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On n’a peut-être pas encore prêté assez d’attention [à] l’utilité dont cette étude [de 
la Géométrie] peut être pour préparer comme insensiblement les voies à l’esprit 

philosophique, et pour disposer toute une nation à recevoir la lumière que cet esprit 
peut y répandre [...]. Bientôt l’étude de la Géométrie conduira [...] à la vraie Philo-
sophie qui par la lumière générale et prompte qu’elle répandra, sera bientôt plus 

puissante que tous les efforts de la superstition. 

Jean le Rond D’Alembert, article “Géométrie” de L’Encyclopédie, 1772

Si toute la connaissance scientifique disparaissait dans un cataclysme, quelle 
phrase unique pourrait préserver le maximum d'information pour les générations 

futures? Comment pourrions-nous leur transmettre au mieux notre compréhension 
du monde? Je propose: "Toutes choses sont faites d'atomes, petites particules 
animées d'un mouvement incessant, qui s'attirent lorsqu'elles sont distantes les 

unes des autres, mais se repoussent lorsqu'on les force à se serrer de trop près". 
Cette seule phrase contient, vous le verrez, une quantité énorme d'information sur 

le monde, pour peu que l'on y mette un peu d'imagination et de réflexion.

Richard P. Feynman

The more the universe seems comprehensible, the more it also seems pointless. 
But if there is no solace in the fruits of our research, there is at least some consola-

tion in the research itself [...] The effort to understand the universe is one of the 
very few things that lifts human life a little above the level of farce, and gives it 

some of the grace of tragedy.

Steven Weinberg, from “The First Three Minutes”

Imagination is more important than knowledge. For knowledge is limited to all we 
now know and understand, while imagination embraces the entire world, and all 

there ever will be to know and understand.

Albert Einstein

Pensons, il en restera toujours quelque chose!
(Think, there will always be something left!)

Snoopy





Introduction

This book is an essay whose purpose is to show that an Eulerian theory of the deformation of a 
Newtonian lattice in absolute space can be achieved by a judicious choice of the elastic and 
structural properties of this lattice, can provide an extremely rich and interesting framework of 
investigation for physics because it brings out very strong and often perfect analogies with all 
the great current physical theories of the Macrocosm and Microcosm, such as Maxwell's Equa-
tions, Special Relativity, Newtonian Gravitation, General Relativity, Modern Cosmology, Quan-
tum Physics and Standard Model of Elementary Particles.
This book does not present a theory of everything which would be completely elaborated and 
usable, but it would and could be extremely fruitful to give simple explanations to the modern 
physics theories which are very difficult, if not impossible, to deeply understand. It could also 
and above all be useful to define close links and unifying bridges between the diverse theories 
of modern physics.
In a first part of the book, one summarizes autonomously a first book  published in french du1 -
ring year 2013, which lays methodically the foundations of an original approach of the solid lat-
tices deformation using the Euler coordinates, and which introduces in details the concept of 
tensor dislocation charges and tensor disclination charges within a lattice. This new concept 
allows one to quantify the topological singularities which can appear at the microscopic scale of 
a solid lattice. On the basis of this original approach of the solid lattices and their topological 
singularities, one can deduct a set of fundamental and phenomenological equations allowing to 
treat rigorously the macroscopic spatiotemporal evolution of a newtonian solid lattice which de-
forms in the absolute space of an external observer laboratory.
In a second part of the book, one introduces an imaginary lattice, named « cosmological lattice 
» with quite special elastic and structural properties. The Newton equation of this lattice and its 
topological singularities present then a set of very surprising properties, which will be progressi-
vely developed in the course of the chapters. It will appear strong and amazing analogies with 
all modern physics theories: Maxwell equations, special relativity, newtonian gravitation, general 
relativity, modern cosmology, quantum physics and standard model of elementary particles.

The problem of unified field theories

One fundamental problem of modern physics is the search for a theory of everything able to 
explain the nature of space-time, what matter is and how matter interacts. Since the 19th centu-
ry, physicists have attempted to develop unified field theories, which would consist of a single 
coherent theoretical framework able to account for several fundamental forces of nature. For 
instance:
- Grand Unified Theory merges electromagnetic, weak and strong interaction forces,

 Théorie eulérienne des milieux déformables, charges de dislocation et de désinclinaison dans les so1 -
lides, G. Gremaud, Presses polytechniques et universitaires romandes, Lausanne, Suisse, 2013, 750 
pages (ISBN 978-2-88074-964-4)
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- Quantum Gravity, Loop Quantum Gravity and String Theories attempt to describe the quan-
tum properties of gravity, 
- Supersymmetry proposes an extension of the space-time symmetry relating the two classes of 
elementary particles, bosons and fermions,
- String and Superstring Theories are theoretical frameworks incorporating gravity in which 
point-like particles are replaced by one-dimensional strings, whose quantum states describe all 
types of observed elementary particles,
- M-Theory is a unifying theory of five different versions of string theories, with the surprising 
property that extra dimensions are required for its consistency.
However, none of them is able to consistently explain at the present and same time electroma-
gnetism, relativity, gravitation, quantum physics and observed elementary particles. Many phy-
sicists believe now that 11-dimensional M-theory is the theory of everything. However, there is 
no widespread consensus on this issue and, at present, there is no candidate theory able to 
calculate the fine structure constant or the mass of the electron. Particle physicists expect that 
the outcome of the ongoing experiments – search for new particles at the large particle accele-
rators and search for dark matter – are needed to provide further input for a theory of every-
thing.
But this research seems to have really stagnated for about 40 years, and many physicists now 
have serious doubts about the relevance of these theories. On this subject, I strongly advise 
readers to consult, among others, the books by Smolin , Woit  and Hossenfelder . Since the 2 3 4

1980s, thousands of theoretical physicists have published thousands of scientific articles that 
are generally accepted in peer-reviewed journals, even though these articles have contributed 
absolutely nothing new to the explanation of the Universe and do not solve any of the current 
mysteries of physics. An enormous amount of energy has been expended in developing these 
theories, which are becoming more and more remote from the physical reality of our world. It is 
a race to publish more and more esoteric articles and to search for a form of "mathematical 
beauty" at the expense of "physical reality".  In addition, enormous sums have been invested in 
this research, to the detriment of fundamental research in other areas of physics, in the form of 
the construction of increasingly complex machines. And, to the great despair of experimental 
physicists, the results obtained have brought virtually nothing new to high-energy physics, 
contrary to the "visionary" and optimistic predictions of the theorists.
In this book, the problem of the unification of physical theories is treated in a radically different 
way. Instead of trying to build a unified theory by tinkering with an assembly of existing theories, 
by complexifying them at will, even adding strange symmetries and additional dimensions to 
them for their "mathematical beauty", I start exclusively from the most fundamental classical 
concepts of physics that are Newton's equation and the first two principles of thermodynamics. 

 Lee Smolin, «The trouble with Physics», Penguin Books 2008, London, ISBN 978-0-141-01835-52

Lee Smolin, «La révolution inachevée d’Einstein, au-delà du quantique», Dunod 2019, ISBN 
978-2-10-079553-6
Lee Smolin, «Rien ne va plus en physique., L’échec de la théorie des cordes», Dunod 2007, ISBN 
978-2-7578-1278-5
 Peter Woit, «Not Even Wrong, the failure of String Theory and the continuing challenge to unify the laws 3

of physics», Vintage Books 2007, ISBN 9780099488644
 Sabine Hossenfelder, «Lost in Maths», Les Belles Lettres 2019, ISBN978-2-251-44931-94
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With the help of these fundamental principles, and by developing an original geometry based on 
Euler's coordinates, I come, by a purely logical and deductive path, to suggest that the Universe 
could be a crystal, an elastic and massive three-dimensional network, and that the constituent 
elements of Ordinary Matter could be structural defects (later called topological singularities) of 
this crystalline lattice, i.e. various dislocation and disclination loops that we will describe in de-
tail. I find, for an elastic isotropic lattice satisfying Newton's law, with specific hypotheses about 
its elastic properties, that the behaviours of this lattice and its topological singularities gather 
"all" the physics currently known, spontaneously showing very strong and often perfect analo-
gies with all the great current physical theories of the Macrocosm and Microcosm, such as 
Maxwell's Equations, Special Relativity, Newtonian Gravitation, General Relativity, Modern 
Cosmology and Quantum Physics. 
But this theory does not only find analogies with the other theories of physics, it also proposes 
quite original, new and simple explanations to many physical phenomena that are still quite 
obscure and poorly understood at the present time by physics, such as for example the mea-
ning and deep physical interpretation of cosmological expansion, electromagnetism, special  
relativity, general relativity, quantum physics, and particle spin. It also offers explanations of 
what quantum decoherence, dark energy, dark matter, black holes, and many other phenomena 
really are.
The detailed development of this approach also leads to some very innovative ideas, among 
which the most important is the appearance of the curvature charge, which is an unavoidable 
consequence of the treatment of a solid lattcie and its topological singularities in Euler coordi-
nates. This concept does not appear at all in all modern theories of physics, whether in general 
relativity, quantum physics or in the Standard Model, whereas in our approach this concept pro-
vides explanations for many obscure points of these theories, such as weak force, matter-anti-
matter asymmetry, the formation of galaxies, the segregation between matter and antimatter 
within galaxies, the formation of gigantic black holes in the heart of galaxies, the apparent di-
sappearance of antimatter in the Universe, the formation of neutron stars, the concept of dark 
matter, the bosonic or fermionic nature of particles, etc.
Finally, by studying lattices with special symmetries called axial, symbolically represented by 
"coloured" 3D face centered cubic lattices, we can identify a lattice structure whose looped to-
pological singularities coincide perfectly with the complex zoology of all the elementary particles 
of the Standard Model, and we can also find simple physical explanations of the weak and 
strong force of the Standard Model with all their specific properties and of the existence of three 
families of elementary particles. 

First part: searching for a new description of the lattice deformation

When one desires to study the solid deformation, one generally uses lagrangian coordinates to 
describe the evolution of the deformations, and diverse differential geometries to describe the 
topological defects contained in the solid.
The use of lagrangian coordinates presents a number of inherent difficulties. From the mathe-
matical point of view, the tensors describing the continuous solid deformation are always of or-
der higher than one concerning the spatial derivatives of the displacement field components, 
which leads to a very complicated mathematical formalism when the solid presents strong dis-
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tortions (deformations and rotations). To these mathematical difficulties are added physical diffi-
culties when one has to introduce some known properties of solids. Indeed, the lagrangian co-
ordinates become practically unusable, for example when one has to describe the temporal 
evolution of the microscopic structure of a solid lattice (phase transitions) and of its structural 
defects (point defects, dislocations, disclinations, boundaries, etc.), or when it is necessary to 
introduce some physical properties of the medium (thermal, electrical, magnetic or chemical 
properties) leading to scalar, vectorial or tensorial fields in the real space.
The use of differential geometries in order to introduce topological defects as dislocations in a 
deformable continuous medium has been initiated by the work of Nye  (1953), who showed for 5

the first time the link between the dislocation density tensor and the lattice curvature. On the 
other hand, Kondo  (1952) and Bilby  (1954) showed independently that the dislocations can be 6 7

identified as a crystalline version of the Cartan’s concept  of torsion of a continuum. This ap8 -
proach was generalized in details by Kröner  (1960). However, the use of differential geome9 -
tries in order to describe the deformable media leads very quickly to difficulties similar to those 
of the lagrangian coordinates system. A first difficulty arises from the complexity of the mathe-
matical formalism which is similar to the formalism of general relativity, what makes very difficult 
to handle and to interpret the obtained general field equations. A second difficulty arises with 
the differential geometries when one has to introduce topological defects other than disloca-
tions. For example, Kröner  (1980) has proposed that the existence of extrinsic point defects 10

could be considered as extra-matter and introduced in the same manner that matter in general 
relativity under the form of Einstein equations, which would lead to a pure riemannian differen-
tial geometry in the absence of dislocations. He has also proposed that the intrinsic point de-
fects (vacancies and interstitials) could be approached as a non-metric part of an affine connec-
tion. Finally, he has also envisaged introducing other topological defects, as disclinations for 
example, by using higher order geometries much more complex, as Finsler or Kawaguchi geo-
metries. In fact, the introduction of differential geometries implies generally a heavy mathemati-
cal artillery (metric tensor and Christoffel symbols) in order to describe the spatiotemporal evo-
lution in infinitesimal local referentials, as shown for example in the mathematical theory of dis-
locations of Zorawski  (1967). 11

Eulerian deformation theory of newtonian lattices

In view of the complexity of calculations in the case of lagrangian coordinates as well as in the 
case of differential geometries, it seemed to me that it would be better to develop a much sim-

 J.F. Nye, Acta Metall.,vol. 1, p.153, 19535

 K. Kondo, RAAG Memoirs of the unifying study of the basic problems in physics and engineering science 6

by means of geometry, volume 1. Gakujutsu Bunken Fukyu- Kay, Tokyo, 1952
 B. A. Bilby , R. Bullough and E. Smith, «Continuous distributions of dislocations: a new application of the 7

methods of non-riemannian geometry», Proc. Roy. Soc. London, Ser. A 231, p. 263–273, 1955
 E. Cartan, C.R. Akad. Sci., 174, p. 593, 1922  &  C.R. Akad. Sci., 174, p.734, 19228

 E. Kröner, «Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen», Arch. Rat. Mech. 9

Anal., 4, p. 273-313, 1960
 E. Kröner, «Continuum theory of defects», in «physics of defects», ed. by R. Balian et al., Les Houches, 10

Session 35, p. 215–315. North Holland, Amsterdam, 1980.
 M. Zorawski, «Théorie mathématique des dislocations», Dunod, Paris, 1967.11
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pler approach of deformable solids, but at least equally rigorous, which has been finally publi-
shed in a first book1 during year 2013: la théorie eulérienne des milieux déformables.
In the first part of the book, one presents a summary of this new and original eulerian approach 
of the deformation of solids through several sections:
- a first section (A) introduces the eulerian deformation theory of newtonian lattices. The defor-
mation of a lattice is characterized by distortions and contortions (chap. 1 to 3). A vectorial re-
presentation of the tensors, presenting undeniable advantages over purely tensorial representa-
tion thanks the possibility to use the powerful formalism of the vectorial analysis, allows to ob-
tain the geometro-compatibility equations of the lattice which insure its solidity, and the geome-
tro-kinetics equations of the lattice, which allow one to describe the deformation kinetics.
One introduces then the physics in this topological context (chap. 4), namely the newtonian dy-
namics and the eulerian thermo-kinetics (based on the first and second principles of thermody-
namics). With all these ingredients, it becomes possible to describe the particular behaviors of a 
solid lattice (chap. 5), as the elasticity, the anelasticity, the plasticity and the self-diffusion. This 
first section ends with the establishment of the complete set of evolution equations of a lattice in 
the Euler coordinate system (chap. 6).
- a second section (B) is dedicated to the applications of the eulerian theory (chap. 7). It pre-
sents very succinctly some examples of phenomenologies of everyday solids. One shows how 
to obtain the functions and equations of state of an isotropic solid, what are the elastic and 
thermal properties which can appear, how waves propagate and why there exist thermoelastic 
relaxations, what are the mass transport phenomena and why it could appear inertial relaxa-
tions, what are the common phenomenologies of anelasticity and plasticity, and finally how it 
can appear structural transitions of first and second order in a solid lattice.

Dislocation and disclination charges in eulerian lattices

Regarding the description of defects (topological singularities) which can appear within a solid, 
as dislocations and disclinations, it is a domain of physics initiated principally by the idea of ma-
croscopic defects of Volterra  (1907). This domain experienced a fulgurant development during 12

the twentieth century, as well illustrated by  Hirth  (1985). The lattice dislocation theory started 13

up in 1934, when Orowan , Polanyi  and Taylor  published independently papers describing 14 15 16

the edge dislocation. In 1939, Burgers  described the screw and mixed dislocations. And finally 17

in 1956, Hirsch, Horne et Whelan  and Bollmann  observed independently dislocations in me18 19 -
tals by using electronic microscopes. Concerning the disclinations, it is in 1904 that  Lehmann  20

 V. Volterra, «L’équilibre des corps élastiques», Ann. Ec. Norm. (3), XXIV, Paris, 190712

 J.-P. Hirth, «A Brief History of Dislocation Theory», Metallurgical Transactions A, vol. 16A, p. 2085, 198513

 E. Orowan, Z. Phys., vol. 89, p. 605,614 et 634, 193414

 M. Polanyi, Z. Phys., vol.89, p. 660, 193415

 G. I. Taylor, Proc. Roy. Soc. London, vol. A145, p. 362, 193416

 J. M. Burgers, Proc. Kon. Ned. Akad. Weten schap., vol.42, p. 293, 378, 193917

 P. B. Hirsch, R. W. Horne, M. J. Whelan, Phil. Mag., vol. 1, p. 667, 195618

 W. Bollmann, Phys. Rev., vol. 103, p. 1588, 195619

 O. Lehmann, «Flussige Kristalle», Engelman, Leibzig, 190420
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observed them in molecular crystals, and in 1922 that Friedel  gave them a physical explana21 -
tion. From the second part of the century, the physics of lattice defects has grown considerably.
In the first part of this essay, the dislocations and the disclinations are approached by introdu-
cing intuitively the concept of dislocation charges by using the famous Volterra pipes  (1907) 22

and an analogy with the electrical charges. With Euler coordinates, the concept of dislocation 
charge density appears then in an equation of geometro-compatibility of the solid, when the 
concept of flux of charges is introduced in an equation of geometro-kinetics of the solid. 
The rigorous formulation of the charge concept in the solids makes the essential originality of 
this approach of the topological singularities. The detailed development of this concept leads to 
the appearance of tensorial charges of first order, the dislocation charges, associated with the 
plastic distortions of the solid (plastic deformations and rotations), and of tensorial charges of 
second order, the disclination charges, associated with the plastic contortions of the solid (plas-
tic flexions and torsions). It appears that these topological singularities are quantified in a solid 
lattice and that they have to appear as strings (thin tubes) which can be modelized as unidi-
mensional lines of dislocation or disclination, or as membranes (thin sheets) which can be mo-
delized as two-dimensional boundaries of flexion, torsion or accommodation.
The concept of dislocation and disclination charges allows one to find rigorously the main re-
sults obtained by the classical dislocation theory. But it allows above all to define a tensor  of  
linear dislocation charge, from which one deduces a scalar  of linear rotation charge, which is 
associated with the screw part of the dislocation, and a vector  of linear flexion charge, which 
is associated with the edge part of the dislocation. For a given dislocation, both charges  and 

 are perfectly defined without needing a convention at the contrary of the classical definition 
of a dislocation with its Burger vector. On the other hand, the description of the dislocations in 
the eulerian coordinate system by the concept of dislocation charges allows one to treat exactly 
the evolution of the charges and the deformations during very strong volumetric contractions 
and expansions of a solid medium.
The description of this new approach of the topological defects of a lattice is briefly described 
by the two following sections of part one of the book:
- a third section (C) is dedicated to the introduction of dislocation charges and disclination 
charges in the eulerian lattices. After the analytical introduction of the concepts of density and 
flux of dislocation and disclination charges in the lattices (chap. 8), one presents a detailed re-
view of the lattice macroscopic and microscopic topological singularities which can be associa-
ted to the dislocation and disclination charges (chap. 9).
Then one discusses the motion of dislocation charges within the lattice by introducing the dislo-
cation charges flux of the dislocation charges and the Orowan relations (chap. 10). Finally, one 
deduces the Peach and Koehler force which acts on the dislocations, and one establishes the 
new set of evolution equations of a lattice in the Euler coordinate system (chap. 11), which 
takes into account the existence of topological singularities within the lattice.
- a fourth section (D) is dedicated to the applications of the charge concept within the eulerian 
solid lattice (chap. 12). It shows the elements of the dislocation theory in the everyday solids. 
One begins to show that, in the particular case of the deformation of isotropic lattices by pure 
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 G. Friedel, Ann. Physique, vol. 18, p. 273, 192221

 V. Volterra, «L’équilibre des corps élastiques», Ann. Ec. Norm. (3), XXIV, Paris, 190722
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shears, one can replace the shear strain tensor by the rotation vector, which allows one to find 
a set of equations, which corresponds strictly to all the Maxwell equations of electromagnetism. 
Then one shows how to calculate the fields and energies of the screw and edge dislocations in 
an isotropic lattice, just as the interactions, which can occur between dislocations. One finishes 
this section of applications by presenting the string model of dislocations, which is the funda-
mental model allowing one to explain most of the macroscopic behaviors of anelasticity and 
plasticity of crystalline solids.

Second part: searching for a “cosmological lattice”

In the first part of the book, it is shown that it is possible to calculate the resting energy  of 
the dislocations, which corresponds to the elastic energy stored in the lattice by their presence, 
and their kinetic energy , which corresponds to the kinetic energy of the lattice particles 
mobilized by their movement. This allows to attribute to the dislocations a virtual inertial mass 

 which satisfies relations similar to the famous equation  of the Einstein special 
relativity, but which is obtained here through purely classical calculations, without using relativity 
principles. Moreover, at high velocity, the dislocation dynamics satisfy also the special relativity 
principles and the Lorentz transformations.
It is also shown in the first part that it appears, in the case of isotropic solid media presenting a 
constant and homogeneous volumetric expansion, a perfect and complete analogy with the 
Maxwell equations of electromagnetism when the shear stress tensor is replaced by the rotation 
vector. The existence of an analogy between the electromagnetism and the theory of incom-
pressible continuous media has already been distinguished very long ago by several authors, 
as shown by Whittaker  (1951). However, this analogy is much more complete in my first 23

book1, because it is not restricted to one of the two Maxwell equation couples in the vacuum, 
but it is generalized to the two equation couples as well as to the diverse phenomenologies of 
dielectric polarization and magnetization of matter, just as to the electrical charges and the elec-
trical currents. The analogy with the Maxwell equations is very surprising on account of the fact 
that it is initially postulated a solid lattice satisfying a simple and purely newtonian dynamics in 
the absolute reference frame of the external observer laboratory, which is equipped with abso-
lute orthonormal measuring rods and an absolute clock. At the contrary, the topological singula-
rities within the lattice (dislocations and disclinations) with their respective charges, responsible 
for the plastic distortions and contortions of the lattice, are submitted to a relativistic dynamics 
within the lattice, due to the maxwellian equation set governing the shear strains of the massive 
elastic lattice. From this point of view, the relativistic dynamics of the topological singularities is 
a direct consequence of the purely classical newtonian dynamics of the elastic lattice in the ab-
solute frame of the external observer. 
Finally, it also appears in the first part that the tensorial aspect of the distortion fields at short 
distances of a localized topological singularities cluster formed by one or more dislocation or 
disclination loops can be easily neglected at great distances of the cluster, because the distor-
tion fields can then be completely described by only two vectorial fields, the vectorial field of 
rotation by torsion and the vectorial field of curvature by flexion, associated respectively to the 

E0

Ecin

M 0 E0 = M 0c
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only two scalar charges of the cluster, its scalar rotation charge  and its scalar curvature 
charge . The rotation charge becomes the perfect analogue of the electrical charge in the 
Maxwell equations, when the curvature charge presents some analogy with the gravitational 
mass in the gravitation theory.
The existence of analogies between the theories of continuum mechanics and solid defects and 
the theories of electromagnetism, special relativity and gravitation has already been the subject 
of several publications, from which the more famous are most certainly those of Kröner4,5. Ex-
cellent reviews in this physics field have also been published, in particular by Whittaker20 (1951) 
and Unzicker  (2000). But none of these publications has gone as far as the approach publi24 -
shed in my first book1 concerning these highlighted analogies.
The numerous analogies which appear in the first book1 between the eulerian theory of defor-
mable media and the theories of electromagnetism, gravitation, special relativity, general relati-
vity and even standard model of elementary particles, reinforced by the absence of particles 
analogue to magnetic monopoles, by a possible solution of the famous paradox of electron field 
energy and by the existence of a small asymmetry between curvature charges of vacancy or 
interstitial type, were sufficiently surprising and remarkable to alert any open and curious scien-
tific spirit. But it was also clear that these analogies were, by far, not perfect. It was then tantali-
zing to analyze much more carefully these analogies and to try to find how to perfect them. That 
is the reason of this present essay,  of which the second part is entirely allotted to the deepe-
ning, the improvement and the understanding of these analogies.
The second part of this book is composed of five sections. Progressively, by introducing several 
judicious conjectures which are summarized in Appendix D, one addresses the problem of the 
analogies existing between (i) the eulerian theory of lattice deformation described in the first 
part , and applied to a very particular lattice, the cosmological lattice, and (ii) the modern phy-
sics theories of the macrocosm and the microcosm, as the Maxwell equations, the special rela-
tivity, the newtonian gravitation, the general relativity, the modern cosmology, the quantum me-
chanics and the standard model of elementary particles.

The “cosmological lattice” and its Newton’s equation

A first section (A) of part two is dedicated to the introduction of the « cosmological lattice ». 
By introducing particular elastic properties for the volumetric expansion, the shear strain and 
especially the rotation field and by expressing the distortion free energy per volume unit of the 
lattice, one obtains an imaginary lattice which presents a very particular Newton equation. In-
deed, it appears in particular a novel force term directly related to the distortion free energy due 
to the singularities contained in the lattice, which will play subsequently a very important role for 
the analogies with the gravitation and the quantum physics (chap. 13). 
Then one shows that the propagation of waves in this cosmological lattice presents interesting 
particularities (chap. 14): propagation of linear polarization transversal waves is always associa-
ted with longitudinal wavelets, and propagation of pure transversal waves can only be done by 
circularly polarized waves (which will be strongly linked with the photons). On the other hand, 
when the local value of the lattice volumetric expansion becomes less than a given critical va-
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lue, propagation of longitudinal waves disappears for the benefit of the appearance of localized 
longitudinal vibrations modes (which will be strongly linked with the quantum physics).
Afterwards, the calculation of the curvature of wave rays in the vicinity of a singularity of the 
lattice volumetric expansion allows one to find the conditions for which this expansion singulari-
ty becomes a real capturing trap for the waves, in other words a « black hole »  (chap. 15).
Finally, one shows that such a cosmological lattice, if finite in the absolute space, can present 
dynamical volumetric expansion and/or contraction if it contains some quantity of expansion 
kinetics energy (chap. 16). This phenomenon is perfectly similar to the cosmological expansion 
of the universe. Following the signs and the values of the lattice elastic modules, several cos-
mological behaviors of the lattice can appear, some of which presenting phenomena as big-
bang, rapid inflation and acceleration of the expansion velocity, which can be sometimes follo-
wed by a re-contraction of the lattice driving to a big-bounce phenomenon. One deduces that it 
is the expansion elastic energy contained in the lattice which is responsible for these phenome-
na, and notably for an expansion velocity increase, a phenomenon which has been recently 
discovered by the astrophysicists in the case of the present universe, and which has been attri-
buted to a hypothetical « black energy ».

