and their kinetic energy.

Relativistic energies of the screw and edge dislocations

Let us consider an infinite cylindrical screw string and suppose that it moves at velocity V in
the direction of the axis Ox, . In the reference framel O'x,'x,'x;" in movement with the string,
we can apply the transformation relations of figure 6.4 to find, from the expression of the static
field @, of rotation of the dislocation as well as from the Lorentz transformation relations, the
dynamic fields @, and (3 expressed in the reference frame Ox,x,x,. We then deduce directly
from these expressions the elastic energy density F,”*" of distortion and the kinetic energy
density F>"" in the frame of reference Ox,x,x;. The total energy E°"*" per unit length of the
dislocation is obtained by integration of these energy densities in Ox,x,x, . The total energy of
the screw dislocation thus obtained is shown in figure 6.4, and its expression deserves a few
comments:

- in fact, this expression is quite remarkable, because not only does it appear there the mass of
inertia M =E "™ / Ct2 at rest of the screw dislocation that we had already obtained in a

completely classic manner, but also it allows better understand the true physical origins of the
relativistic terms of distortion energy Ef,l’“
in this form, the term E,‘,im

and kinetic energy ES" which appear there. Indeed,
corresponds to the relativistic correction of the elastic distortion
energy E;l’f, at rest, while the t