Maxwell’s equations and special relativity

A second section (B) is dedicated to the Maxwell equations and the special relativity. 
One begins to show that the Newton equation of the cosmological lattice can be separated in a 
curl part and a divergent part, and that the curl part creates a set of equations for the macro-
scopic rotation field which is perfectly identical to the set of the Maxwell equations of the elec-
tromagnetism (chap. 17).
Then one shows that the Newton equation can also be separated in a different manner, in two 
partial Newton equations allowing to calculate on the one hand the distortion elastic fields asso-
ciated with the topological singularities, and on the other hand the volumetric expansion pertur-
bations associated with the distortion elastic energies of the topological singularities (chap. 18). 
By using the first partial Newton equation, on can calculate the fields and energies of elastic 
distortions generated by topological singularities within the cosmological lattice (chap. 19). One 
can then find conditions on the elastic modules of this lattice such as it is possible to attribute in 
a perfectly conventional manner an inertial mass to the topological singularities, which always 
satisfies the famous Einstein relation .
Then one demonstrates that the topological singularities satisfy a typically relativist dynamics 
when their velocity inside the lattice becomes close to the celerity of the transversal waves 
(chap. 20).
On these foundations, one finishes by discussing the analogy between this approach and the 
theory of special relativity (chap. 21). One notices that the cosmological lattice acts in fact as an 
aether, in which the topological singularities satisfy exactly the same properties than those of 
the special relativity concerning the length contraction, the time dilatation, the Michelson-Morley 
experiment and the Doppler-Fizeau effect. The existence of the cosmological lattice allows then 
to explain very simply some obscure sides of the special relativity, as for example the twin pa-
radox.
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Gravitation, general relativity, weak interaction and cosmology

A third section (C) is dedicated to the Gravitation and the Cosmology. 
It is shown that the expansion field perturbations associated with a localized topological singula-
rity are in fact an expression of the existence of a static external "gravitational field" at a long 
distance from this singularity, as long as this singularity has an energy density or rotation char-
gedensity below a certain critical value. 
Thanks to the second partial Newton equation, one begins with the calculation of the external 
expansion perturbations, that is to say the external scalar gravitation field, associated with a 
localized macroscopic topological singularity, knowing either its distortion elastic energy, or its 
curvature charge, or its rotation charge. 
Immediately afterwards, one describes also macroscopic vacancy singularities and macrosco-
pic interstitial singularities, which can appear within the lattice in the form of a macroscopic hole 
in the lattice or an interstitial embedment of a piece of lattice. These singularities will become 
subsequently the ideal candidates to explain respectively the black holes and the pulsars of our 
universe.
By applying the calculations of the external gravitation field of topological singularities to locali-
zed microscopic topological singularities, in the form of loops of screw disclination, loops of 
edge dislocation or loops of mixed dislocation, one deduces the whole of the properties of these 
loops. It appears then the new concept of « curvature mass » of the edge dislocation loops, 
which corresponds to the equivalent mass associated to the gravitational effects of the curva-
ture charges of these loops, and which can be positive (in the case of loops of vacancy type) or 
negative (in the case of loops of interstitial type). In fact, the curvature charge and the equiva-
lent curvature mass which is associated do not appear in any other physics theory, neither in 
general relativity, nor in quantum physics, nor in standard model of elementary particles. The 
appearance of this new curvature charge is certainly the most important finding of our ap-
proach, because it is precisely that curvature mass which is responsible for a small asymmetry 
between the particles (hypothetically containing edge dislocation loops of interstitial type) and 
the antiparticles (hypothetically containing edge dislocation loops of vacancy type), which will 
play a fundamental role concerning the cosmological evolution of the topological singularities 
within the universe.
By considering the gravitational interactions existing between the topological singularities com-
posed essentially of screw disclination loops, one can deduce the behaviors of the measuring 
rods and clocks of local observers as a function of the local expansion field which takes place 
within the cosmological lattice. One shows that, for any local observer, and whatever is the va-
lue of the local volumetric expansion of the lattice, the Maxwell equations remain always per-
fectly invariant, so that, for this observer, the transversal wave velocity is a perfect constant, 
when the transversal wave velocity measured by an observer situated outside the lattice in the 
absolute space depends strongly on the local expansion of the lattice.
One shows that these gravitational interactions present strong analogies with the Newton’s gra-
vitation and with the general relativity, and one discusses in details the perfectly analogue 
points, as the perfect analogy with the Schwarzschild metric at great distances from massive 
objects and the curvature of wave rays by massive objects.
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But one shows that our eulerian theory of the cosmological lattice provides also new elements 
to the gravitation theory, notably modifications of the Schwarzschild metric at very short dis-
tances from massive objects, and a better understanding of the critical radii associated with 
black holes: the radii of the photon perturbation sphere and of the point of no return become 
both equal to the Schwarzschild radius , and the limit radius for which 
the time dilatation of a falling observer would stretch to the infinite becomes zero, so that our 
theory is not limited beyond the Schwarzschild sphere for the description of a black hole.
One establishes next a complete table of all the gravitational interactions existing between the 
diverse topological singularities of the cosmological lattice, and one finds that the gravitational 
interactions between screw disclination loops is largely dominant. 
By considering now a topological singularity formed by coupling a screw disclination loop with 
an edge dislocation loop, called a dispiration loop, it appears an interaction force similar to a 
catch potential, with a very small range, which allows interactions between loops presenting a 
perfect analogy with the weak interactions between elementary particles of the standard model.
On the basis of the cosmological behaviors of a lattice described in section (A), and the gravita-
tional interactions between topological singularities described in section (C), on can imagine a 
very plausible scenario for the cosmological evolution of the topological singularities, leading to 
the present structure of our universe. This scenario allows one to give a very simple explanation 
of several facts still poorly understood, as the formation of galaxies, the disappearance of anti-
matter, the formation of gigantic black holes at the heart of the galaxies, and even the famous 
« dark matter » that the astrophysicists had to concoct for explaining the gravitational behavior 
of the galaxies.
In our approach, the dark matter would be in fact a sea of repulsive neutrinos in which the ga-
laxies would have precipitated and would be immersed. Indeed, in the case of the simplest 
edge dislocation loops, analogically similar to neutrinos, the « gravitational curvature mass » 
dominates the inertial mass, so that the neutrinos should be the only particles gravitationally 
repulsive, when the antineutrinos should be gravitationally attractive. It is this surprising particu-
larity which could explain the formation of a repulsive neutrinos sea playing the role of dark mat-
ter for the galaxies, due to the compression force exerted by the repulsive neutrinos sea on the 
galaxies periphery.
Finally, one shows how can be treated the Hubble constant, the galaxy redshift and the evolu-
tion of the cosmological microwave background in the frame of our eulerian theory of cosmolo-
gical lattice.

Quantum physics, particles spin and photons

A fourth section (D) is dedicated to the quantum physics and the standard model of particles. 
In the case where the energy density or rotation charge density of a topological singularity be-
comes greater than a certain critical value, the expansion field associated with this localized 
topological singularity becomes a dynamic perturbation of the expansion, which will cause 
quantum behaviors of this singularity to appear. The critical value of the energy density or rota-
tional charge density then becomes an extremely important quantity since it actually corres-
ponds to a quantitative value that defines the famous quantum decoherence limit, i.e. the limit 
of passage between a classical and a quantum behaviour of a topological singularity.

RSchwrzschild = 2GM / c2
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One begins by using the second partial Newton equation, in the dynamical case, to show that 
there exists also longitudinal gravitational perturbations associated to moving topological singu-
larities inside the lattice. By conjecturing operators similar to those of the quantum mechanics, 
one shows then that the second partial Newton equation allows one to deduce the gravitational 
fluctuations associated to a topological singularity moving quasi-freely with relativistic velocities 
within the lattice.
In the case of non-relativistic topological singularities bonded to a potential, one shows that the 
second partial Newton equation applied to the longitudinal gravitational fluctuations associated 
to these singularities leads to the Schrödinger equation of the quantum physics, which allows 
one for the first time to give a simple and realistic physical interpretation to the Schrödinger 
equation and to the quantum wave function: the quantum wave function deduced from the 
Schrödinger equation represents the amplitude and the phase lag of longitudinal gravitational 
vibrations associated to a topological singularity within the cosmological lattice.
All the consequences of the Schrödinger equation appear now with a simple physical explana-
tion, as for example the stationary wave equation of a topological singularity placed inside a 
static potential, the Heisenberg uncertainty principle and the probability interpretation of the 
square of the wave function.
In the case where the gravitational fluctuations of two topological singularities are coupled, it 
appears also very simply the concepts of bosons and fermions, as well as the Pauli exclusion 
principle.
At the heart of a topological singularity loop, one shows that there cannot exist static solutions 
to the second partial Newton equation for the longitudinal gravitational fluctuations. It becomes 
then necessary to find a dynamical solution to this equation. The most simplest dynamical solu-
tion is to imagine that the loop rotates around one of its diameter. By solving this rotation motion 
with the second partial Newton equation, which is nothing other than the Schrödinger equation, 
one obtains a quantified solution for the internal gravitational fluctuations of the loop. This solu-
tion is in fact nothing other than the quantic loop spin, which can take several different values 
(1/2, 1, 3/2, …) and which is perfectly similar to the spin of particles in the standard model. If the 
loop is composed of a screw disclination loop, it appears also a magnetic moment of the loop, 
proportional to the famous Bohr magneton. The notorious argument of the quantum physics 
pioneers wherein the spin cannot be a real rotation of the particle on itself because the equato-
rial velocity should become superior to light velocity, is swept out in our approach by the fact 
that the static expansion at the vicinity of the loop heart is so high that the light velocity be-
comes much higher that the equatorial rotation velocity of the loop.
In this argumentation about the absolute necessity of a spin of the singularity loops for satis-
fying the second partial Newton equation, only the exact value of the spin of a loop, namely 1/2 
or 1, does not find at the moment a simple explanation.
One finishes by showing how to construct a pure transversal wave packet with a circular polari-
zation and why it appears a quantification of the energy of these fluctuations. These waves pa-
ckets form quasiparticles which have properties perfectly similar to the quantum properties of 
photons: circular polarization, zero mass, non-zero momentum, non-locality, wave-particle duali-
ty, quantum entanglement and quantum decoherence.
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Standard model of elementary particles, strong force and crystalline ether

In the second part of this section (D), one searches for the ingredients which have to be added 
to the cosmological lattice in order to find an analogy between the loops and the diverse par-
ticles of the standard model. In this third version of the book (2021), I introduce a face-centered 
cubic lattice, which I poetically call the crystalline ether, which was suggested to me by my 
friend Willy Benoit. One shows that, by introducing such a face centered cubic lattice (FCC) 
with three families of planes (imaginary « colored » in red, green and blue), satisfying some 
simple rules concerning their successive arrangement and their mutual rotation, one finds topo-
logical loops perfectly analogous to all the particles, leptons and quarks, of the first family of 
elementary particles of the standard model. One finds also topological loops analogous to the 
W and Z bosons of the standard model. It appears also spontaneously a strong force, in the 
sense that this force presents an asymptotical behavior, acting between the loops analogous to 
the quarks of the standard model. This strong force is generated by the existence of a tube of 
connecting fault energy between the dense planes of the FCC lattice, tube which binds together 
the quarks. The quarks have then to group together in triplets to form combinations of three 
loops analogous to the baryons, or in doublets to form combinations of loop-anti-loop analogous 
to the mesons. Furthermore, one finds also topological bicolor loops which correspond perfectly 
to the gluons associated to the strong force in the standard model.
To explain then the existence of three families of quarks and leptons in the Standard Model, we 
show that the introduction of stacking faults within the edge loops between the axial dense 
planes of the CFC structure, with high values of the fault energy, allows to explain in a very sa-
tisfactory way the existence of three families of particles of very different energies. 
Finally, the interest of this strong analogy between the topological singularities of a "colored" 
face-centered cubic cosmological lattice model and the elementary particles of the Standard 
Model is discussed, followed by a discussion of the still open questions concerning this analogy.

Vacuum quantum state fluctuations, multiverse cosmological theory and gravitons

A fifth section (E) is dedicated to some very hypothetical consequences concerning the pure 
gravitational fluctuations associated to the perfect cosmological lattice. 
One can imagine the existence of pure longitudinal fluctuations within the cosmological lattice, 
which are not correlated with the presence of topological singularities, and which can be treated 
either as random gravitational fluctuations that could present some analogy with the vacuum 
quantum state fluctuations, or as stable gravitational fluctuations that could lead at the macro-
scopic scale to a cosmological theory of multiverse. At the microscopic scale, stable gravitatio-
nal fluctuations could also lead to stable quasiparticles which could be called gravitons, by ana-
logy with the photons, but which have nothing common with the gravitons postulated in the 
frame of the general relativity.
One finishes this book by a general conclusion in which one shows the central roles played by 
the Newton equation and by the microscopic structure of the cosmological lattice. One high-
lights also the numerous positive points, but also the still misunderstood points, which have ap-
peared throughout this essay concerning the analogy between the newtonian cosmological lat-
tice and all the theories of modern physics.
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Chapter 1 

Distortions of a lattice 

In this chapter, one introduces a description of the solid deformable lattices in the 
Euler coordinate system. From the definition of the field of average velocity  of 
the sites of a lattice in the absolute frame of an observer GO, one deduces a volu-
metric expansion scalar  and a rotation vector , which satisfy geometro-kinetic 
equations of spatiotemporal evolution.
One shows then these two entities are in fact the trace and the antisymmetric part 
of a more general tensor, called the distortion tensor, which will be represented in 
vectorial notation by , and which satisfies also a geometro-kinetic equations in 
the Euler coordinates. From this tensor, one deduces also a strain tensor  and a 
shear tensor  of the solid lattice.
Later, with some simple examples of velocity fields  associated with diverse 
known movements of the medium, one verifies that the topological tensors , , 

,  and describe perfectly the distortions, the deformations, the shear 
strains, the rotations and the volumetric expansions which can appear within a so-
lid lattice.

1.1 - Spatiotemporal evolution of a deformable medium

If an observer, who will be called the Great Observer GO, wants to describe in his laboratory the 
spatiotemporal evolution of a given continuous medium which moves in the space by translation 
and rotation, and which can moreover deform in the course of time (figure 1.1), he has first to 
define the type of kinetic which he has to use. Using as basic axiom that the spatiotemporal 
evolution of the medium is described by a galilean kinetic, and as a consequence by a principle 
of velocity additivity, the observer GO can describe this evolution on the basis of the absolute 
frame of his laboratory. This reference frame is composed of an orthonormal basic frame 

, that is three orthogonal measuring rods of unit length , and one universal 
clock, insuring that the time  is measured in identical way everywhere in his laboratory (figure 
1.1).
In order to describe simply and completely the spatiotemporal evolution of the continuous me-
dium, the observer can use a lagrangian coordinate system. First of all, he carries out a marking 
of the material medium at the initial time  by means of a grid of points . He can then 
define a moveless local frame , situated at the point identified by  in the frame of his 
laboratory. By equipping this fixed frame  with measuring rods of unit length 

, and by positioning it judiciously with regard to the initial position of the medium at 
time , he can measure the positions of all the points  of the medium at the initial time 

  by means of vectors . At a time , a point  of the medium will move at , and 
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the observer can then link up the point  to the point  by using a vector , which is called 
the displacement vector of the point . As this vector is dependent on the initial position  of 
the point  and on the time , the whole of vectors  locating all the points of the me-
dium is called the displacement field of the medium in lagrangian coordinates.

The concept of continuous medium at the macroscopic scale

The expression of continuous medium is an intuitive concept meaning that the medium does not 
present during its spatiotemporal evolution and at the macroscopic scale where it is observed, 
neither the appearance of discontinuous structures, nor the forming of discontinuities such as 
tears or local breakings, nor the forming of cavities.

Figure 1.1 - spatiotemporal evolution of a medium in the absolute frame

From the macroscopic observation of the behavior of the medium, and in particular of the conti-
nuity of the displacement field , it is possible to attribute some appellations to the observed 
medium. 
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If the medium presents a displacement field  perfectly continuous during its spatiotemporal 
evolution, it is qualified of solid medium. It owns then a macroscopic shape which is difficult to 
modify.
On the other hand, if the medium presents a discontinuous displacement field  which forms an 
inextricable tangle in the course of time, it is qualified of fluid medium. It owns then the macro-
scopic property to flow, and has consequently to be maintained in a container from which it 
takes the shape. In this case, the displacement field  lost its original physical sense and mea-
ning, and only the local velocity  of the fluid at time  and at the space coordinates  of 
the absolute frame maintains a physical sense. In this book, one will be essentially concerned 
by the case of solid medium.

The concept of continuous medium at the microscopic scale

The concept of continuous solid medium is applicable only when the medium is observed at a 
macroscopic scale. Indeed, an enlargement of the same medium at a sufficiently microscopic 
scale will show a discontinuous collection of objects (fig. 1.1), at which one will afterwards attri-
bute the generic name of particles (for example corpuscles, atoms, molecules, etc.). One logi-
cally concludes that the global phenomenological properties observed at the macroscopic scale 
where the medium seems continuous are in fact statistical effects resulting from the great num-
ber of particles which interact between themselves at the microscopic scale.
The enlargement of the medium allows also to define some of its important microscopic charac-
teristics, as its structure, that is the manner in which its particles are assembled together, and its 
chemical composition, that is the nature of its particles.
A continuous medium will be called solid when, at the microscopic scale, it corresponds to a 
collection of particles such as the identity of the nearest neighbour particles of a given particle 
does not change in the course of time. In other words, each particle is bounded to its nearest 
neighbour particles by stiff bond which prevent long distance motions. As a consequence, only 
short distance motions from the nearest neighbour particles are permitted, due to the elasticity 
of the bonds. By the action of these bonds, the particles of the medium form a solid lattice.

The different classes of solid lattices

It is possible to define diverse classes of solid lattices, depending on the arrangement of the 
particles relative to each other. If the particles presents an arrangement well established, which 
repeats at long range by translation of an elementary unit cell, one speaks about a lattice with a 
crystalline structure. For example, the two-dimensional lattice reported in figure 1.2(a) and ob-
tained by the translation of a hexagonal unit cell presents a perfect order at long range as well 
as at short range.
Some solid lattices can present arrangements of their particles without long range order, but 
only a certain order at short range. One speaks in this case about a lattice with an amorphous 
structure. The two-dimensional example reported in figure 1.2(b) represents an amorphous lat-
tice of particles, obtained by paving the surface with irregular pentagons, hexagons and hepta-
gons with fixed length sides. The short range order of the lattice is reflected by the fact that each 
particle possesses exactly three closest neighbours.
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Solid lattices can also exist with particle arrangement which does not present long range trans-
lation order, but a certain order by rotation. One speaks then about a lattice with a quasicrystal-
line structure, represented by the example in figure 1.2(c) which shoes clearly the absence of 
long range order by translation.

Figure 1.2 - two-dimensional lattices with crystalline (a), amorphous (b) and quasicrystalline (c-d)
 arrangements of their particles

This lattice is obtained by paving the surface with two types of diamond shaped unit cells with 
different apex angles (Penrose paving). At first sight, this lattice seems amorphous. But a more 
detailed analysis reported in figure 1.2(d) shows that the particles aligned with parallel straight 
lines. The distances between these parallel lines are not regular, and there exists in fact five 
different privileged directions for the orientation of these alignments. This means that this two-
dimensional quasicrystalline structure presents a kind of fifth order rotation symmetry, which is 
not allowed in the case of the crystalline structures obtained by translation of base patterns.
The examples shown in figure 1.3b are two-dimensional representations. It is then necessary to 
generalize these notions to the three-dimensional space. In three dimensions, the crystalline 
lattices are constituted by the translation of a three-dimensional elementary volume, called the 
unit cell of the lattice (figure 1.3). The crystalline lattices can be defined by the lengths of the 
edges of the unit cell and the angles between them, which are called the lattice parameters. The  
crystal structures can be grouped in seven lattice systems according to the axial system used to 
describe their lattice. Considering the possible  arrangement of the atoms relative to each other 
in the unit cell (lattice centerings P, C, I or F), one arrives at the fourteen Bravais lattices repre-
sented in figure 1.3. Using the symmetry operations of rotation, reflection and inversion that 
leave at least one point unmoved and the appearance of the crystal structure unchanged, one 
can still define 32 possible crystallographic point groups. Using the symmetry operations asso-
ciated to the translation, one can finally define 230 distinct space groups.
It is interesting to note that the lattice centerings leads to different values of the number of sub-
stitutional sites of the unit cell which can contain a bounded particle. For example in the case of 

(a)

(b)

(c)

(d)
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the cubic lattice system, the number of substitutional sites of the unit cell is one for the simple 
cubic lattice, 2 for the body-centered cubic lattice and 4 for the face-centered cubic lattice.

Figure 1.3 - the seven crystalline systems and the fourteen Bravais lattices 

In the case of unordered solid medium as the amorphous solids, the quasicrystalline solids or 
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the polycrystalline solids with very fine grains, the notion of lattice unit cell has no more mea-
ning.  But the concept of lattice site keeps a physical meaning, in the sense that it corresponds 
to a substitutional site of the unordered solid lattice.

The concept of topological singularities in a solid lattice

In the case of an ordered solid lattice, it can appear structural defects inside the regular arran-
gement of the lattice particles. These structural defects have diverse origins as irregularities of 
the chemical species of the lattice, or topological singularities, that is irregularities in the topolo-
gical structure of the lattice which can be punctual, linear or planar following their topology. It is 
also by observations of the dynamics at the microscopic scale, during the macroscopic spatio-
temporal evolution of the lattice, that it will be possible to understand the objective reasons of 
some macroscopic behaviors. For example, one will see that it can exist close links between the 
macroscopic properties of deformation of ordered lattices and the distorsions of the lattice unit 
cell induced by the presence of mobile topological singularities within the lattice, as dislocations 
or disclinations.
As a conclusion, a complete description of the spatiotemporal evolution of a lattice which can be 
considered as continuous at the macroscopic scale cannot be obtained without a description of 
the phenomena which take place at the microscopic scale. The search of a theory describing 
the macroscopic spatiotemporal evolution of a continuous deformable lattice has to be based on 
the definition of average macroscopic fields (scalar, vectorial and tensorial) deduced from a sta-
tistical description of the dynamics at the microscopic scale of a multitude of objects interacting 
with each other.

The lagrangian and the eulerian coordinate systems

In order to describe the spatiotemporal evolution of a deformable continuous medium, there 
exist two well known coordinate systems: the lagrangian coordinate system, used generally to 
describe the deformation of solids, and the eulerian coordinate system, used generally to des-
cribe the hydrodynamics of fluids.
The lagrangian coordinate system is based on the description of the temporal evolution of the 
previously defined displacement field , knowing the initial coordinates  of all the points 
of the solid in a fixed reference frame  of the observer laboratory, as illustrated in figure 
1.1.
Concerning the eulerian coordinate system, it is based on the description of the temporal evolu-
tion of the velocity field  of the medium points situated at the space coordinates  at the 
time  in the absolute reference frame  of the observer laboratory.
The lagrangian coordinate system is well adapted to the description of the evolution of solid lat-
tices which deform very weakly, but becomes perfectly unusable to describe strong deforma-
tions of a lattice, or to describe a lattice containing topological singularities. The eulerian coordi-
nate system is much more general, because it allows one to describe not only the fluids, but 
also the solid lattices presenting strong deformations or containing topological singularities. It is 
the reason why we develop in this essay an eulerian description of the spatiotemporal evolution 
of deformable solid lattices.
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1.2 - Definition of local quantities in Euler coordinates

The average local velocity 

In the case of a collection of solid state particles in the space, each particle  has its own veloci-
ty . In order to determine the average local velocity of the particles, one has to fix a small 
element of volume  centered on the space coordinates  (figure 1.4), then to measure the 
velocities  of all the particles contained in this fixed volume . If the instantaneous number 
of particles contained in this volume  is equal to , and if  is sufficiently large, the ave-
rage velocity  at the place  and the instant  can be defined by the following expression

(1.1)

If an average velocity  different of zero is measured, this means also that it is possible to find 
for each particle a fluctuation  to the average velocity  by the relation

(1.2)

Figure 1.4 - search of the average local velocity of a lattice in the volume 

In a solid lattice, the existence of an average velocity  different from zero involves that 
the solid lattice of particles be submitted to a collective movement. The velocity  repre-
sents then the average local velocity of displacement of the particles bound to the lattice sites, 
which corresponds to the average velocity of the lattice sites, when the  are the fluctuations 
of velocity of the particles bounded to the lattice around each of these sites. For example, in a 
real solid, such fluctuations are due to the disordered motions of the thermal agitation of the 
particles associated directly to the solid temperature.
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The local density of elementary substitutional sites of the lattice

Besides the average local velocity  of the sites of a macroscopically continuous lattice, 
there is also an other quantity which will play a fundamental role in Euler coordinates: it is the 
volume density of elementary substitutional sites of the lattice which will be written . This 
choice will involve to define all the physical quantities characterizing the solid lattice as average 
values taken on each site of the lattice. It is clear also that, in disordered lattice, the quantity 
can be related to the volume density of elementary sites of the disordered lattice.

Figure 1.5 -  average velocity of the collective motion of the sites of a solid lattice 

This density is a local average value which can be expressed as a function of  and 
(1.3)

The quantity  has to satisfy a continuity equation. In order to express this equation, one has to 
consider a volume  moving with the lattice at the velocity . The total number  of sites of 
the lattice contained in the volume  is given by

(1.4)

Over times, this total number  can vary only if it exists sources of lattice sites inside the vo-
lume , since the volume  follows the medium at the velocity . The continuity equation 
can be written by equating the temporal variation of  with a term of source 

(1.5)

In this relation  is the term of volume source of sites of lattice, which is the number of sites of 
the lattice created of annihilated by unit of volume and unit of time within the lattice under consi-
deration.
With (A.58) applied to a mobile volume, expression (1.5) becomes
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(1.6)

which holds for any mobile volume  we choose, and the equation of local continuity for  
can be read off

(1.7)

This equation links the local density  of sites of lattice and the average velocity  of 
these sites.  We will discuss later the possibility of existence of sources of sites  within the 
lattice.

The material derivative in eulerian coordinates

Relation (1.7)  can be transformed by expanding the term in the divergence

(1.8)

and then using operator , defined in section A.3

(1.9)

We introduce here an important operator in eulerian coordinates called the material derivative, 
and represented by the symbol (straight derivative instead of curled)  and defined as

(1.10)

This operator corresponds to the temporal derivative of a quantity observed along the trajectory 
of the sites of the lattice. It consists in fact in calculating the total derivative of , with res-
pect to time, as shown in the following equalities

(1.11)

With this operator, the continuity equation  can be presented as a path derivative

(1.12)

The equation of continuity for density  of sites of lattice is fundamental, because we are going 
to base all solid lattices in eulerian coordinates.   

Non-commutativity of spatial and temporal operators in eulerian coordinates

In eulerian coordinates, the principal operator of time, the material derivative  along the 
path, does not, in general commute with the operators of space ,  and . This im-
portant property of operators can be verified.  Indeed for any vector  defined in the medium 
we have
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(1.13)

We deduce the relation of commutation between the rotational and the material derivative which 
can be written in the form

(1.14)

Similar expressions can be found for the gradient of a scalar  or the divergence of a vector 

(1.15)

(1.16)

1.3 - Eulerian geometro-kinetic equations

A definition of the volume expansion of a lattice

The volume density  of sites of the solid lattice is directly linked to the volume expansion of 
the medium.  In fact  for large expansions and  for large contractions. This notion 
of volume expansion of the lattice can be better captured with a quantity  defined as the in-
verse of 

(1.17)

Indeed this quantity  has the dimension of a volume.  It represents the average volume occu-
pied by an elementary site of the lattice.  This volume  translates the intuitive notion of  vo-
lume expansion of the medium, as  for large expansions and  for intense 
contractions. But relationship (1.12) transforms also in the following way

(1.18)

In this expression, we can choose the constant to be , and we can then define the di-
mension-less scalar  with relation

(1.19)

We will call it the scalar of volume expansion, which satisfies the following equation of geome-
tro-kinetic

(1.20)

and which measures perfectly the notion of volume expansion of the lattice as this time  
for large expansions (when ),  and  for intense contractions (when ) and  
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 when .   Given the construction of the scalar , the constants  et  introdu-
ced here can be freely adjusted to signify a null expansion of the lattice ( ).

A definition of the global rotation and the contorsions of a lattice

If the field  is not homogenous in space, then the lattice can have, aside from volume 
expansions, movements that correspond to a global rotation and local rotations, which imply 
contorsions (flexions and torsions) of the medium in space.  To explain these rotational move-
ments, we must determine the average local angular speed of the lattice. To that end, one must 
imagine within the lattice a circle of diameter  centered on  with coordinates  and orien-
ted perpendicular to axis  as shown in figure 1.6.  The average tangential velocity  
along the circle can be written

(1.21)

If the medium is rotating locally, or globally, about  around axis , the average tangential 
velocity  thus calculated will be different than zero.  The average angular velocity  of 
the lattice at , around the axis , is obtained simply by dividing the average tangential 
velocity  by the circle radius 

(1.22)

With this expression of , the theorem of the rotational (A.38)  allows one to transform the 
integral on a circular boundary  to an integral on the surface  enclosed within the boundary

(1.23)

Figure 1.6 - measure of local angular velocity of rotation of the lattice

The expression between parenthesis is the average value of  on the disk of radius , so 
that when , there appears the local angular velocity  of the medium around the axis 
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(1.24)

The vector of local angular velocity  of the medium is easily deduced

(1.25)

This vector  allows us to define the vector of rotation .  Along the path in the medium, the 
local variation  of the angle of rotation is given by , so that it is possible to write a 
geometro-kinetic equation similar to expression (1.20) of the scalar of volume expansion, which 
involves the material derivative of the vector of rotation 

(1.26)

It is interesting to note here that the variation of the scalar of volume expansion  is due to a 
divergent part in the field of velocity  (1.20), whereas the variations in the local rotation vector 

 is a consequence of the existence of a rotational part of the same field (1.26).

1.4 - Eulerian distortion tensors

In the presence of a velocity field  which is not homogenous in space, a lattice can exhi-
bit movements, besides the global translation and rotation, corresponding to local rotations (tor-
sions) as well as various types of deformations, such as volume expansion and shear.

To describe these deformations with rotations, which we will generically call distortions of the 
lattice, we have to precisely describe the spatial variations of each of the components of the 
field of velocities, and we will link them to the temporal variation of a topological measure cha-
racterizing the distortions of the lattice. An elegant way of proceeding is to note that the volume 
expansion  and the rotation vector  which we have just defined correspond to the trace and 
the anti-symmetrical part of a general geometro-kinetic equation based on a tensor of second 
order, , the gradient of the vectorial velocity field .

The vectorial notation and the decomposition properties of second order tensors

For convenience, second order tensor, such as the tensor gradient ,  can be represented as 
a field of 3 vectors.  To that end, we write

  (1.27)

We will see that this vectorial representation of tensorial fields is very powerful and simplifies 
considerably the physical interpretation of tensorial fields.
From the general tensor  of distortions, we will vectorially describe the deformations of the 
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lattice and we will extract information concerning the different types of deformations we can en-
counter.  The way to proceed is to use the mathematical properties of a tensor , such as se-
parating its symmetrical part and calculating its trace.  We will do so now in the next section, in 
all generality of a second order tensor, without regards to the fact that said tensor  is derived 
from the field of velocities by a geometro-kinetic equation.
The generic operation of transposition of a second order tensor is defined by exchanging the 
terms of the matrix representation symmetrically to the diagonal. In component view this is 
achieved by inverting indices.  In the vectorial notation of tensors, this operation is simply trans-
cribed as

 (1.28)

By using properties (A.24), the operation of transposition can also be written

 (1.29)

This formulation of transposition corresponds to subtracting from the tensor to be transposed 
the double of its antisymmetric part.  In the vectorial notation, the anti-symmetric part of tensor 

 can be build as a vector  by writing

 (1.30)

To verify that this vector  indeed represents the anti-symmetric part of tensor  as a vector, 
let’s look at the component view where  is written using the circular permutation on indices 

 (1.31)

Similarly one can build the symmetrical part of tensor , with

 (1.32)

Let’s call  the symmetrical part of , by using (1.31), we have

 (1.33)

The cyclical permutation on indices  to obtain the component view, shows that the tensor  
indeed represents the symmetrical part of 

 (1.34)

The trace  of tensors  et  is defined as the sum of the diagonal elements

 (1.35)

The tensor  obtained by subtracting the trace from the symmetrical part  is called the 
transverse symmetrical part of tensor  

 (1.36)

This tensor has a null trace, by construction
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 (1.37)

Given the definition of the transpose operation,  it is clear that the transposition of a symmetrical 
tensor does not change the tensor. This is the case of the symmetrical tensor ,

 (1.38)

from which we deduce that the symmetry of tensors  and  implies the following properties

       and       (1.39)

     and        (1.40)

The eulerian tensors of distortion, deformation and shear

By using the vectorial notation for second order tensors, we define the distortion tensor  with 
the following geometro-kinetic equation

(1.41)

whose trace gives us the geometro-kinetic equation for the volume expansion  (fig. 1.7)

(1.42)

and its antisymmetric part represents the geometro-kinetic equation for the vector of rotation  
(fig. 1.7)

(1.43)

Figure 1.7 - trace and antisymmetric part of the equation of geometro-kinetic

Based on the decomposition of tensors of second order, as we have just seen, we can now de-
fine generally speaking, the tensor  representing the symmetrical part of tensor . It is called 
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the tensor of deformation , since this tensor is equal to the tensor of distortion from which the 
rotation part (global and local) is subtracted. It satisfies the following geometro-kinetic equation

(1.44)

Finally, it is possible to define a tensor  corresponding to the transverse symmetrical part of 
tensor . As this tensor is obtained from that of deformations  from which the trace repre-
senting volume expansion  is subtracted, it will be called the shear tensor . It satisfies the 
following equation of geometro-kinetic

(1.45)

The complete decomposition of the tensor of distortion follows the schema presented at figure 
1.8, it shows the symmetric and anti-symmetric parts, the trace and the transverse symmetric 
part of the tensor.

Figure 1.8 - Decomposition of the eulerian tensor of distortions

The full set of equations we have obtained is transcribed in table 1.1.  With examples we will 
see later, we will show the adequacy of this system of ‘galilean’ equations to describe the geo-
metro-kinetic of the topological distortions of any solid lattice in eulerian coordinates.
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1.5 - Examples of velocity and distortion fields

With simple examples of the velocity field  belonging to known movements of the lattice, 
this paragraph will show that the topological tensors , , ,  and  completely capture 
the distortions, deformations, shear, rotations and volume expansions that can appear in a lat-
tice, including in the case of large distortions. The values of these tensors simply go to infinity 
when distortions become very large.

Global translation

Consider the velocity field  describing a global translation of the medium in the direction 
, where  is a constant vector

(1.46)

With the geometro-kinetic equations, such a field gives us the following particulate derivatives

(1.47)

which shows that all topological tensors remain constant along the translation path of the me-
dium. 
Figure 1.9(a) represents a velocity field with a global translation of the medium, in the case 
where the direction  of translation, remains in the basis plane defined by  and . Figure 
1.9(b) shows the temporal evolution between 2 different instants (  and ) of a square 
portion of the medium with this velocity field. 

Table 1.1 - Geometro-kinetics of the distortions of a lattice in eulerian coordinates

Definition of volume expansion

   

Geometro-kinetics of the distortions
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Figure 1.9 - global translation

Global rotation

Consider the following velocity field

     with     (1.48)

where  is a constant vector.  The component view of this field reads

(1.49)

Such a velocity field represents a global rotation of the medium around a vector .  With the 
equations of geometro-kinetic, we have

     and     (1.50)

As a consequence, the tensor of deformation , the shear tensor  and the scalar of volume 
expansion  do not change during the evolution of the medium about an axis.  The temporal 
evolution of   reads

(1.51)

Its temporal evolution along the path is equal to the angular velocity , as we deduced in 
section 1.3.
We can compute the evolution of tensor  along the path, and it appears that in the case of a 
global rotation, the tensor  is purely anti-symmetric

(1.52)

Figure 1.10(a) shows the velocity field corresponding to a global rotation of the medium, in the 
case where direction  of the axis of rotation is parallel to the base vector . Figure 1.10(b) 
shows the evolution at 2 different times (  and ) of a square portion of the medium. 
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Figure 1.10 - global rotation

Elongations and volume expansion

The following velocity field is associated with homogeneous expansions and contractions along 
the 3 different axis of coordinates

(1.53)

where the  are constants.
With such a field, the medium is elongating or retracting along the 3 coordinate axis depending 
on the sign of the constants .  The equations of geometro-kinetic allow us to deduce  and 

 along the path

(1.54)

Tensors  and  are symmetrical and only have trace components. It is rather easy to com-
pute the evolution of , which corresponds to an expansion or a contraction of the medium 
along the trajectory of points

(1.55)

Furthermore it is clear that this type of deformation by dilation is not associated with any local 
rotation in the medium as we can see from the evolution of vector  

(1.56)

With regards to shear tensor , it only contains diagonal elements, which take non-null values 
in this case since, along a give path of a particle of the lattice, we have

(1.57)

From , values for  and  are computed with

     and     (1.58)

The scalar  can be expressed in terms of trajectories  of 3 points initially situated at  
(figure 1.11) on the 3 axis of coordinates.
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(1.59)

And since the volumes  and  are directly proportional to  and , it follows

(1.60)

By using , we can directly compute  et 

(1.61)

Figure 1.11 - elongations along the axis of coordinates

The diagonal elements  and  measure the individual expansions and contractions in the 3 
directions of space respectively, while the trace  measures the variation of the volume said 
expansions and contractions.
Finally it should be noted that in the limit where elongations are small, the scalar  can be ex-
panded as

     if     (1.62)

The diagonal elements of the tensors of distortion and deformation can also be expanded as 
such

      if     (1.63)

Another important remark can be made about the asymptotical behavior of the topological ten-
sors ,  and . They all go to  when the elongations become large
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2 extreme cases of evolution of elongation along coordinate axis can now be studied:
- The case where the volume expansion/contraction is isotropic in space, meaning where the 3 
constants  are equal ( ). We then have 

     ;           ;      (1.66)

The figure 1.12(a) shows a 2D cut of such a velocity field in the plane defined by vectors  and 
. Figure 1.12(b) shows the evolution between 2 instants (  and ) of a square por-

tion of medium under such field. What we see is a volume expansion without shear.

Figure 1.12 - elongations with volume expansion and no shear

- The case where expansions and contractions in the 3 directions of space are such that volume 
expansion  of the medium is null, meaning where the sum of the  is null ( ). 
It then follows that

     and      (1.67)

Figure 1.13(a) shows the cut of such a field with  and .
Figure 1.13(b) shows the spatiotemporal evolution of a square portion of the medium with such 
a field at 2 different times (  and ). By visual inspection we can see there is no vo-
lume expansion, the shape changes, but not the volume (as captured by the null trace). We can 
also see the presence of strong shear in the medium, which can also be seen in the vectorial 
equations

     ;           ;           ;      (1.68)

Indeed the main difference between the 2 cases we just studied, lies in the isotropic versus ani-
sotropic nature of the elongations along the 3 axis. The different values of expansion gives rise 
to shear, which is absent in the isotropic case. We conclude that the diagonal components of 
tensor  measure shear associated with non-isotropic homogeneous volume expansion of the 
medium.
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Figure 1.13 - elongations with null volume expansion (constant volume)

Shear and local rotations, or torsions

Consider the following velocity field

(1.69)

where  are constants.
Given such a field, the equations of geometro-kinetics for tensor  gives us the temporal evo-
lution of the  components along the path

(1.70)

It clearly shows that the trace of the tensor of distortion cannot change, and volume expansion   
is a constant

(1.71)

We can compute the geometro-kinetic equations satisfied by the rotation vector and the tensors 
of deformation and shear, those are

(1.72)

Figure 1.14(a) represents such a velocity field in the case where only the a constant is different 
from zero (  and ).
The spatio-temporal evolution between 2 instants (  and ) of a square portion of me-
dium is shown in figure 1.14(b).  The presence of shear in the medium is observed, and there 
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also is a local rotation which we will call  torsion of the medium and we have

     ;           ;           ;      (1.73)

Figure 1.14 - shear

In the same way we did for elongations, it is possible to give a topological interpretation to the 
components of the shear tensor by using the example of distortion presented in figure 1.14.
In that case, the velocity field is parallel to  and is computed as

(1.74)

The displacement  along the  at a given point  found at coordinate  (figure 
1.15) can be calculated. We have

(1.75)

Figure 1.15 - relation with the tangent of the angle of shear
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We can deduce the temporal evolution of the tangent of shear  shown in figure 1.15

(1.76) 

The evolution of the vector of rotation and evolution of the tensor of shear along the trajectory 
can be linked to the value of 

(1.77)

(1.78)

(1.79)

The vector of rotation  and shear tensor  are linked to half the angle of shear .
It is possible to consider now 2 extreme cases of evolution for shear and rotations:

- The case where tensor  is perfectly anti-symmetric,  meaning when ,  and 

(1.80)

In this case, the tensor  is entirely described by a rotation vector  and the global rotation of 
the medium is the one we have already seen with

(1.81)

- In the case where  is perfectly symmetric, meaning when ,  and . In this 
case the 3 tensors ,  et  are equal and the variation of their components along the 
path is written

(1.82)

The scalar of volume expansion  and the vector of rotation  do not change along the path

     and     (1.83)

The medium does not have volume expansion, nor local or global rotation.  As a consequence, 
only pure shear can appear.
We visually show it in figure 1.16(a), in which we have represented, in the plane of base vectors 

 and , the cut of such a velocity field with  and .
Figure 1.16(b) shows the evolution at 2 different times (  and ) of a square portion of 
medium under such a velocity field. The presence of a head of the medium, without rotation, is 
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seen as

     ;           ;           ;      (1.84)

The shear is identical to that reported in figure 1.14(b), if a rotation of 45° of the system of coor-
dinates is done, which leads to very similar expressions for the shear tensor in both cases:

 (fig. 1.14)    and     (fig. 1.16) (1.85)

Figure 1.16 - shear

Examples of non-uniform distortions

As an example, it is possible to calculate the tensors of distortions with velocity fields that lead 
to non-uniform distortions of the medium. Consider the following field in figure 1.17(a), with a 
cylindrical (axial) symmetry

   with    (1.86)

This velocity field describes a rotation of the medium about the origin of our system of coordi-
nates. The tensor  is deduced from the geometro-kinetic equations as

(1.87)

This is a non-uniform rotation, and therefore local, as  depends on radius . There is also a 
volume expansion  along the path

     and     (1.88)
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The tensor of deformation  and of shear  are identical and show the existence of non-uni-
form shear

(1.89)

The second velocity field, represented in figure 1.17(b),  has a spherical symmetry

     with     (1.90)

Figure 1.17 - examples of non-uniform distortions

This velocity field implies a volume expansion of the medium about the center of system of co-
ordinates. The evolution of tensors  and   is the same

(1.91)

This means it is an evolution without rotation along the path, but with a non-uniform volume ex-
pansion  which depends on radius 

     and     (1.92)

Finally,  the evolution of shear tensor  shows the existence of non-uniform shear as a func-
tion of radius

(1.93)
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Chapter 2

Local frames and geometro-compatibility of a lattice

In this chapter, we show that eulerian coordinates are well suited to the description 
of solid lattices. They allow for the description of lattices with large deformations, 
something that is hard to achieve with lagrangian coordinates. However, we will 
show that this description of the solid lattice with Euler coordinates requires us to 
introduce local referential frames. This introduces its own complexity, inherent to 
the differential geometry description, which makes use of microscopic local frames. 
To bypass such complexity we will define the concept of macroscopic local frame. 
Finally, in the eulerian coordinate description, we derive the conditions of compati-
bility that define the lattice as a solid: one where we can define a continuous dis-
placement field for the lattice. 

2.1 - Definition of local referential frames in solid lattices

The eulerian description of the spatiotemporal evolution of a solid lattice of particles is defined 
by the velocity field  which describes the average movement of the individual nodes of 
the lattice relative to an absolute fixed observer (Grand Observer: GO) with a fixed, cartesian, 
coordinate system .

From this velocity field we will derive and calculate the local angular velocity of the solid 
rotation as well as the scalar of local volume expansion of the solid. With these we will des-
cribe the time dependent distortions of the solid lattice with the equations of geometro-kinetics 
we introduced in the first chapter (table 1.1). These equations were based on the 3 following 
principal equations: 

 (2.1)

This method is valid in the case of a perfectly isotropic lattice.  However, in the majority of the 
cases it is not well suited to describe the distortions of a lattice in eulerian coordinates for the 
following reasons: 
- A solid may present an anisotropic elasticity, which depends on the direction considered with 
respect to the local crystalline directions of the lattice itself.  While the distortion tensors (2.1) 
correctly measure the distortions of a solid, whether it be isotropic or not, the tensors measure 
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and describe the distortions in the absolute global frame  and not along the local crys-
talline directions of the lattice. This complicates the calculation of the free elastic energy of ani-
sotropic solid lattice from the distortion tensors (2.1), specifically if the local rotation is important 
because the free energy of an anisotropic solid is not built from the invariants of the distortion 
tensors.
- In the case of a perfect solid lattice with isotropic elasticity (without structural singularities), the 
free elastic energy can indeed be expressed in terms of the distortion tensors (2.1) because it 
only depends on the invariant quantities of the distortion tensors expressed in said absolute 
global frame. On the other hand, in the case of an imperfect solid lattice with isotropic elasticity, 
meaning an isotropic lattice which contains anisotropic structural defects and singularities (such 
as disclinations and dislocations, joints and other usual crystal defects) the presence of such 
anisotropic defects requires a description which uses the local crystalline directions and asso-
ciated local frame. 

It is imperative to describe the distortions of a lattice with anisotropic elasticity, or an isotropic 
lattice with defects (non perfect isotropic lattice) with local frames and local coordinates.  This 
system of local frames reflects the same average local translation and rotation of the lattice so 
that the directions of the local system of coordinates maps, on average, to the directions of the 
local crystalline lattice.

Definition of an orthonormal macroscopic local frame.

In the absolute frame  of the GO observer, we can choose to follow a point of the 
solid by knowing its instantaneous velocity  expressed in said referential. To this point 
we also associate the instantaneous vector of rotation . We can then define at this point  

 a macroscopic orthonormal local frame, , which follows the solid with a drag-along 
velocity and which rotates in space with the drag-along rotational angular velocity 
(figure 2.1). 

Figure 2.1 - the orthonormal macroscopic local frame
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The origin  of this new coordinate system can be found with a location vector whose 
equation of motion, written in the absolute frame , is simply stated as

 (2.2) 

To this local frame , we can associate the 3 unitary orthogonal vectors , the 
frame. These vectors turn in space with the drag-along rotation speed . We can also de-
fine the Small Observer (PO) (“Petit Observateur”) attached to this referential and who uses 
rulers , which have the same length as those of GO, as well as a clock perfectly synchronized 
with that of the GO of the absolute referential.

On the matrix of rotation of the coordinate change

In the absolute referential  of the GO observer, the vectors  of the local coordinate 
system satisfy the following equation of change, which capture the fact that the vectors  
are rotating with an angular velocity  along the trajectory of the  point

(2.3)

The local frame vectors  can be decomposed on the global frame vectors  with the ma-
trix of rotation , which is then defined as

(2.4)

This relation can be inverted as

(2.5)

The matrix  is in fact the matrix describing the coordinate transformation (map) resulting 
from the change of frame between the two frames, from the global coordinate  to the 
local one . As a rotation, it is an orthogonal matrix, and its inverse is its transpose.

(2.6)

As a rotation, its determinant is also equal to 1

 (2.7)

Such a matrix also satisfies the following relations, translating the fact that both sets of vectors 
 et  are indeed unitary

 (2.8)

Given relation (2.3), we deduce the differential equations describing the evolution of the matrix  
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(2.9)

In the case of a rigid solid (non deformable), the solid only displaces in space by translation or 
global rotation, i.e. without deformation, and the directions represented by the unit frame vectors 

 always correspond exactly to the directions of the crystalline lattice of the solid.  In the case 
where the solid under consideration moves and deforms at the same time, as the vectors  
move with a velocity  and rotate with an angular velocity , the directions represen-
ted by the local unit vectors  still correspond to the average directions of the crystal lattice at 
the point .

As a matter of fact, in a vicinity of point , the directions of the crystalline lattice correspond 
more or less to the directions of the unit vectors . The size of this neighborhood depends on 
how deformed the solid around the point .  We can empirically define this neighborhood as 
the volume  around the point which satisfies the following criteria:  the volume  of lat-
tice around  such that the components of the rotational vector  and the scalar of volume 
expansion  do not vary more than 1% over said volume. 
In figure 2.2, we represent the crystalline lattice around a point in the presence of a deforma-
tion of the lattice.

Figure 2.2 - the solid lattice around the neighborhood of point   with local frame 

Projection of the fields on the local frame

Every scalar field or vectorial field defined in the absolute space can be projected and decom-
posed in the global frame  or locally in a neighborhood of the point , in the mobile 
local frame (figure 2.5).
For example, the velocity field  of the solid lattice in the absolute frame is defined at point  
and instant by its 3 projections  on the 3 axes ,  and 
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      with     (2.10)

In the neighborhood of point of the local frame, it can also be projected on the 3 axes , 
 and  (figure 2.3). At point  of the local referential, marked by , and at instant , 

the velocity field  can we written in the local frame projected as such

      with     (2.11)

Figure 2.3 - projection of velocity field  in the macroscopic local frame

The expressions (2.4) and (2.5)  giving the local frame vectors  as functions of the global frame 
vectors  and vice-versa allow us to find a mapping between the components of the velocity 
field  in the absolute and local frame.

     and     (2.12)

Furthermore, since the position vectors  and  identify respectively the nodes of the lattice  in 
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(2.13)
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     and     (2.14)
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Finally, the relations that exist between the partial derivatives in the absolute frame and the local 
frame are easily deducted

     and     

            and     (2.15)

The local field of relative velocity

It is possible to define the local field of relative velocity  of the points of the solid in the neigh-
borhood of point , in relation to the local mobile frame . The velocity field is in fact 
the one measured at point  for example (figure 2.3), by the Small Observer (PO) linked to the 

Table 2.1 - Local macroscopic frame  in a solid latticeOx1x2x3
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local frame , who would use rulers  and a clock synchronized to the clock of the ab-
solute frame to measure the velocities  of the nodes of the lattice, while the Great Observer 
(GO) is linked to the absolute frame and he measures the absolute velocities  of the nodes of 
the lattice. 
The local field of relative velocity  is obtained by subtracting the drag-along velocity  of 
the local frame , from the absolute field velocity  as well as the field of rotational ve-
locity  associated with the rotation of the local frame  around point  cha-
racterized by the angular drag-along velocity . We obtain the following equations

(2.16)

 (2.17)

On the projection of the invariant operators of space and time in the local frame

The space operators ,  and   applied to scalar or vectorial fields are invariants, 
meaning that they provide a result, scalar or vectorial, that does not depend on the choice of 
frame in which they are calculated (section A.2.). The same goes for the time operator of mate-
rial derivative as this measures the temporal variation of quantities along the path.  This 
means that any mathematical relations which invokes the operators ,  and  , as 
well as , can be computed in either the absolute frame  or the local frame 

.
In the case of the temporal operator , the velocity one must introduce in the expression of 
material derivative is the absolute velocity  when  is calculated in the absolute frame 

 and the relative velocity  when  is calculated in the local frame .
Regarding the formal operator , we show, by using relations (2.4) et (2.5), that there exists 
the following link between its formulation in the absolute frame  and its formulation in 
the local frame 

(2.18)

We can restate the various space and time operators, both in local and absolute frame, in terms 
of the operator. The following relations allow us to recover the expressions ,  and 

, expressions which we show in table 2.2

     and          and     (2.19)

We can also define the derivative of a quantity, scalar or vectorial, along a given direction , 
the directional derivative. It is written  and can be expanded in terms of the operator.
An important remark can be made here. In the case of a perfectly non-deformable solid lattice, 
the field of relative velocity  defined by the relations (2.16) et (2.17) is everywhere null in the 
local frame .  On the other hand, in the case of a deformable solid lattice the field of 
relative velocity  only contains velocities associated with the deformations of the lattice as 
measured in the local frame , as well as the local rotations associated with these de-
formations, since the drag-along velocities of the lattice, both of the translational and rotational 
kind have been subtracted. Notably on the point  relative velocity  is null by definition. 
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We can conclude that in the case of weakly deformable solid, meaning when the displacements 
of the nodes of the lattice as seen in the local frame  stay small in a neighborhood of 
point , it is possible to replace the material derivative , corresponding normally to the 
temporal variation along the trajectories of the nodes in the local frame , by the tempo-
ral derivative at a fixed point of the local frame , meaning the partial derivative with res-
pect to time.

The same goes for a solid which is deforming very slowly, since in that case the field of relative 
velocity  is negligible. We derive a remark which will be very important for the rest of the trea-
tise:

- In the vicinity of a point  of a local frame , if the deformations are small or happen 
slowly over time, we can use the following approximation for the temporal derivative:
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2.2 - Projection of the geometro-kinetic equations in the local frame

It is now possible to redefine the distortion tensors of a solid by using a formalism similar to that 
introduced in the first chapter, but in the local frame  of the small observer PO (figure 
2.3).

Geometro-kinetic equations of distortion in the local frame

In the local frame , the angular velocity of rotation  and the material derivative 
of the scalar of volume expansion of the solid can be computed in a way perfectly similar to 
that used in the second chapter already. Therefore, the equations of geometro-kinetic introdu-
ced above remain valid in the local mobile frame.

        and          (2.21)

We can now define in the local frame a new tensor of global distortion  such that its trace is 
equal to  and that half of its anti-symmetric part, with an inverted sign, gives us . 
The geometro-kinetic equations which we defined in the second chapter in the following way

(2.22)

yield a tensor which satisfy these requirements. Indeed, it follows for the trace of  and 
for the half of its anti-symmetric part with inverted sign, the expressions of  and of 

(2.23)

(2.24)

The new deformation tensor  is obtained by symmetrization of the geometro-kinetic equation 
 in the local frame 

(2.25)

The new shear tensor , is obtained from the transversal symmetric part of  in the 
local frame 

(2.26)

The tensors of global distortion  thus defined depend on the choice of the local frame
, via the presence of the frame vectors in their definitions.  They are computed from 

the components of the absolute velocity field  of the solid projected in the mobile local frame 
, in the fashion that the distortion tensors  were computed in the second chap-

ter from the projections of the  field in a fixed frame linked to . 
For the Small Observer PO in the local mobile frame , the frame vectors  appear as 
constants independent of time, and therefore in we have
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(2.27)

As a consequence the decompositions of the distortion tensors we saw in figures 1.7 and 1.8 
remain valid when we replace the tensors  defined in the fixed absolute frame 

 by the same tensors , this time defined in the mobile local frame . 

One should note here that only the vectorial field  and the scalar field  (representing res-
pectively the anti-symmetric part and the trace of the distortion tensor ) are truly invariant 
quantities, in the sense that we are dealing with a vector and a scalar that do not depend on the 
choice of frame we use to compute them.  The geometro-kinetic equations in the local frame are 
shown in table 2.2. One should compare them to the geometro-kinetic equations of table 1.1, 
expressed in the absolute frame: we can observe that they have exactly the same form, but that 
in these expressions it is essentially the material derivative that is different since it depends on 

 in the absolute frame  while it depends on  in the mobile frame . 

Local distortions  and local rotations  due to pure deformations

Using the rotational part of the local field of relative velocity  expressed in the frame 
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we can define a local rotation vector  due to pure deformation which measures the rota-
tions associated only with the deformations of the solid about the point, since its material de-
rivative is equal to the global angular velocity  from which we subtract the drag-along 
angular velocity  of the frame 

(2.29)

It is also possible to build a local distortion tensor  due to pure deformation such that the 
trace is equal to the scalar of volume expansion  and that the half of its anti-symmetric part 
with inverted sign gives us the vector of local rotation . The following geometro-kinetic 
equation will do

(2.30)

 Indeed, by rewriting the expression for  as

(2.31)

We can verify the 2 following expressions
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The tensor of local distortion  thus defined can be directly linked to the field of absolute ve-
locity . Indeed, the following
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It is easy to show that the expressions for the deformation field  and shear field  as a func-
tion of the field  of relative velocities or as a function of the field  of absolute velocities are 
the same, which seems logical since  and  are only dependent on the pure deformations.
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Since the frame vectors  are constants independent of time for the Small Observer PO in the 
local mobile frame , the following relations of decomposition of the tensors of local dis-
tortion hold in 
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(2.38)

For the same reason as above, the tensors of local distortion from deformation can be directly 
linked to the tensors of global distortion in  by the following relations, in which the rota-
tional vector  only depends on time

 (2.39)

(2.40)

The local tensors  and , associated with local deformations of the lattice in the neigh-
borhood of point , differ from the global tensors  and  obtained in the previous para-
graph only due to the existence of a drag-along rotation of the local frame . In 
short, the tensors ,  et , can be computed indifferently from the field of absolute speed 

 or the field of relative speed .  The equations of geometro-kinetic for the tensors of local 
distortion due to deformation, deduced from the field  in the local mobile frame , are 
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Table 2.4 - Geometro-kinetic equations of local distortions and rotations of a solid lattice in the 
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given in table 2.4.

2.3 - Geometro-compatibility in eulerian coordinates

We have shown section 1.1 that the description of the deformation of compatible solids in la-
grangian coordinates is characterized by the existence of a field of displacement. Indeed, in la-
grangian coordinates (figure 2.4), the solid is described by a position vector which marks all 
the points in a frame  fixed in the absolute referential  of the GO observer. The 
lagrangian vector displacement field  allows us to find the position of all points of the 
solid at time t, which were originally at coordinate  of the frame .

 

Figure 2.4 - the displacement field  in lagrangian coordinates

It is intuitively clear that the description of the distortions of a solid in eulerian coordinates 
should allow us to recover the displacement field. Indeed in eulerian coordinates (figure 2.5), the 
deformed solid is described at a time in the absolute frame of the observer GO. For a point  
of the solid of coordinate  in this frame we define the eulerian displacement vector as 
linking point  to point  where the point of the solid was at initial time .  The same 
type of construction can be applied in the mobile frame  of the PO observer: at a given 
time , for each point  of the solide at coordinate  in that frame, we define the displace-
ment vector  which links point  to the location  of frame  where point 

 was at time . 
The displacement fields  and  thus defined allow us to rebuild the solid as it 
was at time , before the various translations, rotations and deformations it underwent, both 
in the absolute frame of GO and in the mobile frame  of the PO observer.
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Figure 2.5 - displacement fields   and  in eulerian coordinates

Condition of geometro-compatibility in eulerian coordinates

According to the form of the geometro-kinetic equation for the distortion tensor we have

(2.41)

It is clear that there is a link between the temporal derivative of the tensor  and the gradient 
of the field of velocity .  Also the velocity field  is related to the time derivative of 
the displacement field , thus there is link between the tensor  and the gradient of the 
displacement field .  The distortion tensor has to be linked to the gradient of the displa-
cement field. 
By decomposing the global distortion  in a local distortion tensor , associated to the de-
formations of the solid in the frame, and a second component associated to the drag-
along rotation  of said frame we write 

(2.42)

Supposing that the tensor of distortion is indeed the gradient of the displacement field we can 
write a priori the following condition of compatibility in eulerian coordinates

Condition of geometro-compatibility:   (2.43)

In fact, in section 3.4 we will show that the physical meaning of this relation is, from a topologi-
cal point of view, that the displacement field is continuous, in other words that there are 
no discontinuities of the displacement field , meaning that there are no dislocations in-
side the medium.
We revisit the relations of spatial derivatives of the topological tensors introduced in section 1.4, 
and we will apply the same manipulations as in 1.4. This condition gives us a complete set of 
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compatibility relations in eulerian coordinates

(2.44)

(2.45)

We will show now the consequences of the condition of geometric compatibility in eulerian co-
ordinates:

Consequence 1: existence of potential field of displacement

The condition of geometro-compatibility (2.43) implies that  and derive from gradients of 
scalar fields  and  defined respectively in frame  and , which 
allows us to write without loss of generality

(2.46)

With the scalar fields  and  necessary to the description of the tensors  
and , 2 vectorial fields can be defined  and  such that

     and    (2.47)

As a consequence, the distortion tensors  and  in a geometro-compatible solid lattice, 
meaning which satisfies the relation of geometric compatibility (2.44), are indeed the tensor gra-
dients of continuous vectorial fields and . Dimensional analysis shows us that 
vectors  and  have dimensions of displacements. As a consequence,  will be 
called the potential field of global displacement of the solid and  the potential field of 
local displacement of the solid. These fields of potential of displacement correspond, up to a 
continuous vectorial field , to the fields of displacement we have already discussed in the 
eulerian coordinates case (figure 2.5).
It is clear that the field of global displacement  can be expressed in the local frame

 as a function of  and , simply by applying the relation  in 
the frame .  Using the decompositions of  and  described in tables 2.3 et 2.4, all 
the tensors of distortion can be directly derived from the vectorial fields of displacement 

 and  in the frame 

  (2.48a)
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  (2.48b)

These relations make use of the fact that we can decompose the displacements  and 
 in, for example, a purely divergent part, which we will mentally associate with the ex-

pansion of the volume, and a purely rotational part, which will associate to global and local rota-
tions,  and respectively, by deformation of the solid. It should be noted that the shear 
tensor of the solid is included in the above. 
One should also remark that we have used a negative sign in the defining relations

 and  . This motivation becomes clear when one compares 
figures 2.4 and 2.5. Indeed, we can see that the displacement field written in lagrangian coordi-
nates  and eulerian coordinates  are identical but with opposite signs, so that it is neces-
sary to define the relations (2.46) in eulerian coordinates. For example imagine a divergent field 

 in the lagrangian view and coordinates, the divergence is computed as . The 
same  field from the eulerian point of view is convergent and  .

Consequence 2: interpretation of the tensors of local distortion

From the fields of eulerian virtual displacement , it is easy to give a physical interpreta-
tion of each tensor that arises from local distortion.  Consider 3 points  of the initial lattice 
undeformed, marked by 3 initial infinitesimal vectors , which are respectively parallel 
to the 3 axes of coordinates in frame  (figure 2.6). In this local frame we map the 3 vec-
tors attached to each point  of the real, deformed, lattice.  On this visual frame we can 
see  each of the vectors  of the deformed solid.  It is possible to project on these 3 axes of 
coordinates the variation of the displacement field under deformation  . The projections 
are given by the equations   . We can link these 3 projec-
tions to an elongation  in the direction of the initial vector  and 2 angles of rotation  
and  around the 2 remaining axes which are perpendicular to the initial vector . (In order 
to lighten figure 2.6, the notation  is shortened to ). 
The 3 relative elongations and the 6 relative angles generated by the 3  are linked to the 
components of the local distortion tensor by deformation

(2.49)
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angles of rotation  et ,  as well as the scalar of expansion  as a function of the relative 
elongations , like so

(2.51)

Figure 2.6 - visual decomposition of the displacements in the local frame 
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linked to the field of absolute velocity . The link between the two can be seen on figure 2.7.
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The velocity is, by definition, the difference between the 2 vectors of global displacement 
and  divided by the time , as becomes infinitesimally small. This reads

(2.52)

Figure 2.7 - relation between the field of absolute velocity   and the field of global displacement 

Since , the former relation can be transformed in the following way

(2.53)

By taking the limit , the field of absolute velocity  becomes equal to the material deri-
vative of the field of global displacement , but with a change of sign

(2.54)
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of local relative velocity .  This link can be seen on figure 2.8. Let’s consider the movement in 
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(2.55)
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(2.56) 

Figure 2.8 -  relation between the local field velocity  and the field of local displacement 

By using the relation , and by taking the limit , the field of local velo-
city  becomes equal to the material derivative of the field of local displacement , but with 
a  sign change

(2.57)
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nodes of the real lattice which pass through a fixed point  of the local frame, marked by a po-
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vectors of displacement associated with point  at the 2 moments and , denoted 

 and , as pointing respectively to points  and  of the initial non-
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(2.58)
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 represents the velocity with which the extremity of this vector traces its path through the 
original (not deformed) virtual lattice when it is centered on a fixed point  in the local frame

.

Figure 2.9 - interpretation of the partial derivative of the local field  with respect to time

Consequence 4: relation between the 2 potential fields of displacement

Relations (2.54) and (2.57) can be linked thanks to equation (2.16), which gives us an interes-
ting relation between  et 

(2.59)

This relation holds because displacements  et  written in the local frame  have 
to be related to each other by

(2.60)
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Chapter 3

Contortions of a lattice

In a solid lattice, the fields of distortion  represent the distortions, 
deformations, shears, rotations and volume expansions that happen at every point 
and throughout the cells of the lattice. If the unit cell of a lattice experiences distor-
tions, which can vary from one point of the lattice to another, effects will appear that 
are more macroscopic than the flexions and torsions of the solid and which are 
linked to the continuity of the lattice. These “curvatures” of the solid, resulting from 
a field of distortions are called the contortions of the lattice. We will describe this 
curvature in the first part of the chapter.
In the second part, we interpret the conditions of geometro-compatibility of a lattice 
by showing that they guarantee that the topology of the lattice is compact and 
connected.

3.1 - Rotational (curl) and divergence of a tensor

In order to derive the contortion tensors of a solid lattice, we will first find the relations between 
the first and second spatial derivatives of the various topological tensors. These relations will be 
established independently of the fact that  can be defined either from the eulerian displace-
ment field  or  in a geometro-compatible lattice, simply by applying the vectorial 
operators to the distortion tensors.

The «rotational of a tensor » (“curl of a tensor”)

By using the decomposition of the  tensors as documented in figure 1.8, it is possible to cal-
culate the relations that can exist between the spatial derivatives of first order of these tensors. 
We simply apply the operators of vectorial analysis and their laws of distributivity.  Applying the 
rotational operator to expression (1.36) of the symmetric tensor  implies the relation

 (3.1)

By using the following transposition rules

     and      (3.2)

the previous expression for  can be transposed

 (3.3)

Relations (3.1) and (3.3) allow us to find the expression for the symmetrical part of the rotational 
of the symmetric tensor , and as we can see it only depends on the transverse symmetric 
tensor 
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 (3.4)

The anti-symmetric part of the rotational of a tensor

From the previous relations it is also possible to find direct relations between the anti-symmetric 
parts of the rotational of a tensor

(3.5)

The trace of the rotational of a tensor and the divergence of its anti-symmetric part

The computation of the divergences of the following expressions, represent respectively the 
anti-symmetric parts of tensors ,  et 

     and          and     (3.6)

they allow us to find a set of relations regarding the traces of the rotational of these tensors. 

(3.7)

And we can observe, among other things, that the symmetric nature of tensors  et  implies 
that the trace of their rotational is null

(3.8)

The «divergence of a tensor » 

We can find relations for the “divergence” of these tensors

(3.9)

and we can show that the divergence of a tensor is directly linked to the anti-symmetric part of 
its rotational

(3.10)
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The contraction operations on the indices

The spatial derivatives of a tensor of order 2, , which we can represent under a vectorial 
form, have been manipulated thanks to vectorial analysis.  These vectorial manipulations of ten-
sorial objects are in fact mathematical operations of contraction of indices.  From the 27 com-
ponent of a 3rd order tensor  we can form tensors of order 2, vectors and sca-
lars, as can be seen from relations (3.3), (3.5) and (3.7) respectively.
It is possible to contract indices on tensors of order larger than 3 to form tensors of order 2, 1 
(vectors) and 0 (scalar).  For example the rotational in relation (3.3) is a tensor of order 2 (9 
components) which results from the contraction of a tensor of order 4 (81 components), and 
which can be calculated, given that 

 (3.11)

3.2 - Links between the spatial derivatives 
        in the case of geometro-compatibility

The condition of geometro-compatibility  implies the following relation
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With ,   and , this relation 
leads directly to the following relations between the spatial derivatives of the various topological 
fields
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We will see that these relations are very useful for the description of the evolution of geometro-
compatible solid lattices.  If, additionally, such a solid has a volume expansion  independent of 
the space coordinates, the spatial derivatives of the rotation vector  and of the local rotation 
vector  are only dependent on the spatial derivatives of the shear tensor 
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3.3 - Contortion tensors of a solid

The contortion tensor of a solid

Relation (3.3) allows us, at least in a compatible lattice, to link directly  to the gradient 
of the component of the rotation vector 

(3.15)

this means that it is possible, in a compatible solid lattice, to find the local variations of the rota-
tional field directly from the field of deformations.  To that end, we define a new tensor, the  ten-
sor of contortions  in the following way:

(3.16)

In a compatible medium, the physical significance of this tensor can be deduced directly from 
. It is indeed relevant to measure the spatial variations of the rotational vector , since 

 is an invariant of the solid medium, meaning independent of the choice of frame used to cal-
culate it.  In a compatible medium, relation (3.3)  takes the following form

(3.17)

The components of this tensors are linked to the spatial derivatives of the rotational vector , 
as these measure how rotation changes in different points of the solid, such as due to torsions  
or flexions. We can define a little more precisely and visually the components of the tensors by 
using 2 typical examples of spatial rotations .

Figure 3.1 - flexion of a solid medium
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In the first example, a flexed medium shows a rotational vector parallel to  (pointing down in 
figure 3.1), and its amplitude increases along , as shown in figure 3.1.  In this case, there 
exists a non-diagonal component of the  tensor, which is not null

(3.18)

This component is associated with the flexion of the solid.

Figure 3.2 - torsion of a solid medium

In the second example of figure 3.2, we represent a torsion of the solid medium.  The rotational 
vector is along the axis  and increases in amplitude along as well. As a result, there is 
a diagonal component  of tensor , which is non-null, a fact we translate as

(3.19)

From these two examples, it is clear that the components of the tensor  measure the flexions 
and torsions of the solid medium, via non-diagonal and diagonal components respectively. We 
will call those components the “contortions” of the medium. The rotational part of this new 
contortion tensor  satisfies an interesting relationship. 
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Indeed, in a compatible medium, the contortion tensor  satisfies a compatibility relation that 
is equivalent to the compatibility relation of the deformation tensor 
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These relations are known as the equations of De Saint-Venant. Since the tensor  is symme-
trical, these encompass 6 non-trivial relations between the partial derivatives of order 2 of the

.
It should be noted that the trace of  is identically null, meaning that  is a transverse tensor.  
This is due to the simple fact that, as seen in relation (1.70), the  tensor is symmetrical
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(3.22)

The flexion vector of a solid

From the contortion tensor , it is possible to build an invariant vector  which depends on 
the anti-symmetric part of the  with the following construct

(3.23)

Since the anti-symmetric part of a tensor is, by definition, equal to the anti-symmetric part of its 
transpose, but with an opposite signe, we can deduct the following

(3.24)

We then use relation (3.5), and we obtain the following relation on the  vector

(3.25)

Thus, in a compatible medium,  only depends on the rotation vector  

(3.26)

Figure 3.3 - definition of the flexion vector 

Since  is defined as a rotational, it only contains components of the type , with 
, by definition of a rotational.  Thus, it only depends on the non diagonal components of 

the  tensors, which as we have just seen, are the flexion components of the medium. We can 
verify this assertion on the example of the deformation shown on figure 3.3, in which  has 
components along the axis  et , that grow in the directions , and

(3.27)

which gives us the following tensor 
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(3.28)

from which we deduct the vector , with the help of relation (3.10)

(3.29)

The  vector is perpendicular to the general curvature of the medium due to flexion. It is ali-
gned with the direction of the ‘radius of curvature’. It’s magnitude is inversely proportional to the 
average radius of curvature in the directions  et . We will therefore call it the flexion 
vector  of our solid medium. The  vector satisfies an interesting relation concerning its di-
vergence. Since the divergence of a rotational is null, we have, following (3.25)

(3.30)

This relation shows that  is in fact equal to the trace of  with a changed sign.
In a compatible medium, this relation shows that the flexion vector  also obeys a compatibility 
relation which assures that the field of flexion is non divergent:

(3.31)

The torsion tensor of a solid: the transverse symmetrical part of the contortion tensor

Since the contortion tensor  is a transverse tensor (of null trace), its symmetrical part  
is a transverse symmetrical tensor, which cannot be decomposed further. We compute it from 
the following relations

(3.32)

This transverse symmetrical tensor satisfies the following relations, which are easy to derive 
using the transpose operation 

(3.33)

The transverse symmetrical part  of the contortion tensor therefore represents the torsions 
of the solid, since it is obtained from the contortion tensor from which we have subtracted the 
anti-symmetrical part representing the flexions. We thus call  the tensor of torsion of the 
solid.
The complete description of the distortions and contortions of a geometro-compatible solid lat-
tice exhibits here a symmetry perfectly described visually in figure 3.3.  We also give table 3.1 
with the relation which permits a complete topological description of the contortions and the 
compatibility of a solid lattice.  In this table you will find the terms which correspond to the rota-
tion of the distortion tensor and the divergence of the rotation vector, which are by definition null 
in a compatible medium.
It should be noted here that the transverse symmetrical part of  does not depend directly on 
the volume expansion , but exclusively on the shear tensor .  This means that the torsions 
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 of a solid are intimately linked to the pure shear of the solid.  Another important remark 
can be made about the topological contortions of a medium: since the gradient of the scalar of 
volume expansion  does not figure in the anti-symmetric part of the contortion tensor , and 
furthermore, since this anti-symmetric part is represented by the flexion vector , it is rather 
evident that flexions  of a solid are linked to the volume expansion  of said medium.

Figure 3.4 - complete description of the distortions and contortions of a compatible solid lattice

 
!
χi[ ]S

τ  
!
χi

 
!
χ

 
!
χ τ



contortions of a lattice   57

Table 3.1 - The contortions and compatibility of a solid lattice

Geometro-compatibility of distortions and rotations

Geometro-compatibility of contortions and flexions
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3.4 - Physical interpretation of the equations of compatibility

The diverse equations of compatibility have a physical meaning we will now explore in this sec-
tion.

The absence of dislocations and the continuity of the field of displacement.

The compatibility condition  for the distortion tensor  implies that the field has nice 
smoothness properties, in the mathematical sense.  To show this, let’s calculate  over a clo-
sed contour  anywhere inside the lattice

(3.34)

By using the theorem of the rotational, an integral form of compatibility is obtained over any sur-
face  whose boundary is 

(3.35)

Let’s consider the displacement  associated with a closed contour  inside the lattice, such 
as that represented in figure 3.5. For this closed contour from  to , we have

(3.36)

And thus, if the medium presents a distortion field which satisfies the compatibility condition 
, the closing vector , called a Burgers vector , of contour  generated by the 1

sum of the  vectors is null.  This effectively signifies, from a topological point of view, that 
there are no discontinuities of displacement, called dislocations  inside the medium.2

Figure 3.5 - Interpretation  of the condition of compatibility 
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The existence of a displacement field  without any discontinuity allows us to say the following:
- The topology is connected. This means, from a physical standpoint, that there are no stacking 
of distortions resulting in a tear and slide of a part, 
- The topology is compact.  This means, from a physical standpoint, that there were no forma-
tion of holes inside the medium.  In short, the condition  assures the solidity and 
continuity of the medium.

Figure 3.6 - interpretation of the condition of compatibility 

The absence of divergence singularities of the rotation field

To find the significance of the condition of compatibility  for the vector of rotation , 
the flux of the vector of rotation , meaning the quantity  defined by the 
scalar product of  with the element of surface , is integrated on a closed boundary surface 

 of a volume  of the solid (figure 3.6). 
By applying the theorem of divergence we find the integral relations for a medium satisfying the 
compatibility condition associated with the rotation vector

(3.37)

Thus, the condition of compatibility for the vector of rotation , which stipulates that the field of 
rotations is non-divergent, implies that there are no rotational singularities of the field of rotation 

 in the solid, so no divergent torsions as seen in figure 3.6.

The absence of disclinations and the continuity of the rotation field by deformation

The condition of compatibility  of the tensor of contortion  also presents an interes-
ting interpretation. If  is integrated on a closed contour  in a compatible medium, it follows

 
!u

 rot
! "! "

βi = 0

 div
!
ω = 0

 div
!
ω = 0  

!
ω

 
!
ω  

!
ωd
!
S =
!
ω !ndS =ω⊥dS

 
!
ω  d

!
S

S V

 
ω⊥dS

S
!∫∫ =

"
ωd
"
S

S
!∫∫ = div "ωdV = 0     ;     

V
∫∫∫ ∀S

 
!
ω

 
!
ω

 rot
! "! "

χi = 0  
!
χi

 d
!
ω C



chapter 360

(3.38)

In this relation we have introduced a rotational vector  which represents the rotations di-
rectly deduced from the tensor of deformations , which is identified with the local vector of 
rotation  in compatible medium. It follows that

(3.39)

By representing the field of rotation  on a closed contour  in the medium (figure 3.7), we 
have that, from  to 

(3.40)

In this relation, the condition of compatibility  implies that the closing vector , cal-
led the Frank vector , is null, which signifies from a topological standpoint that there are no ro3 -
tational discontinuities by deformation, these are called disclinations . Since the compatibility 4

condition for the contortion tensor  is also the compatibility condition for the deformation ten-
sor , we can conclude that the equations of de Saint-Venant (3.21) for  are equivalent to 
the continuity of rotations by deformation.

Figure 3.7 - interpretation of the condition of compatibility 

On the absence of divergent singularities within the flexion field

The condition of compatibility  of the vector of flexion  can be interpreted in the 
following way. By integration of the flux of  over a closed boundary surface  around a given 
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volume  of the medium (figure 3.8), and by using the theorem of divergence and the definition 
of  from the deformation tensor , it follows that

(3.41)

Therefore the compatibility condition on  implies that the field of flexion is non-divergent, and 
that there exists no singularity of the field of flexion  in the medium, such as the one repre-
sented on figure 3.8. 

Figure 3.8 - interpretation of compatibility condition 

One should note that the condition of compatibility for the flexion tensor  corresponds indeed  
to the condition of compatibility for the anti-symmetric part of tensor   since

(3.42)

3.5 - Pass-through conditions for a compatible interface

The pass-through conditions for the topological tensors across a compatible interface between 2 
mediums, meaning an interface for which the fields of displacement on each side of the surface 
are the same, can be deducted from the conditions of compatibility.  All one has to do is write 
down the integration of the condition of compatibility on a really slim volume, which moves with 
the interface, and where the 2 faces are on each side of the interface (figure 3.9).
The condition of compatibility for the distortion tensor  implies the following relations on a 
mobile volume 

(3.43)

This means that the tangential components of the  are the same on each side of the inter-
face.

(3.44)
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The topological interpretation of this condition of passage is simple.  Indeed, remember that, in 
a compatible medium, the tensor  derives from the gradient of a field of displacement , by 
the relation , it is possible to re-write the integrals on surfaces  and  under 
the form

(3.45)

Figure 3.9 - compatible pass-through conditions between 2 solid medium

The theorem of the gradient applied to this last relation leads us to

(3.46)

in which  is the mobile contour situated at the intersection off the mobile surface with the 2 
mediums (figure 3.9). For this condition to be satisfied for any contour  we must have

(3.47)

In other words the conditions of passage (3.47)  implies that the displacement  on bots sides 
of the interface are equal, and thus that the 2 mediums in contact cannot ‘unglue’ nor slip one 
against the other, defining the “compatible interface”.
The relation of compatibility for the vector of rotation  implies that the following relations
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can only be satisfied if

(3.49)

The interpretation of this pass-through condition is self evident since it assures that the normal 
component of the field of local rotation is conserved on each side of the interface between 2 
mediums; it prevents a sliding at the interface by rotation of one medium with respect to another.
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The following integral relations at the interface can be deducted from the condition of compatibi-
lity for the tensor of contortion 

(3.50)

So that they are satisfied, it must be so that the tangential components of the  be conserved 
on each side of the interface. This can be written as

(3.51)

To find a topological interpretation for this condition of passage, one has to decompose the sur-
face integral in 2 parts and remember that, in a compatible medium, the tensor  is directly 
linked to the gradients of the components of the field of rotation  associated with the defor-
mations . So we have

(3.52)

which with the gradient theorem becomes

(3.53)

In other words the pass-through condition (3.53) assures us that the rotations  implicitly 
contained in the tensor of deformations  (from which we deduct the tensor of contortions ) 
are equal on each side of the interface between the 2 mediums.

The equation of compatibility for the flexion vector  implies the following integral relation on 
the interface

(3.54)

from which we deduct that the normal component of the flexion vector must be conserved on 
each part of the interface

(3.55)

3.6 - Examples of fields of flexion and torsion

From simple examples of field displacement  that belong to known deformations of the 
medium, this paragraph will show that the topological tensors  et  perfectly describe the 
contortions, meaning the flexions and torsions that can appear inside the lattice.

The pure flexions of a solid lattice

Imagine the following static field displacement  in the neighborhood of the origin of local 
referential , which only present one component in the direction of the 

     for          and     (3.56)

where the constants  and  can take the values -1, 0 or 3.
If the deformation of the horizontal planes of a solid submitted to such a field of displacement is 
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represented graphically, we observe a curvature of the planes of flexion that depends on the 
value of the parameters  and , as shown on the 4 examples of figure 3.10. 

Figure 3.10 - curvature by pure flexion in a solid lattice

We can verify that, for the mathematical expression chosen here for the displacement field, 
there corresponds a radius of curvature  in the planes  and , in which the curva-
ture is oriented towards the top or the bottom depending on whether the parameters  and  
are positive or negative, respectively. If  and  are both null, there is no deformation (figure 
3.10a). If  and , the horizontal planes are portions of a cylinder of radius  (figure 
3.10b). If  and  both are equal to 1,  it is a portion of sphere or radius  (figure 3.10c), and 
if  et , the horizontal planes represent a saddle point which is at the origin of co-
ordinates (figure 3.10d).
With relations (2.48), the tensors of distortion of the solid can be deduced from the displacement 
vector . The volume expansion  of the solid is null, because , and 
the local field of rotation does not present a component along the axis 
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(3.58)

The tensor of contortions  can also be deducted, and we note that it is of null trace, as we 
had deduced in (3.22)

(3.59)

And for the flexion vector , it follows

(3.60)

The norm of the flexion vector  measured at point  of our system of coordinates is directly 
linked to the inverse of the radius of curvature , in the following way

(3.61)

and in such a way that the norm of the flexion vector in a given point of space is equal to the 
inverse of radius  of a cylinder (or a sphere) which would be centered at a distance  of this 
point in the direction of the flexion vector, and which would be tangential at this point to the de-
formed surface.

The pure torsion of a solid lattice

Consider now the field of local static displacement  in the local frame , where 
,  and  are constants

(3.62)

It is possible to obtain the vector of torsion (local rotation)  and the scalar of volume expan-
sion  associated with this field of displacement
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(3.63)

This field of displacement is thus non divergent and it leads to a field of rotation whose compo-
nents increase or diminish along the coordinate axis, which is characteristic of a pure torsion of 
the solid (which corresponds in fact exactly to the case represented in figure 3.2 if we assume 

 et ). Furthermore, we can verify that the vector of local rotation  satisfies 
the geometro-compatibility condition, which is normal since the divergence of a rotational is null

(3.64)

For a tensor of local distortions , it follows

(3.65)

and for the tensors of deformation  and shear 

(3.66)

The tensor of contortions is then written

(3.67)

This tensor is purely diagonal and of null trace. It is therefore equal, in this particular case, to the 
tensor of torsion .  Regarding the vector of flexion, it is in this case null

(3.68)
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Chapter 4

Newtonian dynamics and eulerian thermo-kinetics 

If we suppose that the lattice under consideration behaves in a newtonian fashion 
in the absolute frame of GO, we can introduce in a rigorous manner the dynamics 
and thermo-kinetics of the lattice in the eulerian coordinates. We will do so on the 
frame of 3 axioms, which are classical and well-known: the definition of the kinetic 
energy of a particle and the 2 first principles of thermodynamics. With this rigorous 
if axiomatic approach, one is led to define average quantities on each site of the 
lattice, and corresponding sources and flux, which must satisfy 3 continuity prin-
ciples that are mandatory in solid newtonian lattices.

4.1 - The principle of newtonian dynamics

The axiom of newtonian dynamics

It was shown in chapter 1 that a lattice of solid particles in space exhibits a collective movement 
which corresponds to the global movements of translation, rotation and deformation of the me-
dium in the space of the observer, and which can be described in eulerian coordinates, by a 
local average velocity .
We postulate here, axiomatically, that this collective lattice obeys the laws of newtonian dyna-
mics.  This means that, to the collective movement of particles at velocity , there corresponds 
a kinetic energy. For each particle, this kinetic energy can be written, according to newtonian 
mechanics as:

= kinetic energy per particle (4.1)

This expression of the kinetic energy of a particle in the medium involves a physical invariant 
scalar that is proper to the particle: its inertial mass also called rest mass, . 

The equation of local continuity of the inertial mass in the absolute frame of GO

In eulerian coordinates, one has to find an equation that translates the continuity of the mass in 
the medium in the frame of the GO. To write this equation, we introduce the density of mass 
(mass per unit volume)  of the medium, so that the total mass  contained in any gi-
ven volume  , which can be mobile in the medium, is simply obtained by integration of the 
density of mass over said volume, by definition

(4.2)

On this volume , the equation of continuity of mass is written on the frame of the temporal 
derivative of , under the simple form

 φ
!
(!r ,t)

 
!
φ

 
ecin =

1
2
m
!
φ 2

m

 ρ(
!r ,t) M

Vm

M = ρdV
Vm
∫∫∫

Vm
M



chapter 468

(4.3)

What this equation translates is the fact that, within a given volume , the change in mass 
must correspond to either a source density of mass , representing the creation or annihila-
tion of mass at each point within said volume (the first term), or to the fact that mass leaves the 
volume. Mass leaving a volume is equivalent to mass passing-through the boundary surface of 
said volume.  This is then captured as a surface exchange term between the inside and outside 
of the volume and is represented by the surface flux of mass , with respect to the surface 

(figure 4.1). Equation (4.3) can also be transformed by using the derivative of an integral on 
a mobile volume and the divergence theorem to give us

(4.4)

We can deduce the local expression for the continuity condition in the  frame

(4.5)

Figure 4.1 - mass flux , work flux , heat flux , source of mass  
and source of entropy density  on a given mobile volume  of medium

The equation of local continuity of inertial mass in a local frame of PO

We can develop the same calculations we just did but in the local frame  of PO. With 
regards to the temporal derivative of , meaning in a fixed point  of the local frame, the 
equation of continuity must involve the local velocity  instead of the absolute velocity , and 
we obtain the following equation in , which can also be expressed with the absolute 
velocity  by using the relation (2.16)

(4.6)
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The eulerian equation of continuity for inertial mass

We can revisit the 2 equations of local continuity of inertial mass in  and , and 
try to derive a continuity equation of the eulerian type, which would only depend on material 
derivatives, and as a consequence be true both in the absolute frame of GO and the mobile 
frame of PO. We rewrite relation (4.5) in the following way

(4.7)

By using the equation of compatibility (1.42) for , we obtain

(4.8)

The first member of this equation is the material derivative of , so the equation of eulerian 
continuity for the inertial mass reads

(4.9)

One would obtain exactly the same results by starting from relation (4.6) in the frame .

The newtonian concept of linear momentum (“quantité de mouvement” in french)

The equation (4.3) can be written in a fixed volume  of the observer. The temporal derivative 
of the total mass  contained in a  fixed volume  is then written

(4.10)

in which the absolute surface flux of mass  with respect to the observer, actually represents 
an important characteristic measure of newtonian dynamics, the volume density of linear mo-
mentum. By introducing the average linear momentum  of each elementary site of the lattice, 
defined as

(4.11)

equation (4.10), which corresponds to the temporal derivative of an integral on a fixed volume in 
space, can be simply written as

(4.12)

which leads us to a second expression for the continuity of mass

(4.13)

Following (4.5) et (4.10), the flux of mass can then be represented in 2 equivalent ways

(4.14)

which signifies that the absolute transport of mass  is equal to a sum of mass transport 
 by the mobile medium with velocity  and an extra term of transport of mass  via ano-

ther physical process, such as the self-diffusion in solid lattices which we will introduce later.
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4.2 - The principle of energy continuity

To introduce the concept of energy, we must find the total energy contained in a volume  of 
the medium, mobile within it (figure 4.1), meaning having a displacement velocity . It was 
shown in section 1.2  that the velocity of each particle  of the medium can simply be written

(4.15)

where the  are the random fluctuations of the velocity of the particle, which we will asso-
ciate later to thermal agitation.
To the collective movement of particles with velocity  corresponds, if we admit the postulate of 
newtonian dynamics, a kinetic energy that can be expressed in the form of a volume density of 
kinetic energy .

The axiom of the first principle of thermodynamics

To the random fluctuations of , as well as the interactions that can exist between the par-
ticles of the lattice must correspond a kinetic and an internal potential energy.  This is precisely 
the axiom of first principle of phenomenological thermodynamics, which postulates, for a given 
physical system, a state function , called internal energy of the system, which is such that, for 
all infinitesimal transformation of the system, the following relation holds

(4.16)

where  represents all exchanges of heat between the system and the external world, and 
 all exchanges of work between the system and the external world.

Along its spatio-temporal evolution, it is certain that the medium will, in general, find itself out of 
thermodynamical equilibrium, and it is thus necessary to generalize the concept of internal 
energy by introducing a quantity of local internal energy which will depend on time, under the 
form of a volume density of internal energy .

The eulerian equation of continuity of energy

The total energy  contained in a volume  is then equal to the integral on the volume  of 
the sum of kinetic energy density  and internal energy density , which is to say

(4.17)

According to the first principle of thermodynamics, this energy is a conserved quantity inside an 
isolated . So any variation in said energy can only be due to external influences coming 
from outside the volume  , translating the fact that this volume is in fact non-isolated.  These 
variations are due either to work exchange or heat exchange. By definition those exchanges 
either result from a pass through the boundary surface  around the volume , or result 
from work due to an external work performed, on the internal medium, by an outside field (such 
as gravity, electro-magnetism, etc). The exchange of work and heat across the surface  can 
be represented as a form of surface flux of work  and of surface flux of heat . As for the 
volume work due to outside forces, it is introduced in the form of a volume source from external 
fields, and it is introduced in the form of a volume source of work of external forces .
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The principle of conservation of energy of a given volume can be written as the equality of 
the temporal derivation of total energy contained in said volume  and the different contribu-
tions to the volume, which comprises the work volume sources we just discussed and the pass-
through contributions which necessarily cross the boundary surface , by definition of a boundary 
surface 

(4.18)

Using the theorem of divergence (A.43) and the derivation of an integral on a mobile volume (A.
58), this equation can be transformed into the following

(4.19)

which under local form, gives us

(4.20)

It will be shown, later in this book, that for convenience reasons, it is judicious to transform this 
equation, which contains volume densities and , by introducing the measures  et , 
defined respectively as the medium kinetic energy and the medium internal energy, defined per 
elementary site of the lattice

     and          (4.21)

Thanks to these definitions, the first part of equation (4.20) can be transformed. Indeed, by 
using the equation of continuity (1.12) for  and making explicit the material derivative of , as 
well as a term associated to the source  of the sites of the lattice, we deduce

    (4.22)

Applying transformation (4.20), we obtain the final formulation of the first principle, or principle 
of continuity of energy in eulerian coordinates and in its local form

   (4.23)

Whether it be written in the absolute referential  of the GO or in the local mobile frame 
 of the PO, the form of this equation of continuity remains identical to itself.  Only the 

expression of the material derivative (absolute derivative as opposed to partial) changes since it 
depends on the absolute velocity  of the lattice in the frame  and the local relative 
velocity  of the lattice in the mobile frame .

4.3 - The principle of entropy continuity

The axiom of second principle of thermodynamics 

The second principle of phenomenological thermodynamics postulates the existence, for a gi-
ven physical system, of a state function , called the entropy of the system.  This state function 
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characterizes the disorder within the system, and is such that all infinitesimal transformation of 
the system satisfy the following inequality relation

 (4.24)

where  represents the sum of heat exchanges between the system and the outside world 
and  the temperature at which these exchanges happen. During its evolution in space and 
time, the system is, in general, out of thermodynamical equilibrium, such that it is necessary to 
generalize the concept of entropy, by introducing the notion of a local entropy variable which 
depends on time, the volume density of entropy .

The eulerian equation of continuity of entropy

By using the same mobile volume  defined in the previous paragraph, the volume density of 
entropy  allows us to calculate the total entropy  of a system by relation

(4.25)

The second principle can then be generalized as a principle of entropy in eulerian coordinates 
by writing an integral relation for the temporal derivative of the total entropy  on a mobile vo-
lume

(4.26)

in which the exchanges of heat with the exterior are introduced via a surface flux of heat  on 
the boundary of said volume.

The irreversibility of thermodynamic transformations of the medium which is translated through 
the inequality  in phenomenological thermodynamics,  was introduced here under 
the form of a source of volume entropy  within the volume .  The notion of reversibility or 
irreversibility of processes of the medium is then described by a macroscopic source term  of 
entropy

(4.27)

which is such that the evolution of a system will be reversible for  and irreversible for 
.

The integral relation (4.26) can also be written under another form, by using the temporal deri-
vative of an integral on a mobile volume and by making use of the theorem of divergence

(4.28)

We can extract a local equation from the second principle of volume density of entropy 

(4.29)
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defined by the relation

(4.30)

and by using the transformations described in (4.22), the final formulation of the second prin-
ciple, or principle of eulerian continuity of entropy in eulerian coordinates, is written

(4.31)

Whether it be in the absolute frame  of the GO or in the local mobile sphere  
of the PO, this equation of continuity remains identical.  Only the expression of the material de-
rivative changes since it depends on the absolute velocity  of the lattice in the frame  
and on the local relative velocity  of the lattice in the mobile frame .

The 3 fundamental physics principles of continuity of newtonian dynamics and eulerian 
thermo-kinetics

Therefore, by starting from the axioms of newtonian dynamics and the classic phenomenologi-
cal thermodynamic, 3 physical principles of continuity were postulated to describe the “thermo-
geometro-dynamic”  in eulerian coordinates, as following
- an eulerian principle of continuity of the density of inertial mass,
- an eulerian principle of continuity of the average energy per site of the lattice,
- an eulerian principle of continuity of the average entropy per site of the lattice.
As we will see during the next chapters, these 3 principles, which are summed up in table 4.1, 
are the only physical principles needed for a complete galilean description of the newtonian  
geometro-dynamic and the phenomenological  description of deformable medium in Euler coor-
dinates, whether those are solids or fluids.
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Table 4.1 – Newtonian dynamics and eulerian thermo-kinetics
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Chapter 5

Physical properties of a newtonian lattice

In this chapter, the fundamental physical properties of a solid lattice are shown.  
We will look at the mechanical properties and the properties of mass transport.  
Starting from a thermo-kinetic equation of the local solid lattice, we will show how 
the elasticity of the lattice gives rise to thermodynamical potentials called stress 
tensors. We then introduce the notion of dissipative mechanical phenomenas in 
lattices, by decomposing the tensor of distortions in dissipative and non-dissipative 
components.  This leads to 2 phenomenological descriptions of possible dissipa-
tions: anelasticity and plasticity. We describe self-diffusion, the transport of mass 
through the lattice either in the form of vacancies or self-interstitials. The newtonian 
principle of mass conservation implies new fundamental equations for the lattice 
called diffusion equations, as well as new thermodynamic potentials called chemi-
cal potentials. Finally we derive the quantities associated with the newtonian beha-
vior of the lattice, meaning its average linear momentum per site, its average kine-
tic energy per site and the source of external work, as in the case where the lattice 
is submitted to a constant gravity field.

5.1 - Elasticity of a lattice

In the local frame , we can characterize the state of a solid in the most possible general 
way, first by giving its global tensor of distortion , and second, with regards to its thermal 
energy, by the local value of its entropy .  The average internal energy in each site of the lattice 
is, as defined here, a function of the local distortion and local entropy

(5.1)

The actual shape of this state function depends on the type of solid lattice we are considering. 
What we are doing with it is to describe the energy of a given solid phenomenologically, and 
therefore, we will call it the phenomenological state function of the solid.
Expression (5.1) of the internal energy is not the usual form found in textbooks to describe 
common solid latices. Usually only the components of the tensor of deformation are used to 
compute internal energy, not the  components of the tensor of distortion.  We will discuss this 
point further in the book. For now, let’s just say that, à priori, the description of internal energy 
using the tensor of distortion  is more general than the one usually obtained from the compo-
nents of the tensor of deformation. 

The distortion stress tensor and the thermo-kinetic equation of elasticity

Since the internal energy  is a function of the scalar of entropy  and the components  of 
the tensor of distortion, its differential form is
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(5.2)

We introduce the mechanical potential, the conjugate of the tensor of distortion , and we will 
call it distortion stress tensor . We also introduce the thermal potential, the conjugate of en-
tropy , which is simply the temperature . The differential can be written

(5.3)

The comparison between the 2 previous expressions of the differential of  shows the pheno-
menological state equations of the solid, which is to say the relations that gives us the stress 
tensor  and temperature  as functions of the tensor of distortion  and the entropy 

(5.4)

As with the topological tensors, a vectorial notation of the stress tensor  can be introduced 
here

(5.5)

The differential of the internal energy  can then be written with a scalar product in the follo-
wing form

(5.6)

From which we deduce the thermo-kinetic equation of elasticity of the lattice

(5.7)

The deformation stress tensor and the torque torsor

The equations of thermodynamic obtained in the previous paragraph were written as functions 
of the components  of the tensor of distortion. It could be interesting to rewrite them in terms 
of the tensor of deformation  and the torsor of rotation . We recall,

(5.8)

which we introduce in the differential form of the internal energy , and we have

 (5.9)

The mechanical potential which is conjugated to the vector of rotation  will be called the tor-
sor of moments or torque torsor , which we will then define as

(5.10)

It is linked to the anti-symmetric part of the stress tensor .  In terms of this torque torsor, the 
differential  takes the form
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(5.11)

Thus the internal energy  is also a function of the tensor of deformation , of the vector of 
rotation  and of entropy 

 (5.12)

Its differential is

(5.13)

The tensor of deformations  is, by definition, a symmetrical tensor. We will then operate a few 
transformations on the differential of the internal energy  in order to explicitly show this sym-
metry which will be very useful later on

(5.14)

We have a symmetric mechanical potential, which is conjugated to the tensor of deformations 
, we will call it the deformation stress tensor ,  and it is defined by

 (5.15)

This new mechanical potential allows us to write the differential of  simply as

(5.16)

We define the state equations of the media in the representation 

(5.17)

The deformation stress tensor  can be written from the tensor 

(5.18)

The relation  allows us to transform the differential of the internal energy 

(5.19)

Since  is symmetric we have, by definition

(5.20)

In such a way that the differential of the internal energy  can be written as
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(5.21)

This new form of the differential of  depends on the differential  of the tensor of distortion. 
This new form was made possible by the introduction of the symmetric stress tensor . The 
advantage of this expression is to be able to rewrite the equation of thermo-kinetic only using 
the material derivatives of  and of , which are linked by the simple geometro-kinetic rela-
tions

(5.22)

The equation (5.22) shows that the temporal variations of the internal energy along the path is 
associated with variations of the elastic energy of deformation, the potential energy of rotation 
and the thermal energy. Furthermore the variations of the elastic energy of deformation can be 
written in many equivalent ways

 (5.23)

The shear stress tensor, the torque torsor and the scalar of pressure

We use the decomposition of the tensor of deformation  into the shear tensor  and the 
scalar of volume expansion 

(5.24)

to rewrite the differential of  in the following way

(5.25)

This allows us to introduce the conjugate to the scalar of volume expansion , which is called 
the pressure 

(5.26)

So the differential of  is written 

(5.27)

Internal energy  can be expressed as a function of ,  and 
(5.28)

with the differential

(5.29)

The shear tensor  is symmetric, so

(5.30)

We introduce the Kronecker symbol , such that  if  and  if , the sum  
 is null, because the shear tensor  is a null trace tensor, by construction. This 
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allows us to add a term that contains the trace of the stress tensor  in the differential of 

(5.31)

which can be written as

(5.32)

There appears a new mechanic potential, symmetrical and trace-less, which is conjugated to 
the shear tensor , which we will call the shear stress tensor , defined by the following re-
lations

(5.33)

By comparing the differential of  obtained thanks to the potential 

(5.34)

we can define the following state equations in the representation 

(5.35)

The shear stress tensor we just defined can be written in a simple manner in the vectorial form

(5.36)

This tensor is symmetric and with null trace, so the following equations hold

     and      (5.37)

The differential of  is expressed in terms of the shear tensor  

(5.38)
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(5.40)

From this we deduce the thermo-kinetic equation in the representation 

(5.41)

We should note here that each term of the thermo-kinetic equation corresponds respectively to 
the temporal variations of the energy of elastic shear, global rotation, volume expansion and 
thermal energy. Furthermore this equation of thermo-kinetic depends on the temporal deriva-
tives of the 3 topological tensors, which we can derive from the velocity field thanks to the geo-
metro-kinetic equations given in table 1.1.  Finally the following identities hold

(5.42)

The decompositions of the stress tensor , represented schematically in figure 5.1, follow a 
procedure completely equivalent, bar a few coefficients, to that used for the decomposition of 
the tensor of distortion. 

Choosing a topological representation

As we have seen, in all generality, the thermo-kinetics of a deformable medium can be descri-
bed in the three, equivalent, topological representations ,  or , which 
each have their conjugate stress potentials, namely ,  et  respectively. 
The choice of one representation over another to describe a deformable medium depends on its 
nature and is a question of convenience as regards to the writing of the internal energy . Let’s 
give some explicit examples:
- in the case of a fluid, the internal energy  has to be expressed as an explicit function of the 
volume expansion  (or of average volume ) and the entropy , in such a way that the only 
non-null conservative mechanical potential in a fluid is the pressure

 (5.43)

which leads us to the following geometro-kinetic equation

(5.44)

- in the case of a usual solid lattice, the potential part of the internal energy depends on the 
elastic deformations  of the medium, and only on those.  It follows that the only non-null me-
chanical potential for a lattice is generally the symmetrical stress tensor 

(5.45)
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Figure 5.1 - schematics of the decomposition of the stress tensors

- in the case of an isotropic lattice, it is preferable to separate the deformations due to shear and 
the deformations due to volume expansion and to write the internal energy  as a function of 
the tensor of shear , the scalar of volume expansion  and the entropy .  This leads us to 
the fact that the non-null mechanical potentials are the shear stress tensor  and the scalar of 
pressure 

(5.46)

the thermo-kinetic equation reads

(5.47)

Generally there is no direct dependence of the internal energy  on the vector of global rotation 
, as a global rotation does not deform the medium (merely rotates it). Consequently, the 
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is a coupling of vectorial nature in the lattice having certain directional properties (such as an 
axial magnetic moment or an electrical axial polarization) and a certain external field defined in 
an absolute frame (such as a magnetic field or an electric field for example) where a preferred 
axis would appear and the symmetry of rotation would be broken by the external potential.
While this is true of a global rotation, we will show later, that under certain particular conditions, 
the stress tensor of elastic shear  can be replaced by a torsor of moments or torque torsor  
conjugated to the vector of local rotation .
Another important remark can be made here. In our description in eulerian coordinates, the me-
chanic potentials are given by state equations that use the density  of sites of the lattice as a 
multiplication factor.  This density  is directly related to the volume expansion  of the solid or 
to the average volume  of the sites of the lattice via relations , which implies 
that the mechanical potentials will depend in this case non-linearly on the expansion   of the 
solid. 

5.2 - Anelasticity and plasticity of a lattice

The only way to introduce dissipative processes in a solid lattice of particles is to postulate that 
the distortions by elastic deformation of the lattice are accompanied by dissipative distortions.  It 
is these dissipative distortions that allow, at the macroscopic scale, relative movement with large 
distances between particles, by sliding planes of particles one on top of the other.  We write in a 
generic way the total distortions  in the local frame

(5.48)

It is clear that the variations of elastic distortions  contribute to a work of elastic deformation 
that we will write ,

(5.49)

At the same time the dissipative distortions  will be responsible for a variation of work 
 and a variation of heat , which we will thus write

(5.50)

Two possible phenomenologies for dissipation

Relation (5.50) can lead to 2 different dissipative phenomenologies, depending on whether the 
variation of work is null or not:
- if variation of work  is null, then the dissipative distortions do not store potential energy 
in the network, so they cannot be recovered. This thermodynamically irreversible phenomena 
will be called the plasticity of the lattice.  The plastic distortions satisfy the following relation

(5.51)

- if variation of work  is not null, the dissipative distortions do store potential energy in the 
lattice, so they are this time recoverable. However this phenomena is thermodynamically irre-
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versible since it dissipates heat. It will be called the anelasticity of the lattice, and the anelastic 
distortions that are associated with it satisfy the following equation

(5.52)

Since the anelastic distortions contribute both to variations of work and heat, it is necessary to 
introduce a way to decompose the previous expression to separate  and . The only 
logical way to proceed here is to write

(5.53)

and so to decompose the stress tensors in a conservative part, which is responsible for the 
source of work, and a dissipative part, which is responsible for the source of heat. This decom-
position of stress tensors allows us to write the individual variations of work and heat linked to 
anelasticity in the following form

(5.54)

We can here make a hypothesis of anelasticity, which will allow to simplify the description of 
dissipative solid medium going forward. Indeed if we suppose that the trace of the anelastic dis-
tortion tensor is null, we can immediately conclude that there are no anelastic component of 
volume expansion, by definition, and therefore that the anelastic deformations are only made of 
shear

Hypothesis:   (5.55)

The thermo-kinetic equation of an anelastic and plastic lattice

By using relations (5.49) and (5.54), and by using the hypothesis (5.55), the variation of work 
 associated with the deformations of a lattice that has elasticity, anelasticity and plasticity 

is written

(5.56)

The total variation of the work of deformation  will be found in the expression for the 
thermo-kinetic equation for the internal energy 

(5.57)

This thermo-kinetic equation could be written by replacing the  with , thanks to property 
(5.42), so the internal energy function  of a self-diffusive lattice with anelasticity and plasticity 
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(5.58)

A first statement can be made about this state function: it does not depend on plastic distortions 
of the lattice.  As a matter of fact, the plastic distortions of the network only appear in the total 
variation of heat  associated with the dissipative processes of anelastic and plastic de-
formation

(5.59)

It is clear that in the description of the anelastic and plastic lattice, this variation of heat will have 
to appear in the heat equation of the lattice. It is responsible for a source of entropy reflecting 
the thermodynamical irreversibility of the dissipative processes of anelasticity and plasticity. 

The constitutive equations of an anelastic and plastic lattice

Besides the simplifying hypothesis (5.55), there are no restrictions to decomposing the dissipa-
tive distortions in relation (5.48) in an anelastic part and a plastic part, so that we can write in all 
generality, the following constitutive equations of a solid lattice that is both anelastic and plastic

(5.60)

It is clear that the distortions ,  and  always satisfy, in the local frame, both the equations 
of geometro-kinetic of table 1.1 that give them in terms of the velocity field  inside the solid, as 
well as the equations of geometro-compatibility  and .

Existence of sources and sinks of sites of lattice in the presence of plasticity

We saw in relation (1.18), that the equation of continuity for  can be represented in the form of 
a derivative along the trajectory

(5.61)

By definition there is a link between the volume expansion and the density  of sites of the lat-
tice. But, according to (5.60), the volume expansion contains 2 components since .  
One can easily convince oneself that the density  of the lattice sites is not linked directly to the 
total volume expansion , but only to its elastic part .  This assertion is equivalent to saying 

(5.62)
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From this assertion we deduce that the equation of continuity (1.20) must be written, in pre-
sence of elasticity and plasticity as

(5.63)

This relation is very important, as it shows that, in the presence of plasticity, the density  of 
lattice sites cannot obey the same principle of conservation. As a matter of fact, the phenome-
nas of plastic deformation behave as sources and sinks of lattice sites, which we will justify fully 
in the rest of this book when we introduce the notion of plastic charges. There appears a source 
of lattice sites  different than zero directly linked to the material derivative of the plastic vo-
lume expansion

(5.64)

Thus, in the presence of plasticity the equations of geometro-kinetics will contain, implicitly, a 
source of lattice sites  which is non null and associated to . We will write them as

(5.65)

5.3 - Self-diffusion in a lattice

There exists an important consequence to the equation of continuity (5.61) for the density  of 
sites of lattice: the principle of newtonian conservation of mass would be violated in the pre-
sence of non null site sources. To see this, one only has to multiply the equation of continuity 
(1.7) for  by mass  of the particles of the lattice. Since mass density is equal to  
and the linear momentum is equal to  in a lattice without point defects, we have the 
following equation

(5.66)

which has an effective mass source linked to the plasticity of the lattice. It is not possible to ad-
mit the non-conservation of mass in a newtonian network, so in a lattice which does not contain 
point defects, plastic distortions which give us a source of lattice sites  different from zero, 
with  non null, are impossible.
On the other hand we can show now that in the case of a network containing self-diffusion due 
to point defects, plastic distortions lead to a source of lattice sites  which is different from zero 
do not violate the principle of mass conservation and become consequently, possible.

Self-diffusion of particles in a lattice

An intrinsic point defect of vacancy type consists of a site of the lattice which does not contain a 
particle (figure 5.2). It is a "hole" in the lattice. An intrinsic point defect of interstitial type is a par-
ticle which is found in the solid lattice, but which does not occupy a regular site of the lattice (fi-
gure 5.2). It is an “extra” particle in the lattice.
It is easy to see that the presence of such point defects leads to a mass transport phenomena 
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via the self-diffusion of said defects.  We show these 2 mechanisms in a lattice moving with ab-
solute velocity  (figure 5.2). The movement of a vacancy  (  for lacuna, meaning a missing 
particle in the lattice) with relative velocity  with respect to the lattice in a given direction 
leads to a relative flux of mass in the opposite direction with velocity , while the move-
ment of an interstitial  with relative velocity  with respect to the lattice in a given direction, 
gives rise to a flux of mass in the same direction with velocity . 

Figure 5.2 - movement of a hole or interstitial  in  a solid lattice

To mathematically transcribe the existence of these punctual defects, one must introduce a no-
tion of volume density of vacancies, , and interstitials, 

 (5.67)

From these densities, it is possible to define the notion of atomic concentrations of vacancies 
and self-interstitials with respect to density  of lattice sites with the following

 (5.68)

Contrary to appearances, there is a certain asymmetry between vacancies and self-interstitials, 
which is seen in the fact that the maximum atomic concentration of vacancies is always limited 
to 1, when all sites of the lattice are empty, while the atomic concentration of self-interstitials 
depends on the number of interstitial sites and the number of defects one can put per site.
At point  of absolute space  and at instant , the absolute velocity  of the vacan-
cies and the absolute velocity  of interstitials can be expressed in terms of the relative veloci-
ties  et  of these defects with respect to the lattice as such

     and     (5.69)

In the local frame , velocity  of the vacancies and velocity  of the interstitials can 
be written

     and     (5.70)

If we follow a piece of the lattice during its evolution in space (figure 5.3), the equations of conti-
nuity which characterize ,  et  on this lattice can be found, provided we write them as 
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integrals on this mobile lattice. Indeed on this mobile volume, the number of sites does not 
change, a fact we translate in a relation valid both in  as well as 

 (5.71)

Figure 5.3 - flux of vacancies and interstitials across the surface of a chunk of lattice

Regarding the integral equation of evolution describing the number of vacancies or interstitials 
in a volume , they can be written by taking into account, first the volume sources  and  
associated with the creation and annihilation of vacancies and interstitials in the volume , 
and second the flux of vacancies and interstitials entering or leaving said volume  via its 
boundary surface with relative velocity  or 

 (5.72)

In their local form, in the absolute frame , and by using the formulas of derivation of an 
integral on a mobile volume, the equations of continuity for the density of sites of lattice and for 
the density of vacancies and interstitials can be written as

 (5.73)
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The equations of continuity can be written in their classic form, by making explicit the absolute 
velocity of vacancies and interstitials thanks to relations (5.70)

 (5.74)

The equation of continuity for the density of lattice sites  does not contain a source term for 
lattice sites ( ), so that the topological equations of an elastic lattice with self-diffusion 
remain exactly the same to that established in the case of an elastic lattice. The first equations 
of continuity (5.73) obtained for  and  can be further transformed by replacing  and  
by   et  and using the material derivative

 (5.75)

Thanks to the following relation, it is easy to verify that for 

 (5.76)

Equations that directly describe the variations of the atomic concentrations  and  along 
the path, are obtained

 (5.77)

We define the fluxes of diffusion  and  of vacancies and interstitials with respect to the 
lattice with the following relations

 (5.78)

We will now rewrite the equations of diffusion of vacancies and interstitials in their final form

 (5.79)

These equations, which use the material derivative are valid both in the absolute frame 
 as well as the local frame . Indeed we can verify that the equations (5.79) can 
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be deduced from the equations of continuity of integral relations (5.72), but written in the local 
frame , namely

 (5.80)

Chemical potential and thermo-kinetic equation in the presence of self-diffusion

In an elastic, anelastic and plastic lattice, with self-diffusion, it is clear that the atomic concentra-
tions  and  of vacancies and self-interstitials must also influence the energetic state of the 
lattice, so that we must complete the state function of internal energy (5.58), and write it now as  
a function of thermodynamical variables as follows

(5.81)

The differential of the state function  along the path of the sites of lattice can be written

 (5.82)

This differential allows us to introduce the mechanical potentials of stress, as well as the thermal 
potential of temperature . By analogy, it is now possible to introduce new potentials 
associated to the partial derivatives  and . These potentials will be called the 
chemical potentials  and  of vacancies and interstitials, respectively. Bearing in mind rela-
tion (5.42), we can now write the differential

 (5.83)

The thermo-kinetic equation of such a solid lattice can be immediately deduced

(5.84)

Application of the newtonian principle of mass conservation

Indeed, the equations of continuity (5.74) and (5.80) which were obtained in the case of a self-
diffusive lattice can be written taking into account the source  of sites of the lattice, due to the 
plastic component of volume expansion of the solid lattice. The first equation describing  is 
written in  and  respectively 

(5.85)

while relations (5.74) and (5.80) for the density of vacancies  and interstitials  remain un-
changed
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(5.86)

The density of mass  of the solid lattice containing  vacancies and  interstitials per unit 
volume can be simply expressed

(5.87)

We can establish an equation of continuity for the mass density  in the absolute frame 
 from the equations (5.85) and (5.86) 

(5.88)

We can compare this equation with the fundamental equation of continuity of mass obtained 
from relations (4.5) and (4.14)

(5.89)

From this comparison we have a first relation giving the source of mass  per unit volume

 (5.90)

If we admit that principle of conservation of mass cannot be violated, which we capture with the 
following hypothesis

Hypothesis:    (5.91)

then we have the following relation between ,  et 

 (5.92)

In this expression, the terms of source of vacancies  and of interstitial source  contain in 
fact 2 contributions: the spontaneous creation and annihilation of pairs of ‘vacancy-interstitial’,  
which we will write as , and the creation and annihilation of vacancies and/or interstitials by 
the process of plastic deformation, which will be written  and .  The total sources  and 

 can be decomposed as such

 (5.93)

These values of  and  can be put in equation (5.92)

 (5.94)

which translates the fact that plastic distortions with non-null trace, can either be sources or 
sinks of vacancies and/or interstitials.
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Self-diffusion in the presence of sources of lattice sites by plasticity

From the equations of continuity (5.86) obtained for  and , by replacing  and  by 
 and , we have

 (5.95)

With relation (5.66) which contains a non null source  of lattice sites, we do the following ope-
rations.

 (5.96)

we introduce, again, the fluxes of diffusion  and  of vacancies and interstitials, with res-
pect to the lattice, defined in relations (5.59), and the equations of self-diffusion of vacancies 
and interstitials in the lattice take the following form which is valid both in the global frame 

 or the local frame 

 (5.97)

Comparatively to the equations of self-diffusion (5.60) obtained previously, we have here the 
extra terms  and  associated with source  of lattice sites. By using relations 
(5.94) and (5.95), we explicitly exhibit the sources and sinks of point defects

 (5.98)

5.4 - Newtonian dynamic of a lattice

If the lattice considered behaves in a newtonian manner in the absolute frame of the GO, we 
can express its local linear momentum, its local kinetic energy and the source of work of exter-
nal forces. 

The linear momentum

From comparing (5.88) and (5.89), there emerges another interesting relation giving the ave-
rage linear momentum  per lattice site
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The linear momentum  can be written in a slightly different manner by decomposing the velo-
cities  and  thanks to relations (5.69)

 (5.100)

We introduce the diffusion fluxes  and  of vacancies and interstitials defined in (5.78), and 
we deduce that 

 (5.101)

and thus we see that the average linear momentum transported per site of the lattice is the sum 
of the linear momentum  associated with the absolute velocity of the lattice, the linear mo-
mentum  due to the transport of vacancies and interstitials by the lattice and fi-
nally the linear momentum  associated to the self-diffusion of vacancies and 
interstitials by the lattice
We use the mass density  (5.87),  to write  as

 (5.102)

By comparing this relation with relation (5.90), we obtain 

 (5.103)

which also means that the average linear momentum  associated to each site of the lattice is 
the sum of a mass transport  deriving from the local entrained movement of the lattice 
charged with vacancies and interstitials, and a mass transport  due to 
the self-diffusion of intrinsic point defects of vacancy and interstitial types.
It is possible to derive the value of  by another mean. In the lattice there are  interstitial 
particles with relative velocity , that transport the mass in the direction . Furthermore, 
the movement of the  vacancies with velocity  is associated with a mass flux of  par-
ticles of the lattice with velocity , that transport mass in the direction opposite to . 
The rest of the particles of the lattice, meaning the  particles situated on nodes, from 
which we have subtracted, again, the  particles situated on nodes associated with vacancy 
jumps, move with a null velocity with respect to the lattice, hence the following summary of the 
dynamic situation of the particles by unit volume of the media:

- There exists  particles with null velocity with respect to the lattice and thus with abso-
lute velocity ,

- There exists  particles with relative velocity  with respect to the lattice and thus with 
absolute velocity ,

- There exists  particles with relative velocity  with respect to the lattice, and thus with 
absolute velocity .

The flux of mass, or density of linear momentum  at point  and at instant  in the absolute 
frame , can be deduced from this dynamical situation of the particles, and we deduce 
the expressions (5.99)  to (5.102)
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 (5.104)

Kinetic energy

We can also deduce the average kinetic energy  per site of the lattice. Indeed, the volume 
density of kinetic energy  is simply written from the absolute velocities and the densities of 
the various flavors of defects

 (5.105)

We deduce the average kinetic energy  per site by division per 

 (5.106)

The average kinetic energy per site of the lattice is equal to the kinetic energy of a site of the 
lattice minus a fraction corresponding to the kinetic energy of a couple of particles subtracted 
from the lattice to have vacancy diffusion, plus a fraction corresponding to the kinetic energy of 
interstitial and a fraction corresponding to the kinetic energy of vacancy jumps.
The expression  can be written by replacing  by  in the following term

 (5.107)

which allows us to write

 (5.108)

The source of work of external forces

With respect to the source of work  due to a field of external forces, it can be calculated if 
we know the nature of the field force. For example, if we suppose that the lattice is in a constant 
gravity field , we will have

 (5.109)

By introducing the expression (5.102) for , we have the following expression for the source of 
work for a constant gravity field

 (5.110)
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Chapter 6

Evolution equations for a newtonian lattice

The introduction of the elasticity, of the dissipative mechanical processes of anelas-
ticity and plasticity, of the processes of mass transport and of the newtonian dyna-
mics of the lattice in the fundamental equations of continuity for energy and entro-
py, allows us to re-derive the entire set of equations that describe the spatiotempo-
ral evolution of said lattice. These behavioral equations are of two kinds: the fun-
damental equations which stay identical to themselves regardless of the lattice un-
der consideration and the phenomenological equations which do depend (and des-
cribe) the particular nature of the lattice under consideration.

6.1 - Equations of evolution of a lattice

The first part of the equation describing the principle of energy continuity in an elastic, anelastic 
and plastic solid lattice, in the presence of vacancies and self-interstitials, is written using the 
relations (5.108)  for  and (5.84)  for , all the while assuming here, in all generality, 
that internal energy  can depend on  and 

(6.1)

The terms in boxes can be decomposed with relations (5.69),  and it is possible to introduce the 
generalized chemical energies  and  of vacancies and interstitials, defined as the sum of 
chemical potentials and kinetic energies associated with each of the diffusing species

     and      (6.2)

Thanks to relation (5.60), the expression

(6.3)

can be replaced by the following, which has the advantage of explicitly showing ,  and 

(6.4)

We then have
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(6.5)

In the second line of this expression, the material derivatives of the topological tensors and the 
atomic concentrations are replaceable using the equations of geometro-kinetic (5.65) and the 
equations of diffusion (5.98). We then have

(6.6)

This expression must be compared to the second part of the first principle (4.23), in which the 
sources  is not null

(6.7)

which can be written, by introducing a source of work (5.110) due to a constant gravity field

(6.8)

From this comparison, we have 3 important equations that must be satisfied at all times in an 
elastic, anelastic, plastic and self-diffusing lattice.

The lattice’s Newton equation

The comparison of the vectorial expressions in brackets, in the scalar product with , leads to 
the following equation

(6.9)

By using the material derivative of the average linear momentum  per site given by expres-
sion (5.99)

(6.10)
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equation (6.9) becomes a dynamic equation for the linear momentum

(6.11)

This equation is nothing more than the Newton equation applied to the lattice in eulerian coordi-
nates. This equation describes the dynamics of the solid, which depends on gravity , volume 
forces with stress potentials ,  and , and additional linear momentum brought about by 
increase of the number of point defects in the lattice. Expression (6.11) represents in fact the 
Newton equation we can obtain by using the thermo-kinetic equation (5.84). However, we can 
verify while working on thermo-kinetic equations (5.13) and (5.7), that the same Newton equa-
tion can be written under two different forms, which use mechanical stress potentials  and 

(6.12)

(6.13)

The flux of work and the surface force

The comparison of the vectorial terms of the divergence operator, leads to an expression for the 
flux of work within the lattice

(6.14)

This flux corresponds to an energy propagation within the solid.  We will remark that the contri-
bution of  is a vector totally analogous to the Poynting vector of electromagnetism. The ex-
pression (6.14) allows us to write the surface integral that appears in expression (4.18) 

(6.15)

The first integral introduces the notion of a surface force , where  corresponds to the unit 
vector normal to the surface under consideration, and the second integral shows the appea-
rance of energy fluxes associated with the diffusion fluxes of vacancies and interstitials

 (6.16)

The last two relations show that the flux of work associated with the flux of diffusion of vacan-
cies and interstitials contain both a flux of potential energy (the chemical potentials  and  
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of vacancies and interstitials) and fluxes of kinetic energy.
The first relation could be calculated from the other mechanical potentials and would simply lead 
to the following expressions

(6.17)

 (6.18)

The three equations for the surface force allow us to specify the limit conditions external to the 
solid. At the limits of the medium, we can link the external forces by unit surface  to the 
stress tensors ,  or , the torque vector  and the scalar of pressure .

From these expressions of the surface force  we easily deduce the physical interpretation, 
completely classical, of the stress potentials ,  or . Dimensionally they are forces by unit 
surface: the component  of tensor  is equal to the force per unit surface applied in direc-
tion  on a unit surface perpendicular to direction .  Schematically, we can represent the 
whole set of forces and components on a unit cube as in figure 6.1.

Figure 6.1 - physical interpretation of the components of the stress tensor 

The component of the stress tensor  have the dimension of a stress, a force per unit surface, 
which is why we called  the stress tensor conjugated to . The same interpretation can be 
given for tensors  and , meaning the stress tensors conjugated to  and  respectively.

With regards to vector ,  it can be interpreted as in the schematic figure 6.2. The vector  
represents in fact the local torque (moment) applied to the continuous medium by the surface 
forces .  is the torque vector conjugated to the vector  of rotations, and so we will call 

 the torsor of moments or the torque vector conjugated to . 

The scalar  is defined as the average of the three stresses of compression  or , with a 
changed sign. This scalar has the dimension of a hydrostatic pressure and we will call it the sca-
lar of pressure conjugated to .
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Figure 9.3 - physical interpretation of the components of the torque vector or torsor of moment 

Finally equations (6.16) and (6.18) allow us to deduce the pass-through conditions at the inter-
face of the two medias (see figure 3.9) for the stress potentials ,  or , for the torque vec-
tor  and for the scalar pressure , by requiring that the forces be equal across the surface, 
with the three following equations
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(6.21)

The equations of heat for the lattice

The comparison of the scalar expressions within brackets leads us to the equation of heat, or 
thermal equation, of an elastic, anelastic and plastic media, with self-diffusion, which allows us, 
in principle, to compute the thermal evolution of the lattice

(6.22)

As a matter of fact the way (6.22) is written is sub-optimal because it does not separate the pro-
cesses of creation of vacancies and interstitials by creation-annihilation of pairs on the one hand 
and by plasticity on the other hand. To handle those, it is useful to rewrite this equation by using 

x j

xi

xk
3 jk

3 kj

mi � 3 kj  3 jk

O

 
!m

 
!
Σi  
!
σ i  

!si
 
!m p

 

!ek
k
∑ !sk

(1) !n( ) + 12
!m(1) ∧ !n( ) − !np(1) = !ek

k
∑ !sk

(2) !n( ) + 12
!m(2) ∧ !n( ) − !np(2)

 

!ek
k
∑ !

σ k
(1) !n( ) + 12

!m(1) ∧ !n( ) = !ek
k
∑ !

σ k
(2) !n( ) + 12

!m(2) ∧ !n( )

 

!ek
k
∑

!
Σk
(1) !n( ) = !ek

k
∑

!
Σk
(2) !n( )

 

nT ds
dt

= −µL
*SL − µI

*SI − ecin + u − µL
*CL − µI

*CI( )Sn

             − grad
! "!!!

µI
* + m d

"
φI

dt
− m"g

⎛
⎝⎜

⎞
⎠⎟
"
JI − grad

! "!!!
µL
* − m

d
"
φL − 2Δ

"
ϕ L( )

dt
+ m"g

⎛

⎝
⎜

⎞

⎠
⎟
"
JL

             +"sk
dis d
"
βk
an

dt
+ "mdis d

"
ω an

dt
+ "sk

d
"
βk

pl

dt
+ "m d "ω pl

dt
− p dτ

pl

dt
− div

"
Jq



chapter 6100

definition (5.64) of , and then definitions (5.93) for  and , as well as the definition 
(5.92) of . We then have an equation of heat that depends solely on ,  and 

(6.23)

in which we have introduced energy  which is nothing more than the thermal energy taken 
from the lattice for the creation of a lattice site, given by

(6.24)

The denomination  given to this energy is simply due to the fact that it takes into account the  
enthalpy  per site of lattice. This energy can be written using the de-
finitions (6.2)

(6.25)

The sources of heat

In heat equation (6.23), we have several sources of heat: 
- a source of heat  which corresponds to thermal energy taken from or given to the 
lattice during the creation or annihilation of a vacancy-interstitial pair

(6.26)

- two sources of heat  and  which correspond to the thermal energies invol-
ved in the diffusion of vacancies and interstitials respectively

(6.27)

- a source of heat induced by the dissipative anelastic phenomena

(6.28)

- a source of heat induced by the dissipative plastic phenomena, which can be written in two 
different forms using relation (5.94)
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which shows that the thermal energies taken from the lattice respectively are worth  for the 
creation of a vacancy,  for the creation of a self-interstitial and  for the creation of a lattice 
site.

The source of entropy

If thermal equation (6.23) is compared with expression (4.29) of the second principle, in which 
the sources of lattice sites  is not null, we have the expression of volume source of entropy in 
an elastic, anelastic, plastic and self-diffusing lattice

(6.30)
in which  is given by expression

(6.31)

which contains among others the free enthalpy  per lattice site.

6.2 - Phenomenological relations of a lattice

The function and equations of state
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applying the following Legendre transform
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which each have their conjugate stress potentials, namely ,  and  res-
pectively. For example, in the expression (6.34) for free energy , we have the various equa-
tions of state for a lattice in the topological representation which are directly deduced:
- the elastic equations of state:

(6.35)

- the anelastic equations of state:

(6.36)

- and finally the equations of state for the entropy and the chemical potentials for vacancies and 
interstitials:

(6.37)

The dissipative equations of thermo-conduction and self-diffusion

The three terms of the source of entropy (6.30) depend on the thermodynamic fluxes and are 
linked to the following dissipative processes:

- the process of thermo-conduction:

(6.38)

- the process of vacancy diffusion:

(6.39)

- the process of diffusion of self-interstitials:

(6.40)
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These processes can be written as the product of vectorial fluxes by the vectors of thermody-
namical forces which are their conjugates. The forces  and  conjugated to the flux of dif-
fusion  and  contains several terms: a gravitational force, an inertial force and a generali-
zed chemical force, this last one corresponds to the gradient of the chemical potential and the 
kinetic energy of both species of point defects. According to the thermodynamics of irreversible 
processes, there can exist a coupling between the diverse fluxes and thermodynamical forces 
which appear in the expression of the source of entropy, as long as these fluxes and forces are 
of the same tensorial order. In the present case, concerning the flux of heat by thermo-conduc-
tion  and the flux of particles by self-diffusion  and , there must exist phenomenological 
dissipation equations of thermo-conduction and self-diffusion, which depend strongly on the lo-
cal state of the lattice and therefore on the values of quantities  

(6.41)

To insure the positivity of the sources of entropy, (6.38) to (6.40) must depend in a linear fashion 
on the thermodynamic forces ,  and , defined by relations

(6.42)

The equation of creation-annihilation of vacancy-interstitial pairs

The first term of the source of entropy uses the product of the source  of pairs of vacancy-
interstitial, meaning the number of pairs created or annihilated per unit volume by unit of time 
inside the lattice, by an entropic term   which is its conjugate, meaning the en-
tropy of formation  of vacancy-interstitial pair

(6.43)

This entropy of formation is directly linked to the thermal energy (heat) extracted from the lattice 
to form a vacancy-interstitial pair, as shown by the source of heat  obtained in 
(6.26). The energy of formation of a vacancy-interstitial pair is consequently equal to the sum of 
chemical energy, meaning the chemical potentials  and , and the kinetic energy of a pair, 
namely  and  as the comparison of relations (5.108) and (6.2) shows

(6.44)

The kinetic energies  and  need a longer discussion. To that end it is useful to write 
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them using the relations (6.2) in which they were defined

 (6.45)

These energies are composed in a kinetic energy of entrainment proportional to , which is 
negative since the vacancy it represents is missing kinetic energy at the site under considera-
tion, and an internal kinetic energy  (  and ) linked to the relative movement of the 
point defect with respect to the lattice.  The sum of energies  and  is then equal to

(6.46)

with 

(6.47)

The kinetic energy  necessary for the creation of a pair, is given by the thermal energy of 
the lattice and is therefore equal to  

  (6.48)

so that the energy of formation of a vacancy-interstitial pair is composed of the chemical energy 
 and the kinetic energy 

  (6.49)

It is clear that the rate  of creation of pairs is strongly dependent on the threshold energy of 
formation. As a consequence there must exist a phenomenological equation of creation and 
annihilation of vacancy-interstitial pair, which depends on . This equation will be written 
in a symbolic form in which we will include a strong dependence in the intensive local thermo-
dynamic parameters 

  (6.50)

The dissipative equations of plasticity

The second and third term for the source of entropy make use of the product of the scalar 
sources of vacancies and interstitials, due to the creation or annihilation of sites of the lattice 
during the process of plastic volume expansion, by a term of formation of entropy

(6.51)

This term of entropy of formation is conjugated to the sources of vacancies and interstitials by 
plasticity and can be written under the following form, by using relation (6.45) for  and ,   
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and also using relation (6.31) giving 

(6.52)

We can see that this entropies of formation use two very important quantities: the energy of 
formation of a vacancy by the creation of an additional site of lattice, and the energy of forma-
tion of an interstitial by annihilation of a site of lattice. The creation or annihilation of a lattice site 
during a plastic deformation will satisfy a kinetic equation that must depend on the energies of 
formation of vacancies or interstitials, as well as physical conditions such as volume of lattice 
unit cell , temperature , atomic concentrations of vacancies and interstitials, etc. There 
must exist, as a consequence, phenomenological equations of creation-annihilation of lattice 
sites, which will translate the plasticity of the lattice under volume expansion and which will be 
symbolically written as such

(6.53)

As regards the dissipative terms associated with plasticity by shear and rotation, it leads to a 
source of entropy that we can write with the help of (6.30) as

(6.54)

In this relation, the mechanical potential fields  and  are perfectly known, as it leads to the 
stress field of elastic shear  and the torsor of elastic moments  deduced from the state 
equations (6.35).  As a consequence the velocity of plastic deformations by shear and rotation 
must satisfy the dissipative phenomenological equations of plasticity

(6.55)

Writing it in this way reflects the fact that the terms of sources of entropy due to the plastic de-
formations by shear and rotation can be considered as the product of a generalized flux (

 or ) by a “generalized force", which is here represented by the shear stress 
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tensor   or the torque torsor .

The dissipative equations of anelasticity

For the dissipative terms associated with anelasticity by shear and rotation, the source of entro-
py can be written, thanks to (6.30)

(6.55)

The equations of state (6.35) show that the total potential fields  and  are the conjugates of 
the field of elastic shear deformations and elastic rotation  while the conservative poten-
tial fields  and   are the conjugates of the fields of anelastic shear deformation  
and anelastic rotation .  By writing the decomposition of the energy of anelastic distortion in 
terms of a source of work and a source of heat, we had to decompose the potential elastic fields 

 and  in a conservative part and a dissipative part, in the following way

     (6.56)

In these relations, the fields , ,  and  are given by the state equations. We only 
have the dissipative components  and  left to discuss. 
As a matter of fact, the velocity of anelastic shear distortion  and of anelastic rotation 

 are responsible for the appearance of intrinsic friction forces which give rise to dissi-
pative stress fields  and . As a consequence, it is reasonable to admit that these dissi-
pative fields are first and foremost function of the velocities of anelastic distortions by writing

(6.57)

This leads us to write, by taking into account the relations that exist between the various fields 
of mechanical potential, the phenomenological dissipative equations of anelasticity, under the 
following form

(6.58)

The dissipative equations we just wrote, written under this form, are nothing more than mathe-
matical differential equations that give us the anelastic responses  and  of the solid lat-
tice, to the elastic stresses  et .
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6.3 - Energetic balance

We carry the following multiplication operations on the three equations of geometro-kinetic 
(5.65) and on the equation of newtonian dynamics (6.11)

(6.59)

(6.60)

by summing all these equations, we have the equation of energetic balance inside the lattice

(6.61) 

Each term of this equation can be easily interpreted in terms of a variation of energy densities 
inside the lattice:

 is the variation of kinetic energy density,

 is the variation in density of shear elastic energy,

 is the variation in density of potential energy of global rotation of the lattice, if it 
exists,

 is the variation of density of elastic energy of volume expansion,

 is the power per unit volume given by the external field force of gravitation,

 is the flux of work of distorsion , which is analog of the Poynting 
vector.

With regards to the equations of energetic balance we can get from the other topological repre-
sentations of the equation of thermo-kinetic, they are even simpler

(6.62)

(6.63)

6.4 - Equations of spatiotemporal evolution of a lattice

It is now possible to combine all the results we have obtained in this chapter and the previous 
chapters to write the complete equations that describe the spatio-temporal evolution of a solid 
lattice with self-diffusion and phenomenological elasticity, anelasticity and plasticity. As seen in 
table 6.1, this system of equations is quite complex, in particular due to the high number of phe-
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nomenological equations of state and phenomenological equations of dissipation one needs for 
a complete description of all the possible behaviors and phenomena of this lattice.
The computation of the evolution of the lattice involves the resolution of this system of funda-
mental equations:
- the topological equations, which translate the galilean geometro-kinetic inside the solid, which 
allows us to calculate the global or local distortion fields from an absolute velocity field  or a 
relative velocity field  inside the solid, from which we get the volume density  of sites of lat-
tice. Furthermore the conditions of geometro-compatibility based on , are 
evidently valid for a lattice equipped with anelasticity and plasticity, because they assure that the 
local field , associated with the elastic, anelastic or plastic deformations, remains conti-
nuous. This is a necessary conditions to ensure the solidity of the lattice.
- the dynamical equations, translating the newtonian dynamic of the lattice, which lead us to the 
computation of the linear momentum , from which we extract velocities  and , and the 
calculation of the density of inert mass ,
- the equations of diffusion, which translate the self-diffusion in the lattice, which lead us to the 
computation of the densities  and  of vacancies and self-interstitials,
- the thermal equation, which give us entropy , from which we deduce the temperature in 
the solid.

To this fundamental set of equations, which are the same for any type of lattice, we add the set 
of phenomenological equations which are particular to each type of lattice:
- the equations of state, which describe the phenomenological behavior of the lattice with re-
gards to its elastic, anelastic, self-diffusive and thermal properties,
- the dissipative equations, which translate the phenomenology of dissipation by thermo-
conduction, by self-diffusion, by creation-annihilation of pairs of vacancy-interstitial, by anelasti-
city and by plasticity of the lattice under consideration.
To the fundamental equations and the phenomenological ones necessary to describe the evolu-
tion of the lattice, we can add additional equations, such as the equations of mass continuity, 
flux of work and surface forces, sources of entropy and energetic balance.  As a matter of fact, 
since these equations are deduced from the fundamental equations, they are not necessary to 
solving the problem of the evolution of the lattice. Nevertheless they shine an interesting light on 
the problem as far as fluxes of work, surfaces forces and exchanges of energy within the solid 
are concerned.
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Table 6.1 - Fundamental equations of evolution of self-diffusive, elastic, anelastic 
and plastic solids
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Thermal equations
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 Phenomenological equations of evolution of self-diffusive, elastic, anelastic 
and plastic solids

Functions and equations of state   
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Equations of dissipation: plasticity
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⎪
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Equations of dissipation: anelasticity
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⎪
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Equations of dissipation: self-diffusion and creation-annihilation of pairs
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Additional equations of evolution

Energetic balance
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Source of entropy
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Flux of work and surface force
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Chapter 7

Phenomenological examples of usual solids

In this chapter, we present some applications of the first part by some simple 
examples of phenomenologies encountered in common isotropic solids. At first, 
simplified state functions are introduced to describe the phenomenology of a ‘li-
near’  isotropic solid.  From that we deduce the state equations for that type of so-
lid. Then we discuss some phenomenological behaviors associated with elasticity, 
anelasticity, structural transitions, plasticity and auto-diffusion in the usual solids.

7.1 - Functions and state equations of isotropic solids

For a solid to present isotropic elastic properties (which are independent of direction in space), 
its free energy  per site of lattice must be a scalar built from the invariants of the tensor of 
distortion . Given that the operators of divergence and rotational applied to a vector field  
give us invariant quantities of this field, and hence do not depend on the system of coordinates 
we choose, the first two scalar invariants of tensor gradient  are its trace  and the square 
of the norm of its anti-symmetric part 

 (7.1)

 (7.2)

From the tensor gradient , other invariant scalars can be deduced such as the sum of the 
minors (concept in linear algebra) of the tensors of distortion of order 2.

 (7.3)

or the sum of the squares of the components of the tensors of distortion of order 2.

 (7.4)

The state function of elasticity of an isotropic solid

The expression of free energy by lattice site of an isotropic solid must be a function of the follo-
wing invariants

     or     (7.5)

It must be possible to correctly express it by separating the volume expansion and the shear by 
a development such as
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  (7.6)

If the development is limited to the terms containing , we will speak of a 
“linear” isotropic elastic media  which we will henceforth call perfect solid.  We deduce from that 
that the free elastic energy  averaged by site of lattice is

   (7.7)

The state function associated with the linear anelasticity of a solid

The macroscopic phenomenology of anelasticity of a solid lattice of particles can have many 
different physical microscopic causes. We can name the short distance defects of the lattice 
structure (substitutional or interstitial point defects, dislocations or disclinations, grain bounda-
ries in polycrystalline materials or interphase boundaries in polyphase crystals, etc.) and even 
name some phase transitions.  At the macroscopic scale of the continuous description of the 
lattice, the statistical manifestation of the collective movements of the whole set of structural 
defects is translated by the existence of a phenomenological equations of dissipative anelastici-
ty.
The most straightforward way to introduce the phenomenological manifestation of anelasticity in 
a solid lattice is to first limits oneself to an isotropic lattice and suppose that (i)  the anelasticity 
of the lattice can be fully described by the shear tensor, which also means we do not have terms 
from the anelastic rotations in the state function of free energy, (ii) that the terms of elasticity do 
not couple with anelasticity and self-diffusion, and (iii) the term of “free energy” by site of lattice 
linked to the anelasticity is a simple quadratic function of the components of the tensor of ane-
lastic shear, multiplied by a coefficient  which could in theory depend on temperature   as 
well as the elastic volume expansion  of the lattice.  Under these conditions, the free energy 
associated with the anelasticity of the lattice can be written as

(7.8)

As a matter of fact, the anelastic term  we added to the state function  is nothing more 
than the average potential energy stored by site of lattice by the restoring forces acting on the 
structural defects of anelasticity. The quadratic function are equivalent to suppose that these 
forces are linear in the tensor of anelastic shear. 

The state function associated with a solid with weak self-diffusion

For a solid lattice of volume density  of sites and containing  and  , respectively vacan-
cies and interstitials by unit volume, the free energy will be computable if the concentration of 
point defects is weak enough that we can neglect the interaction of these defects, and that we 
also neglect the impact of these defects on the elastic and thermic properties of the lattice. We 
will then talk about a weakly diffusive solid. The free energy  by unit of volume of the solid 
must contain a  component due to the presence of point defects (PD).  If we neglect the 
interactions between point defects, then the function  can be assumed to be proportional to 

 
f él = −k0 (T )τ + k1(T )τ

2 + k2 (T )
!
α i
2

i
∑ + k3(T )τ

!
α i
2

i
∑ + k4 (T )τ

3 + ...

k0 (T ),k1(T ),k2 (T )

f él

 
f él = −k0 (T )τ + k1(T )τ

2 + k2 (T )
!
α i
2

i
∑

kan T
τ él

 
f an = 1

2
kan (T ,τ

él ) ( !α i
an )2

i
∑

f an f

n nL nI

F
Fdp

Fdp



phenomenological examples of usual solids 117

the number  et  of point defects per unit of volume

(7.9)

in which  and  are the potential energies of a vacancy and interstitial respective-
ly, which must first depend on the elastic volume expansion  of the lattice.  and 

 are the entropies associated with a vacancy or an interstitial and must also depend on
, and  is the entropy of configuration, linked to the disorder introduced inside the lat-

tice by the presence of the  and  point defects among the  sites per unit volume of the 
lattice.
The entropy of configuration , by definition, equals , where  is the constant of 
Boltzmann and  is a number counting the different microscopic configurations, which are 
known as ‘complexions’ of the system, that the  and  vacancies and interstitial can have. 
For a network with a density  of substitutional sites, the density of interstitials is given by , 
where  is the number of interstitial sites associated with each substitutional site, which self 
evidently depends on the structure of the lattice under consideration.  Define that the number of 
vacancy sites is  so that the number of interstitial site that are occupied is given by  
and that the number of unoccupied interstitial sites is , with these definitions, the num-
ber of complexions is written combinatorially

(7.10)

Using the Stirling’s approximation formula, the entropy of configuration can be written

(7.11)

From these relations, the average free energy per site of the lattice due to the presence of point 
defects can be deduced by dividing  by  and by introducing the atomic concentrations of 
point defects

(7.12)

The equations of state of a perfect solid

By basing ourselves on the various components of the free energy , and by introducing ano-
ther thermic term  which contains all the effects due to the temperature of the lattice, and 
by making the following simplifying hypothesis

Hypothesis:     and  are constants (7.13)

we have the following expression for the free energy 

(7.14)
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The equations of state of the lattice can be written in this case, by recalling that 

 in the perfect solid (7.15)

(7.16)

(7.17)

These state equations are very simple. Amid others, the shear stress  and  depend li-
nearly on the shear tensors  and . There is another remark to be made: the pressure  
in the lattice depends on a term  associated with temperature and a term  which 
is a linear function of the volume expansion of the lattice.

7.2 - Elastic moduli of isotropic solids

The Lamé parameters  and  at small distortions of the solid

In general, the equations of state of elasticity of an isotropic solid are given in the representation 
. It is very simple to write in this representation by using the relation , as 

well as pressure  

   (7.18)

With relations   and , we also have

  (7.19)

We can introduce the new elastic coefficients with the following relations

  (7.20)

These coefficients  and  are called the Lamé parameters of the perfect isotropic solid, and 
they allow us to write the elastic state equations under the form

  (7.21)
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This form has the distinct advantage of allowing the inversion of the state equation to express 
tensor  as a function of tensor

  (7.22)

The Young’s modulus  and the Poisson’s ratio  under simple traction

Let’s imagine a parallelepipedic solid which is submitted to an uniaxial tensile testing (figure 
7.1): a normal tensile stress , different than zero, is imposed on the faces perpendicular to 
the axis , while the faces perpendicular to axis  and  are free of stress (  
and ). The state equation (7.22) allows us to calculate the components  of the ten-
sor of deformation

  (7.23)

Figure 7.1 - uniaxial tensile testing                                  Figure 7.2 - pure shear strain

By definition, the Young’s modulus  is defined by the uniaxial tensile testing (figure 7.1) as the 
ratio of the increase in the stress  along the tensile axis and the increase of the deforma-
tion  along the same axis, at a given temperature 

  (7.24)

With regards to the Poisson’s ratio , it is defined as the ratio between the narrowing  or 
 along the transversal axis  and  and the stretching  along axis  of 

traction, at a given temperature 

  (7.25)

The shear modulus  during pure shear strain

In the case of a deformation of the solid by pure shear, a parallelepipedic solid is deformed by 
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shear in the plan  and  by applying tangential stress  on the perpendicular planes 
to the axes  and  (figure 7.2).  The state equation (7.30) allows us to calculate the 
components  of the tensor of deformation as

   (7.26)

The modulus  which appears here is called shear modulus or modulus of rigidity of the iso-
tropic solid and its value is

  (7.27)

The relations between the elastic moduli

In general moduli ,  and are shown in the tables of elastic moduli of isotropic materials. 
From knowing ,  and  for a given material, we find the Lamé parameters  and  of 
this material by

     and       (7.28)

As regards the elastic coefficients  and  of a rigid material, they can be deduced either 
from the  and  parameters, either from the moduli ,  and 

     et       (7.29)

The Poisson’s ratio  of an isotropic material is very interesting, as it permits us to make the 
link between the  coefficient associated to the compressibility of the media and the  coeffi-
cient, linked to the shear-ability of the media. Indeed

  (7.30)

For example, in metals, the Poisson’s ratio is in general close to 1/3, which implies that the ratio 

  is approximatively 4/3.

7.3 - Thermal behavior of isotropic solids

In general, experiments show that, in solids at high temperature, the coefficient  as well 
as the thermal term  of the state function are simple functions of temperature. Indeed, in 
the usual solids, we observe a specific heat  measured by site of lattice, which at high tem-
perature is approximatively a constant with value (Dulong-Petit law), where  is the 
Boltzmann constant

  (7.31)

This relation can be easily satisfied if we make the hypothesis that the dependence on tempera-
ture of the elastic coefficient  is linear,
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  (7.33)

The coefficient  depends more or less linearly on  via a constant , or  which is 
called the Grünheisen parameter, and whose numerical value is between 1,2 and 2,6 for most 
of the usual isotropic solids. We also observe, in the usual solids, that the coefficients  and 

 do not depend much on temperature, and can most of the time be treated as constants. 
These thermal behavior can be obtained from statistical physics, which shows the existence of 
the Grünheisen parameter  and that it is linked to the anharmonic properties of the lattice.
At constant pressure or with constant volume expansion, as in the case of weak distortions of 
the lattice, the introduction of (7.32) in (7.15) shows that the coefficient  is directly linked 
to the phenomenon of thermic volume expansion of the lattice

     or     (7.34)

Let’s imagine that a parallelepipedic solid is not submitted to any axial tensile stress, so that 
,  and we change its temperature. Because of coefficient , the uniaxial 

strain  (7.23) then becomes dependent on temperature, a phenomenon we call linear ther-
mal expansion of the solid

  (7.35)

7.4 - Transport phenomena in isotropic solids

Let’s consider the phenomenological equations of dissipative thermal conduction and self-diffu-
sion (6.41). In the case where a solid is isotropic and is not too removed from the thermodyna-
mic equilibrium, and additionally if the concentrations of point defects remain small, we can li-
nearize the vectorial dependences of ,  and  on the thermodynamic forces ,  
and  by introducing kinetic coefficients of the type , which allows us to 
write the equation of heat transport and the chemical species in the form

(7.36)

The source of entropy   associated to transport is written

(7.37)

which we expand as

(7.38)

and which can be transformed by expressing the scalar product in product of the components of 
the vectors
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(7.39)

The source of entropy is made up of the sum of three quadratic functions ,  and . To 
insure that whatever the values of ,  and , we have the positivity of the source of 
entropy as required by the second principle, it must be that these three functions are individually 
positive in the 3D space of ,  et , in such a way that the three quadratic functions can 
be transformed as the sum of square with positive coefficients by an orthogonal transformation 
of the variables in 3D space.  Mathematically speaking, this is only possible if the following ma-
trix with kinetic coefficients, composed of real numbers

(7.40)

is a symmetric matrix, which can be diagonalized with eigenvalues that are positive. We impose 
then the following conditions, which are known as the Onsager relations,

(7.41)

The coefficients of thermal conductivity and diffusion

In the case of an isotropic solid with no coupling between the flux of particle transport and heat, 
or if these couplings are negligible, the equations of transport can be rewritten by introducing a 
thermal conductivity coefficient  and two coefficients of diffusion  and  for the vacan-
cies and the interstitials respectively

(7.42)

If  and  are small, the previous coefficients do not depend on them, so that we have a 
dependency on the volume expansion and the temperature (of Boltzmann type for the diffusion 
coefficients)

(7.43)

7.5 - Propagation of waves and thermoelastic relaxation

The thermo-plastic equations of the perfect solid

The exact computation of the spatiotemporal evolution of a perfect solid is a rather complex 
problem, because to all the local deformations of the lattice is associated a local perturbation of 
the temperature of the lattice. This coupling between deformations and temperature comes from 
the entropy expression of the solid. By neglecting the effects of the field of gravitation , and 
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assuming that there are no point defects, nor anelasticity or plasticity in the lattice, and by using 
relations (3.5) and (3.10) , one obtains for a given compatible solid

(7.44)

The equation of Newton (6.11) can be written by using the state equations (7.15) for  and  
and by using the fact that  under the form

(7.45)

By using relation (7.15) for entropy and by introducing the expressions  and
, we obtain the expression of entropy at high temperature in-

side a perfect lattice

(7.46)

By introducing that expression of entropy as well as the flux of heat  in the 
heat equation (6.22), we obtain the following equation for the evolution of temperature

(7.47)

The equations (7.45) and (7.47) are called the thermo-elastic equations of the solid.

The propagation of thermo-elastic longitudinal waves

In an isotropic lattice without point defects and without anelasticity, first homogeneous in volume 
expansion ( ), isothermal ( ), non sheared and immobile, we introduce a longitudi-
nal perturbation in a local frame  under the form of a velocity field 

 parallel to the axis  and which changes along the axis . Via 
the geometro-kinetic equations for  and , this perturbation of the velocity field implies per-
turbations  and  of distortions along axis 

 (7.48)

By considering the heat equation (7.56), it is clear that there exists a perturbation of the tempe-
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rature field along the axis

  (7.49)

By introducing these perturbations in the equations (7.45) and (7.47), and by taking into account 
the first relation (7.48), we obtain the following set of equations, which we have linearized for 
weak longitudinal perturbations

(7.50)

Possible solutions to this set of equations are the high frequency, isothermal, dampened, longi-
tudinal waves as well as the low frequency, adiabatic, non dampened, longitudinal waves, with 
respective phase velocities  and 

(7.51)

The presence of the term  implies that the velocity of wave propagation depends on 
the state of volume expansion  of the lattice. 

Logarithmic decrement and the Debye relaxation due to thermo-elasticity

The longitudinal wave described by equations (7.50) presents a spatial logarithmic decrement 
, defined as the logarithm of the ratio of two amplitudes of the wave measured at two points 

separated by a distance  which is equal to the wavelength , and evaluates to

 (7.52)

with           et       (7.53)

Figure 7.3 - Loss factor and Debye relaxation due to thermo-elasticity
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The dependency of the logarithmic decrement  on the frequency, is also called the loss fac-
tor  of the lattice. It is typical of a relaxation phenomenon. There appears a characteristic time 

, called the thermo-elastic relaxation time. The logarithmic decrement  exhibits a Debye 
relaxation peak (figure 7.3) which finds its common origin in the thermal expansion and the pro-
cess of the thermo-conduction. Indeed, the relaxation amplitude  is 
proportional to  and depends as a consequence directly on the thermal expansion of the so-
lid, while the relaxation time  is proportional to  and depends then es-
sentially to the process of thermo-conduction

The propagation of invariant transversal waves

If we consider deformations of the solid by pure shear, with constant volume expansion , the 
equation of Newton (7.45) simplifies into the form

(7.54)

By introducing transversal perturbations of the velocity field  under the form of a velocity 
field  varying along axis , we show with the geometro-kinetic equations 
that this perturbation of the velocity field implies the following perturbations for the volume ex-
pansion and the rotational vector along the axis 

 (7.55)

it also implies the following perturbations for the shear tensor along the  axis, which are 
directly linked to the perturbations of rotation

(7.56)

The momentum is linked to the velocity field  via relation  and the Newton 
equation can be written

(7.57)

Because the perturbations  only have one component along the 
axis, and since all the propagating values vary only along the  axis, the material derivative 

 can be replaced by the partial derivative  with respect to time everywhere in the 
local frame . This allows us to obtain the following set of scalar differential equations, 
which control the transversal perturbation in the local frame of the perfect solid
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(7.58)

Thus, no matter the amplitude of a transversal wave propagating in a perfect solid, it moves 
about in the local frame  with a wave velocity  equal to

(7.59)

Therefore, in a perfect isotropic solid, the intrinsic velocity of transversal waves is an «invariant 
quantity», meaning one that does not depend on the volume expansion  of the lattice, on the 
condition that it be homogenous and constant. It should be also noted that, if the static volume 
expansion  of the solid is not homogenous, meaning if , the propagation of the 
transverse perturbations is impacted by the presence of a coupling term 
between the fields  and  in the Newton equation (7.45). The propagation of transversal 
waves depends in this case on the gradient of the volume expansion , and the resolution of 
this propagation problem cannot do without the explicit use of the shear field .

7.6 - Equations of transport and inertial relaxation

The equations of transport for point defects (7.42) can be transformed by introducing the fluxes 
 et  (5.78) and the forces  and  (6.42)

(7.60)

The new equations link the relative velocities of the point defects with respect to the lattice to 
the chemical forces and the mechanical forces, via the coefficients . Such equations 
bear the name of Einstein’s diffusion relations. It is possible to transform these equations to ex-
plicitly show the equations of movement of the vacancies and interstitials with respect to the 
lattice, along a path of the lattice, by decomposing the absolute velocity of the vacancies and 
regrouping the terms in a different way. We obtain

(7.61)

in which  and  are the coefficients of viscous friction of the vacancies and 
interstitials respectively, and are linked to the coefficients of diffusion by

     and    (7.62)

In the equations of movement (7.61), the relative dampened movement of point defects with 
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respect to the lattice is controlled by three different applied forces: a drag-along force due to the 
acceleration  of the lattice, a force  due to gravity, a chemical and kinetic force 
equal to the gradient of  or of .

The processes of inertial relaxation of point defects

If a solid lattice whose point defects are in thermodynamical equilibrium is submitted to a vibra-
tion, characterized by an absolute oscillating velocity field , the movement of the point defects 
inside the solid is described by the equations of movement (7.61), in which the terms 

 and  can be considered null since the point defects are at thermodynami-
cal equilibrium.  By also neglecting the gravity field, and by imposing in a direction  a vibration 

 with angular frequency  to the isotropic lattice, the field of absolute veloci-
ty of the solid can be written, for convenience, by using the formalism of rotating vectors in the 
complex plane (we will underscore complex quantities)

(7.63)

According to equations (7.61), the point defects are going to start oscillating but with amplitudes 
and phase shift angles  and , which is different for the vacancies and the interstitials

(7.64)

By introducing the complex coefficients  and , the equations of movement (7.61) allow us 
to deduce the values of these coefficients, which are associated to the oscillations of vacancies 
and interstitials by the following relations

      and      (7.65)

in which  and  are the relaxation times for vacancies and interstitials

     and     (7.66)

The real fields of the relative velocities of point defects with respect to the lattice are then dedu-
ced as the real part of and . The average momentum  
per site of lattice is deduced in the complex representation, which manifests a complex apparent 
mass  

(7.67)

The average momentum  per site of lattice in the presence of an oscillatory movement of the 
lattice then has two contributions: a contribution which is in phase with the movement of the lat-
tice and an other one which is out of phase by . There appears in fact two relaxation phe-
nomena on the average momentum  per site of lattice, which are due respectively to the 
movement of vacancies and interstitials inside the lattice. These relaxation processes depend 
strongly on the frequency  of the oscillatory movement and give rise to open cycles when we 
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plot  as a function of , as shown in figure 7.4, in which the effects along the vertical axis 
have been greatly exaggerated

Figure 7.4 - relaxation cycle of  as a function of 

7.7 - Creation-annihilation of a vacancy-interstitial pair

The phenomenological equation (6.50) giving the volume source  of pairs of vacancies and 
interstitials in the lattice can be deduced thanks to a very simplified model of creation-annihila-
tion. Let’s assume that the energetic diagram, as a function of distance  separating a vacancy 
from an interstitial, presents a maximum for a distance which will be called the activation dis-
tance  (figure 7.5). For distances  different than zero, but inferior to , the vacancy and 
interstitial do not have a real existence.  There are only thermal fluctuations of the position of the 
particle around the site it occupies. For distances  superior to , the vacancy and intersti-
tial become real point defects of the lattice, that have in common an increase in the pair energy 

 with respect to the initial energy of the particle on its initial lattice site.  The creation of a 
pair is due to a thermal fluctuation which momentarily is equal or superior to . This is why 

 will be called activation energy of a vacancy-interstitial pair. The annihilation of a vacan-
cy-interstitial pair, meaning the reverse path in the energetic diagram, also needed a thermal 
fluctuation but of energy superior or equal to . The annihilation is thus a thermally 
activated process which has an activation energy of annihilation equal to .
The value of the activation energy  of creation of a pair of vacancy-interstitial is evidently 
linked to the nature of the lattice under consideration, it must also depend strongly on the hy-
drostatic pressure  or the local volume expansion  of the lattice so that

(7.68)

With regards to the activation energy  of annihilation of a vacancy-interstitial pair, it 
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depends on , but also on the increase  of the energy of the vacancy-interstitial 
pair with respect to the energy of the particle in its original site. This energy increase  is 
nothing but the sum of potential energies  and  of the vacancy and interstitial, intro-
duced previously in the state function , and the increase in kinetic energy   defined 
by the relation (6.48)

                                             (7.69)

Figure 7.5 - Energy diagram representing the creation-annihilation
of a vacancy-interstitial pair as a function of distance 

The terms of creation and annihilation of pairs can thus be written

(7.70)

(7.71)

Indeed, as  represents a volume source term,  must be proportional to the volume 
density of sites . In the case of creation, only occupied substitutional sites can contribute to 
the formation of a pair, hence the proportionality in . In the case of annihilation, it is 
clear that the number of annihilations must be proportional to both  and  of vacancies and 
interstitials, and thus to the product . 
In the two expressions we have a frequency of attack  or , which corresponds to 
the frequency at which favorable conditions to the creation or annihilation of a pair occur.  This 
frequency is essentially a function of the local thermal fluctuations and must also depend on . 
Finally, each of the expressions is multiplied by a Boltzmann term corresponding to the probabi-
lity of the appearance of a thermal fluctuation with an energy equal or superior to the activation 
energies  or , which allows us to ‘jump’ above the energy peak shown in fi-
gure 7.5. With this elementary model, the term  which is a global source or sink of pairs 
can be written by remembering that concentration  is supposed weak
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(7.72)

The global term of source  is null when the argument between brackets is null, meaning 
when the product  is approximatively equal to

(7.73)

This condition is nothing more than the relation of kinetic equilibrium of the mechanism of crea-
tion and annihilation of pairs of vacancy-interstitial. For a temperature  and a volume expan-
sion  of the solid at thermodynamical equilibrium, it is possible to calculate the thermodynami-
cal equilibrium concentrations of vacancies and interstitials from the state function , simply by 
looking for the values of  and   which minimize . It follows as a consequence the follo-
wing values for  and 

(7.74)

These two conditions of thermodynamical equilibrium allows us to calculate the thermodynamic 
equilibrium relation of the mechanism of creation-annihilation of pairs, under the form

(7.75)

As the relations of kinetic equilibrium (7.73) and thermodynamical equilibrium (7.75) must be 
equal at thermodynamical equilibrium of the solid, it is necessary that the two following equa-
tions be true at thermodynamical equilibrium

(7.76)

The second relation implies that at thermo-dynamical equilibrium, the kinetic energies of the 
vacancies and interstitials thermalize, which is expressed by the following equations, with the 
help of (6.48)

(7.77)

This translates in term of relative velocities of vacancies and interstitials into the relation

  (at thermodynamical equilibrium) (7.78)
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activation frequencies  and  and the entropies  and  of vacancies and 
interstitials

(7.79)

This shows that the entropies  and  measure in fact the variations of , the 
number of possible microscopic vibrational configurations of the lattice in the neighborhood of 
vacancies and interstitials. From this relation is deduced, thanks to the state equations (7.15) for 

 and , another relation giving  as a function of  and the chemical potentials

(7.80)

This last relation allows us to express the global term  of sources or sinks of pairs (7.72) 
with the following form 

(7.81)

which corresponds perfectly to the form (6.50) previously hypothesized for the phenomenologi-
cal equation of creation-annihilation of a vacancy-interstitial pair.

7.8 - Phenomenology of anelasticity

The phenomenological equations of anelasticity

The global shear  of an anelastic solid are given by the sum of the elastic and anelastic 
shears of a lattice

(7.82)

In this constitutive relation, the tensor of elastic shear and the conservative part of the tensor of 
anelastic shear are deduced from (7.15)

(7.83)

It is the dissipative part of the phenomenological equation of anelasticity (6.58) which must es-
sentially translate the dynamics of the structural defects responsible for anelasticity. It thus takes 
different forms depending on the obstacles and interaction that counter the movement of defects 
in the structure.  Four typical cases of this dynamic will be reviewed now.

The process of viscous friction and the phenomenon of anelastic relaxation

Since the dissipative part of the phenomenological equation of anelasticity must essentially de-
pend on the velocities of anelastic distortions, the simplest form we can imagine between  
and  is simple proportionality. We introduce a viscous friction coefficient  
which links with  and which can depend on temperature  and the density of 
lattice sites
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(7.84)

Therefore, the phenomenological equation of dissipative anelasticity (6.58) becomes a differen-
tial equation of first order in , which allows us to link the behavior of anelastic shear  to 
the spatiotemporal evolution of the field of elastic stress 

(7.85)

The elastic and anelastic shears of the lattice can be represented by a rheological model (figure 
7.6a ). In fact, the rheological model of the anelastic solid described above corresponds to put in 
parallel a spring of constant  with a viscous damper  in order to represent the anelastic 
part of the shears described by the equation of anelasticity. To this we add, in series, a spring of 
constant  to represent the elastic part of the shears described by the equation of state 
(15.5). In this case, it is clear that the dynamic structural defects responsible for anelasticity is 
controlled by a mechanism leading to viscous friction .

(a)            (b) 

   Figure 7.6 - (a) Rheological model of viscous friction 

 (b) instantaneous elastic response and relaxation

With such rheological model, the response of the total shear  to a solicitation by jump of the  
shear stress has an instantaneous elastic part and a delayed anelastic portion (figure 7.6b),  
along with a relaxation time  equal to

(7.86)

If the lattice is loaded by an oscillatory shear stress field  oscillating in a cer-
tain direction , the anelastic response will then present a relaxation phenomenon at a fre-
quency  similar to that reported in Figure 7.3. The temporal response of the overall 
shear field  to this cyclical shear stress  itself has an amplitude and opening which 
correspond to the frequency of oscillation (fig. 7.7).
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Figure 7.7 - Hysteresis cycle in presence of viscous friction

If the temperature and the volume expansion  of the medium can be considered as 
constant over time and space, and only in this case, equations (7.83) and (7.85) can be combi-
ned so as to write a single differential equation connecting directly together the shear strain ten-
sor  and the shear stress tensor . In this relationship the two components  and do 
not appear anymore

(7.87)

Existence of an inertial term and the phenomenon of anelastic resonance

(a)                                 (b)

Figure 7.8 - rheological models (a) with viscous friction and inertial mass
 (b) with a dry friction pad

It is still possible that structural defects responsible for anelasticity have their own inertial mass, 
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the effect of which is significant vis-à-vis the viscous friction forces. In this case, the dissipative 
portion of the phenomenological equation of anelasticity must contain this inertia effect in the 
form of a term proportional to the second derivative in the tensor of anelastic shears, multiplied 
by a coefficient of inertia  representing the inertial mass involved and which may also 
depend on the network site density

(7.88)

The presence of the inertial mass transforms the dissipative anelasticity phenomenological 
equation (6.58) in a differential equation of second order in , which can be represented by a 
rheological model of an anelastic solid containing an inertial mass (fig. 7.8a)

(7.89)

The equation of anelasticity of the lattice (7.89) involves an anelastic relaxation time  and a 
resonance frequency , given by the expressions

     and     (7.90)

Figure 7.9 - relaxation or resonance observed as a function of 

If the lattice is loaded by an oscillatory shear stress field  in a certain direc-
tion , the anelastic response may present (fig. 7.9):
- a phenomenon of relaxation at frequency  if , because the resonance 
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frequency  is in this case higher than the relaxation frequency ,
- a phenomenon of frequency resonance at  if , because the resonant fre-
quency  is lower than the relaxation frequency .
In the case where the temperature  and the volume expansion  of the medium can be 
considered as constant over time and space, the equations (7.83) and (7.86) can be combined 
in a single differential relationship between and

(7.91)

The process of dry friction and the phenomenon of anelastic hysteresis

The two examples of dynamics presented above involve linear phenomena, including a linear 
coefficient of restoring force  and a linear viscous damping coefficient .  The phenome-
nological relationship of anelasticity is therefore a linear differential equation of first or second  
order, depending on whether or not there is an inertial mass . But nothing prevents a priori 
the existence of strongly nonlinear anelasticity mechanisms. For example, the relationship des-
cribing the dissipative term of anelasticity could present a dry friction behavior. The easiest way 
to think of such behavior is to replace in the rheological model in Figure 7.6a, the viscous dam-
per by a dry friction pad (fig. 7.8b) whose property is to be blocking while the absolute value 

 of the stress  is below a certain critical stress, , which can depend on the 
temperature  and the frequency  of the stress , and become infinitely flexible when the 
absolute value  of the stress becomes equal to the critical stress . Mathematically, 
the phenomenological equation of dissipative anelasticity (6.58) is then replaced by a system of 
equations and inequalities

(7.93)

In this case, the anelastic response to an oscillatory shear field  in the direc-
tion  does not depend on the frequency , but only on the amplitude  of the shear stress 
field. This response can be deduced from equations (7.93) and is shown in Figure 7.10. If the 
amplitude  is smaller than the critical stress value of ‘undocking’, , there is no 
shear anelastic response ( ). On the other hand, when the amplitude  exceeds the 
critical stress value of undocking, there appears a hysteresis cycle like the one shown in the 
right figure.
Thus, when the solid’s anelasticity is controlled by a dry friction, the behavior of the tensor of 
anelastic shear  explicitly depends only on the magnitude  of the shear stress tensor.
One should note that if the shear stress  is canceled after one cycle whose amplitude 
has exceeded the critical stress , there appears a non-zero residual value of the anelastic 
shear tensor  . This is sometimes called the phenomenon of "micro-plasticity" . However, if 
the dry friction under consideration here is actually an approximation of a highly nonlinear func-
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tion, which will always be the case if the anelastic process is thermally activated, then this resi-
dual value will gradually disappear over time as a result of the restoring anelastic force, so that 
over the medium term, the anelastic deformation will eventually be fully recovered.

            Figure 7.10 - Hysteresis cycles  in the presence of a dry friction

7.9 - Displacive structural transitions of the first and second order 

The existence of phenomena of structural phase transitions in structural nature of the lattice, 
including martensitic phase transitions are sources of anelasticity within the solid. In this section, 
we will develop for example two simple models for displacive martensitic transformations of the 
second and first order, meaning, structural transformations without diffusion leading to a homo-
geneous deformation of the crystal lattice such that it results in a shear deformation on a micro-
scopic scale if the lattice is submitted to an external applied stress.

An example of displacive martensitic transition of second order

We can develop a very simplified imaginary model of martensitic phase transitions, by assuming 
a lattice with a unit volume slightly distorted by a given local shear angle , representing a 
local shear . In a given direction, successive atomic planes can have a positive  shear 
angle and we will call it variant A, or a negative shear angle  and we will then call it variant 
B (fig. 7.11).
Two successive plans of the lattice in a given direction then have two options of arrangements, 
namely two planes with the same local shear  which we will call A-A connection, or with 

 called B-B connection, or two planes having opposed shears and we will call them A-B  
or B-A connection. Figure 7.11 illustrates such a sequence of successive variations.
If we now consider successive planes in a given direction of the lattice, we can count the 
number  of layers of type A  and the number  of variant B  layers, with

   (7.94)
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On the basis of this counting, we can then find the angle of the macroscopic shear

   (7.95)

The macroscopic shear  of the solid associated with the angle can be considered as an 
anelastic shear since it is not linked to the elasticity of the lattice

   (7.96)

Suppose that the binding energies between atomic planes are slightly different depending on 
whether we have a A-A, B-B, A-B  or B-A  type bond. Assume further that A-A and B-B bonds 
are stronger than the bonds A-B  and B-A. In this case, it is clear that the bonding energies per 
unit cell, which are of course negative, are smaller for the pairs A-A and B-B  than for the A-B  
and B-A  pairs , so that

   (7.97)

Figure 7.11 - succession of lattice planes in a given direction with bonds A-A , B-B and A-B 

The internal energy  associated to the bonds of the  successive atomic planes in a 
given direction is written by enumerating the binding pairs

  (7.98)

The configuration entropy associated with the bonds of the  successive atomic planes 
in a given direction is deduced from the number of possible configurations binding pairs

   (7.99)

We deduce the binding free energy of the N successive atomic planes with the relationship 
 in which we develop  and

  (7.100)
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Using the relation (7.94) and Stirling's approximation, we obtain after some calculations the ave-
rage free energy of the lattice bond  per unit cell in the direction considered

  (7.101)

This average free energy of bonds per unit cell of the lattice can be expressed by introducing 
the order parameter  associated with the macroscopic shear of the solid lattice, 
whose values range between -1 and +1. It’s expression is then

     and        (7.102)

With this order parameter, the average free energy of bonds per unit cell of the lattice can be 
written as

  (7.103)

At zero temperature, the free energy has a minimum for  . So it is the A-A or B-
B configurations which are favored at low temperature, and free energy per unit cell is  

By introducing the energy difference between A-B  and A-A configurations

   (7.104)

it is possible to define the increase in anelastic free energy 

    (7.105)

that is associated with the macroscopic shear state of the lattice. We then obtain

  

     (7.106)

We can express the state function  as a function of the macroscopic shear  for various 
temperatures (fig. 7.12), and there is phase transition behavior of the second order, which has a 
critical transition temperature .
For temperatures  the order parameter is 0 and shearing . The A-B and B-A 
bonds are favored by entropic effect. In other words, the high-temperature phase corresponds 
to a sequence of atomic planes A-B-A-B-A-B-...
For temperatures  , there appears two values  or  of macroscopic shear 
which correspond to local minima of  and two values of macroscopic shear  or 

which correspond to inflection points of . For a given temperature, the alternatives 
A and B tend to cluster, with, in equilibrium, a phase containing an amount of variant B and ha-
ving a shear and a phase containing a proportion   of variant A and with a shear  

. Under zero stress, the proportion of these two phases, which are separated by 
anti-phase walls are equal, so that the overall macroscopic shear can only be zero. Gradually, 
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as the temperature drops, the proportions at equilibrium  and  tend to 
1, so it should appear at zero temperature low temperature phase corresponding to two pure 
variants A-A-A-A-A-... and B-B-B-B-… . separated by anti-phase walls.

Figure 7.12 - The anelastic free energy based on anelastic shear for different temperature values

The bifurcation diagram (fig. 7.13) shows the evolution of the various phases with temperature, 
and the structural aspect of these phases. This second order displacive transformation presents 
a singular behavior of the specific heat at the critical transition temperature . Indeed, the in-
crease in the specific heat per unit cell due to the phase transition may be deduced from 
the internal energy  expressed in terms of  using the equation (B.34)

   (7.107)

It follows immediately from this relationship that there is a singularity of the specific heat  
during the transition as  is proportional to the derivative of the square of  in the bifurca-
tion diagram in figure 7.13.

The effect of shear applied to the second order displacive transformation

From the state function (7.106) of anelasticity, we can deduce the equations of state of the lat-
tice for the quasi-static shear stress  and entropy

  (7.108)
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Figure 7.13 - the bifurcation diagram of the phase transition,
and the structural aspect of the phases at different temperatures

Figure 7.14 - the anelastic stress-strain  diagramsij
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The stress-strain diagram of anelasticity  can be drawn for different temperatures (fig. 
7.14). In this diagram, the shear values in the region   of negative slope 
correspond to unstable values in the free energy diagram of figure 7.12, and therefore can not 
be achieved.
This implies that if an increasing or decreasing stress is applied to the solid in the domain 

, there will appear a hysteresis in the graph ,,  corresponding to an abrupt 
change of a variant to the other alternative, induced by the external stress effect (fig. 7.15). Du-
ring the transformation, the applied stress  can be separated into quasi-static stress  deri-
ved from the free energy state function, and a dissipative stress  

   (7.109)

The dissipative stress  is a source of energy dissipation during the transformation, equal to 
the area  reported in figure 7.15. This hysteresis effect will cause the appearance of a dissipa-
tive phenomenon of internal friction at temperatures lower than , depending on both the tem-
perature and the magnitude of the applied stress .

Figure 7.15 - Hysteresis cycle   in the domain of temperature 

Pseudo-plasticity and the irreversible shape memory effect

The combination of the effects of stress and temperature may reveal some surprising behavior 
of this type of solid.
If the stress is increased to a value  at a given temperature , variant B will turn 
into variant A  and there will appear a nonzero macroscopic shear in the solid (point  in 
figure 7.15). If the stress is then released, the solid will retain a non-zero macroscopic shear, as 
if he had been plastically deformed (point  in figure 7.15). If this solid is then heated 
above the critical temperature, the macroscopic deformation disappears during the formation of 
the high-temperature phase. If the same solid is then cooled from the high temperature phase 
without being stressed, after passing the critical temperature, variants A and B will appear in 
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equal proportion in the solid, so there will not be macroscopic shear in solid. This is why this 
low-temperature phenomenon of macroscopic deformation is called pseudo-plasticity.
On the other hand, if the solid is cooled from the high temperature phase with a fixed shear 
stress, the transition will show a macroscopic shear due to the fact that one of the variants will 
be favored over the other. And this macroscopic shear will again be kept in the low temperature 
phase if the stress is released. But the initial null macroscopic shear state is again recovered if 
the solid is heated in its high-temperature phase. This amazing effect is called irreversible 
shape memory effect.

An example of displacive martensitic transformation of first order

Let’s consider the highly simplified imaginary model of martensitic phase transition described in 
the previous section (fig. 7.11), but this time let’s assume that the binding energies between 
atomic planes depend not only on immediate first neighbors, but also the second planes of nea-
rest neighbors. In this case, there are 16 different configurations of four planes of nearest 
neighbors of a given plane, which are shown in figure 7.16 .

Figure 7.16 - the 16 possible configurations of the 4 successive atomic planes

For a set of N successive atomic planes, the probability that one of the planes be in one of the 
possible configurations, for example the probability of being in the AABA configuration, is 
easily calculated

   (7.110)

It is easily verified that the sum of the probabilities of all configurations is worth 1

  (7.111)
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Imagine further that both AAAA and BBBB  configurations are very stable, with a binding ener-
gy  , and that both ABAB and BABA configurations are also very stable, 
with a binding energy  , and that the 12 other configurations are less stable 
than the ones we just discussed and that, to simplify the problem, the all share the same binding 
energy .
We then have

     and       (7.112)

The average internal energy  per unit cell in a given direction is written using the probabi-
lities of the different possible linking configurations. It follows

  (7.113)

As to the average entropy  per site of the lattice in a given direction, it is deduced from the 
number of possible configurations as

  (7.114)

We deduce the mean free energy per lattice unit in a given direction

(7.115)

By introducing the following energy differences of the bond energy

     and       (7.116)

It is possible to define the increase in anelastic free energy  with the relation

    (7.117)

which is associated to the macroscopic state of shear  via the order parameter  
thanks to relations (7.94). We obtain

  (7.118)

One can see the state function  as a function of the macroscopic shear  for different 
temperatures (fig. 7.17). There is a new behavior with respect to the displacive transition of se-
cond order described in the previous section.
At very low temperature, for  , the state function has two minima adjacently located to 

. We will call phase I  this low temperature phase, which presents a A  variant in the vici-
nity of  and a B  variant in the vicinity of .
At high temperature , the state function  no longer has a single minimum for

. We will call phase II  this mono-variant high temperature phase.
In the temperature range , the state function  has two minima located in the vicinity 
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of  and a minimum located at . This implies that, in this temperature range, there 
is coexistence of phases I and II.
The phase transition therefore occurs no longer at a fixed temperature as above, but proceeds 
gradually between the two critical temperatures  and , which is a characteristic of a phase 
transition of the first order.

Figure 7.17 - The anelastic free energy as a function of anelastic shear 
for different values of temperature 

The effect of the stress applied to first-order displacive transformation

From the state function (7.118) of the anelasticity of the lattice, we can deduce the equations of 
state of anelasticity of this lattice in the chosen direction, namely quasi-static shear stress 
and entropy 

  (7.119)

The stress-strain diagram of transition anelasticity  can be drawn for different tempera-
tures (fig. 7.18).
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In this diagram, the shear values in the negative slope areas correspond to values in the uns-
table free energy diagram of figure 7.17, and therefore cannot be achieved. By observing this 
chart in detail, it appears there is actually four characteristic temperatures , , and ,  
during the phase transformation, as illustrated by the four diagrams shown in the figure 7.19 .

Figure 7.18 - The stress-strain diagram  of the anelasticity of transition
with the transition temperatures  and 

These four characteristic temperatures, , , and  are used to define four domains in 
which the dissipative behavior of anelastic transformation are different if the solid is subjected to 
an external shear stress  (fig. 7.20).
Indeed, if an increasing or decreasing stress is applied to the solid in these different tempera-
ture ranges, there appears a phenomena of hysteresis in the diagram , corresponding 
to abrupt changes between the two variants of phase I and phase II. In the domain  , 
only the two variants of the phase I exist, and there are transformations between these two va-
riants. In the domain , the two variants in phase I are stable, and phase II is metastable. 
There are transformations between the two variants of phase I, but also irreversible transforma-
tions between the metastable phase II and the two variants of phase I. In the domains  
and , phases I and II are stable, and it is only transformations between the variants of 
phase I and phase II. During these transformations, the applied stress  can be separated into 
quasi-static strain  derived from the state function free energy, and dissipative stress , 
according to equation (7.109). The dissipative stress  is again a source of energy dissipa-
tion during transformation, equal to the hatched areas  and  drawn in figure 7.20. Such 
hysteresis effects result in the onset of dissipative phenomena of internal friction in the different 
temperature ranges, dependent on both the temperature and the magnitude of the applied 
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stress .

Figure 7.19 - The diagrams  for the characteristic temperatures , , and .

Figure 7.20 - The cycle of hysteresis   in the four temperature domains
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Pseudo-plasticity , super-elasticity and the irreversible shape memory effect

In this more complicated case of a solid with first order martensitic transition, the combination of 
effects of stress and temperature will bring up many quite surprising behaviors of the solid, 
which we will discuss very briefly.
In the temperature ranges , if the stress is increased to a sufficient value , the 
solid will contain only variant A  and there will appear a nonzero macroscopic shear in the solid. 
If the stress is then released, the solid will retain a non-zero macroscopic shear, as if he had 
been plastically deformed. If this solid is then heated above the critical temperature , the 
solid turns into phase II and the macroscopic deformation disappears. If the same solid is then 
cooled without being stressed below the critical temperature, there will appear equal proportions 
of variants A and B  of phase I in solid, so that there will no longer be macroscopic shear in the 
solid. This phenomenon of macroscopic deformation associated with the two variants of the low 
temperature phase I  is called pseudo-plasticity.
In the domain , the solid is in phase II without applied stress. If one applies sufficient 
stress, the solid will present a sudden major shear deformation for a small change in the applied 
stress, as if the solid had deformed plastically, because phase II becomes the variant A of 
phase I. And this intense deformation is completely reversible if the stress lowers again. This is 
called a super-elastic phenomenon.
If such solid is cooled from the high temperature stage II under a sufficient shearing stress, the 
passage of the transition temperature  will bring about a macroscopic shearing due to the 
fact that one of the phase I variants will be preferred over the other. And macroscopic shear will 
be retained if the stress is released, provided that . The initial zero macroscopic shear 
state is again recovered if the solid is heated above the temperature . This phenomena is 
called the irreversible shape memory effect.
Materials with a martensitic phase transition of first order, and phenomenology such as the 
pseudo-plasticity, super-elasticity and irreversible shape memory effect, as well as other more 
complex phenomena, but also within the martensitic transformation realm, such as reversible 
shape memory effect, are well known and well studied. These include amongst the better 
known, the copper-aluminum-zinc alloys as well as the titanium-nickel alloys.

7.10 - Phenomenology of plasticity

The plasticity of a solid lattice of particles is controlled mainly by the long-distance movements 
of lattice defects such as dislocations, that move under the influence of a stress or strain field.
At the level of macroscopic description of said continuous solid, the statistical manifestation of 
movements involving structural defects results from the phenomenological equations of dissipa-
tive plasticity (6.53) and (6.55) . 

Phenomenological approach to plasticity

As the dynamics of microscopic structural defects depends essentially on the obstacles they 
face in the lattice and the nature of the interactions they may have with these obstacles, the 
shape of the dissipative phenomenological equations of plasticity must therefore reflect this dy-
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namic and can therefore have many different behaviors.
Typically, the plasticity mechanisms are by nature highly nonlinear . The intrinsic non-linearity of 
plasticity must obviously be captured in the dissipative phenomenological relationship of plastici-
ty (6.53) and (6.55) .
By considering here, for example, only the plastic behavior of a strong shear, the phenomenolo-
gical approach to the plasticity of this solid consist in finding an expression of the relation (6.55), 
so that it best reflects all the plastic shear behavior observed in this solid. In other words, to test 
the material with the aid of various mechanical tests such as a creep test, a tensile test, a fa-
tigue test, etc. , to select a function  in the following equation

(7.120)

This function  will always be strongly nonlinear and often brutally growing from a certain criti-
cal value of the stress (fig. 7.21a).  will also usually depend heavily on the temperature  

, because the plasticity phenomena are generally thermally activated and may also depend 
on the volume density  of the lattice . Having such a solid plastic behavior can be represented 
by a rheological model corresponding to a serial setup of a non-linear friction pad, representing 
plastic deformation and characterized by the function , and a spring representing 
the elastic deformation and characterized by the elastic modulus  (fig. 7.21b).

                        (a)                                                                (b)

Figure 7.21 - (a) typical behavior of the speed of plastic deformation with shear and
(b) rheological model for the plastic deformation

Such an approach may allow a more or less adequate description of the plastic behavior of a 
solid, including some cases of simple mechanical tests such as creep testing, tensile testing or 
testing of fatigue.

On the limits of the phenomenological approach to the study of plasticity

The phenomenological approach to the study of continuous plasticity based on the dissipative 
phenomenological plasticity relations such as relations (6.53), (6.55) and (7.120) has its limits, 
as it usually faces several difficulties inherent to the plastic deformation process.
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First of all, it is very rare for mechanical tests such as a creep test or a tensile test to be transla-
ted properly by a such a simple relationship as the relationships of (7.120). In general, the be-
havior observed during mechanical testing are very complex (nonlinear creep, upper and lower 
yield points, diverse plateaus, instabilities as Portevin-Le Chatelier effect, hardening effects, 
etc.) and depend on many parameters, such as the nature of the solid lattice, its crystallinity, its 
purity, and the history of the thermo-mechanical treatments, etc. These behaviors actually re-
flect the complexity of the microscopic mechanisms involved during plastic deformation.
On the other hand, the presence of the necessary conditions of geometro-compatibility also im-
ply that the deformations, including plastic deformation, cannot present spatial location, which is 
not always the case in real strong lattices such as metals, in which it may appear highly locali-
zed plastic deformations, such as slip lines for example.
Finally, what essentially distinguishes the phenomenology of solids endowed with anelasticity 
and plasticity from that of the purely elastic solids is the thermodynamic non-reversibility of ane-
lastic and plastic responses, which results in the existence of sources of entropy associated with 
anelasticity and plasticity. In the case of the anelasticity, thermodynamic irreversibility leads to a 
recoverable but non-immediate response of anelastic deformation. In other words, the displa-
cement field  associated with the anelasticity lags behind the stress field applied to the solid, 
but it can be recovered if the stress field is canceled. The anelasticity is therefore a Markov pro-
cess which can relatively easily lead to a phenomenological equation such as the equation 
(6.58). On the other hand, in the case of plastic deformation, the response of the plastic defor-
mation to a stress field is unrecoverable: after plastic deformation, it inevitably appears a resi-
dual plastic displacement field, which can only be canceled by another plastic deformation. This 
behavior of the plastic deformation, due to the absence of a potential energy stored in the solid 
lattice by the plastic deformation, often leads to non-markovian behaviors of plasticity. In other 
words, the plastic deformation is a dissipative process which may also depend on the history of 
the solid, that is to say, of all the previous plastic processes it underwent. As a first approxima-
tion, the existence of this "memory" of the solid could be introduced in relation (7.120) by assu-
ming an explicit dependence of the function  on the local state of plastic deformation  
such as

  (7.121)

In fact, the non-markovian behavior of plasticity of solids is extremely difficult, if not impossible, 
to translate, for the simple reason that it is directly associated to the microscopic structure of the 
solid, including the behaviors of the defects of this structure (such as dislocations, for example). 
However, there is no unique, bi-directional, relationship between the local plastic deformation 
state, characterized by the value of the plastic strain tensor, and the microscopic state of the 
lattice responsible for that plastic deformation. In other words, there is a multitude of structural 
defects arrangements leading to same local values of a given plastic deformation, which may 
evolve differently under the effect of a given constraint .
It is concluded that only a microscopic approach may be able to properly describe the complexi-
ty of the plastic behavior of the solid lattice, as it is the microscopic behavior of the topological 
singularities of this lattice which is responsible for its plasticity. This study will be undertaken in 
the following chapters.
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Chapter 8

Density and flux of charges 
of dislocations and disclinations

The description of the plasticity of solid lattices with a plastic distortion tensor is 
very limited, especially due to the fact that there is no unique relationship between 
the local state of plastic deformation  and the microscopic state of the structu-
ral defects of the lattice responsible for this plastic deformation. This is why the way 
of expressing the presence of distortions in a plastic lattice must be modified so 
that it is possible to take into account the microscopic state of structural defects of 
the lattice. A very elegant way to make this change is to introduce the concepts of 
dislocation densities and corresponding flow of charges, which are responsible for 
the plastic distortions of the solid, and disclination densities responsible for the 
plastic contortions of the solid.

8.1 - On the macroscopic concept of charges of plastic distortions

On the intuitive notion of plastic charges

The concept of charges of plastic distortions of the solid, which will now be called simply dislo-
cation charges, is intuitively and visually easy to grasp, especially with the help of the famous 
"Volterra tubes "  (1907) and an analogy to electrical charges.1

Figure 8.1 - «Volterra tubes»
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Indeed, just imagine that, either you cut a solid environment and distort it by sliding the jaws, or 
alternatively you take away a part of the tube and you proceed again to re-bond the tube, as 
shown by the examples in figure 8.1. In both examples, the deformations undergone by the so-
lid after re-bonding are irreversible and irretrievable, so of the plastic kind. On the other hand, it 
is intuitively clear that internal forces of stress are developed within the solid after re-bonding. 
They appeared in the elastic deformation that was imposed on the rest of the solid.
In fact, everything is exactly as if a localized topological discontinuity appeared in the center of 
the tube after re-bonding. This discontinuity creates an elastic distortion field in the macroscopi-
cally continuous medium that makes up the tube. And this field distortion, by its presence, is 
itself a source of a field-conjugated stresses, which can be called the field of internal stresses.
Mathematically, the discontinuity due to re-bonding should translate in terms of a local density 
of "plastic charges”, which are the sources of the elastic distortion field, and thus the internal 
stress field. In the same way as in electromagnetism the presence a local density of electric 
charge  is responsible for the appearance of an electric displacement field , as shown in 
the Maxwell equation

 (8.1)

and therefore a conjugate electric field , as .
The purpose of this chapter will be to mathematically translate the plasticity phenomena inside 
a solid, not only by introducing densities of plastic charges, but also the flow of these plastic 
charges, by analogy with the flow of electric charges  appearing in the following equation of 
electromagnetism (wherein represents the magnetic field)

 (8.2)

On the density and tensorial flow of plastic charges of the solid

By using the definition of the distortion tensor, as it had been obtained in chapter 5, the distor-
tions are the sum of elastic, anelastic and plastic distortions

 (8.3)

A new notation for these distortions can be introduced, which allows to separate the contribu-
tions of plastic deformation from the contributions of elastic and inelastic deformations

          with           (8.4)

The topological equations for distortions, which were written

           and           (8.5)

can now be rewritten with the new notation as

           and          (8.6)

This allows us to introduce, by analogy with the equations of electromagnetism, the concept of 
tensorial charge density , the source of plastic distortions, by assuming a priori the definition  
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of  from the plastic distortion tensor 

 (8.7)

We also introduce the concept of tensorial flow of charges , which is responsible for the tem-
poral variation of the plastic distortion, by assuming a priori the following definition deriving from 
the temporal derivative  of the plastic distortion tensor 

 (8.8)

It should be noted here that the concept of charge flow is defined as a flow with respect to the 
lattice, as  is deduced from the material derivative of , that is to say to the temporal deri-
vative taken along the path of the solid lattice.
The introduction of these new tensorial densities and charge flows is not gratuitous, they best 
meet the need to find a way of expressing the presence of plastic distortions. With it, it is pos-
sible to take into account the microscopic state of the structural defects of the solid lattice. We 
will verify a posteriori, when interpreting these tensors in the next chapter, that this approach is 
indeed appropriate. With this approach to the plasticity phenomena with tensors  and , the 
topological equations describing geometro-kinetics and geometro-compatibility of an elastic, 
anelastic and plastic solid are now written as

 (8.9)

in which the distortion tensor  represents both distortions by elasticity and ane-
lasticity.
From this new distortion tensor , we can deduce other distortion tensors always accepting 
the hypothesis (5.55) and decomposition relationships (5.60)

 (8.10)

This new version of the topological distortion tensors and geometro-kinetic equations is in fact 
nothing else than a change in terminology for the plastic distortions based on an analogy with 
Maxwell's equations of electromagnetism. To exploit the potential that this formulation of topolo-
gical equations unleashes will therefore be subject of this chapter.

On the tensorial density of charges of dislocation

Using again relations (3.35) and (3.36) , in the presence of plastic charges 
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 (8.11)

there appears a closure defect vector  of the displacement field, around a clo-
sed contour  within the medium (fig. 3.5). The differential  is no longer a total differential, 
but a Pfaff differential form, which only has meaning under local and differential form, as it re-
presents a basic translation associated with elastic and anelastic deformations and rotations.
The integral on the closed contour  results in a quantity  called macroscopic Burgers vec-
tor  defined on the contour , which corresponds to the macroscopic translation necessary to 2

accommodate the environment in the presence of the charge density , to ensure the compa-
tibility of total deformations and rotations (the absence of voids and material recoveries in the 
solid).
The discontinuity  is called a macroscopic dislocation of the solid in the sense of Volterra, 
and therefore we will call it density of dislocation charges, the tensorial density of charges 
responsible for plastic distortions.

The appearance of macroscopic dislocations

Such macroscopic dislocation is carried out in a continuous solid by locally cutting the solid and 
moving in parallel the two jaws of the cut, before bonding them back together. This process is 
illustrated schematically in figure 8.2a using a tube material being cut along the plane  
and which we glue back together after a parallel shift along the direction of the cut. There ap-
pears a one-dimensional topological singularity of the localized distortion field on the axis . 
This macroscopic singularity, characterized by a translation vector  parallel to the singularity 
line is called screw dislocation.

 

Figure 8.2 - creation of a screw dislocation (a) and an edge dislocation (b) by cutting in gluing

On the other hand, if we glue the two jaws after a parallel translation perpendicular to the plane 
of the cut, and with the addition or subtraction of a parallelepiped of material (fig. 8.2b), there 
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appears another one-dimensional topological singularity of the distortion field, located on the 
axis . This macroscopic singularity, characterized by a translation vector  perpendicular to 
the singularity line is called edge dislocation. Another approach to achieve an edge dislocation, 
but without addition or subtraction of material is to glue the two jaws after a parallel translation 
in the cleavage plane, perpendicular to the direction of the cut, as shown in figure 8.3. Under 
the sine qua non precondition that the elastic volume expansion  of the medium remained 
zero during the plastic deformation process, the Burgers vector  obtained by the integral 
(8.11) on a contour surrounding the singularity corresponds exactly to the macroscopic transla-
tion the jaw underwent.

Figure 8.3 - another creation of an edge dislocation by cutting and gluing

Let’s imagine that within a solid continuum first we cut a torus-shaped hole, as illustrated in the 
section shown in figure 8.4a, and second we cut the median plane in the center of the torus. 
The two jaws  and  so formed can then be displaced with respect to one another, and 
then reattached.

Figure 8.4 - cut of a torus and the median plane to form loops (a)
 and creation of a dislocation loop by sliding of the jaws (b) 

The first possible case is to move the two jaws parallel to the cleavage plane by a distance 
as shown in figure 8.4b. After rejoining the middle is deformed by shear and the torus contains 
a macroscopic dislocation of sliding loop type, composed of edge, screw and mixed dislocation 
parts.
One can also insert additional material in the form of a thin disk of thickness  between the 
two jaws and by welding the disk to the two jaws (fig. 8.5A). This results in a deformation of the 
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medium, obviously a curvature of the medium on each side of the torus. As for the core, it is the 
seat of a macroscopic dislocation of prismatic loop type. In this case, the prismatic loop is called 
interstitial because it contains additional material, and it is composed of a single edge disloca-
tion which closes on itself.

Figure 8.5 - creation of prismatic loops of dislocation by addition (a) 
or subtraction (b) of thin disk of material

A very similar case is obtained if, instead of adding a disk of material, we subtract a disc of ma-
terial with thickness , as shown in figure 8.5b. We also obtain a macroscopic dislocation of 
prismatic loop type, but the loop is called vacancy loop because it lacks a certain amount of 
material. Within the core, there are also a single edge dislocation that closes on itself.
All resulting singularities are obviously responsible for a distortion field within the solid. There-
fore, they require a non-zero energy formation. They are stabilized in the solid by re-bonding of 
the two jaws of the cut, and thus by the links within the solid.

The equation of conservation of density of dislocation charges

We will note that tensorial density  of dislocation charges is linked to the rotational of , so 
that it satisfies the relation  

 (8.12)

which we will call the dislocation charge conservation equation, which will be called later to play 
a significant role in the topological interpretation of dislocation charges.

The continuity equation connecting the density to the flow of dislocation charges

Topological equations (8.9) can be further modified by taking the curl of geometro-kinetic equa-
tion and the time derivative of the equation of geometro-compatibility
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          and          (8.13)

From these two relations we obtain

 (8.14)

which is nothing else than the continuity equation for the density of dislocation charges. In fact,  
in the term in brackets, which is the space-time commutator of , there is a source term of 
dislocation charges. In the event that this commutator is zero, equation (8.14) then connects 
directly the change in the charge density  along the trajectory to the curl of the flux of 
charges   in relation to the lattice, which is characteristic of a continuity equation, in the case 
of a tensorial charge density. It is concluded that the tensorial flux   is nothing but the flow of 
dislocation charges.

The scalar density of charges of rotation

Equation (8.9) for the compatibility of the distortion tensor , namely  allows us to 
deduce immediately, by calculating the trace, a compatibility equation for the rotation vector

 (8.15)

By introducing a scalar density charge , which is responsible for the plastic rotation within the 
solid and defined from the trace of the tensor of density of dislocation charges 

 (8.16)

the compatibility equation of the vector  for the elastic and anelastic rotations becomes

 (8.17)

It is noted that this scalar charge density allows us to write

 (8.18)

Thus, the localized presence of a scalar charge density  gives us a divergence of the rotation 
field around the charge. That's why we will give to the scalar  the name of rotational charge 
density.
Note that the equation relating the rotation vector  to the density of charges of rotation  is of 
the same tensorial order and presents a strong analogy with Maxwell's equations  
relating the electric displacement field  to the electric charge density .

The vectorial flow of torsion charges

Decomposition properties of the distortion tensor can also be used to derive the geometro-kine-
tic equation for the rotation vector . The operation of only taking the anti-symmetric part of 
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the geometro-kinetic equation (8.9) leads to the relation

 (8.19)

By entering into this relationship a vector flow of charges , responsible for the temporal varia-
tion of the rotational plastic distortions, or simply a flux of rotating charges, defined with respect 
to the lattice and from the antisymmetric part of the tensor of flow of dislocation charges by the 
relation

 (8.20)

the geometro-kinetic equation for the vector of elastic and inelastic rotations in the presence 
of rotational charges becomes

 (8.21)

This equation relating the vector  to the vector of flow of rotation charges  is of the same 
tensorial order and has a strong analogy with Maxwell's equation relating 
the electric displacement field  to the electric charge flow .

The equation of continuity for the charges of rotation

As for the equation of continuity of rotational charges, it is sufficient to combine the divergence 
of equation (8.21) with the material derivative (8.17) to get

 (8.22)

wherein, as above, there is a source of rotational charge equal to the spatio-temporal commuta-
tor of  .
We can verify that this continuity equation also represents half of the trace of the continuity 
equation (8.14) for the dislocation charges, i.e.

 (8.23)

The scalar source of lattice sites

The operation which consists in taking the trace of the equation of geometro-kinetic (8.9)

 (8.24)

shows a scalar corresponding to the trace of the flow of dislocation charges .
Using the relation (5.64), it appears as the explicit scalar volume source of sites of lattice 
linked to the trace of the tensorial flow of dislocation charges by the relationship

 (8.25)
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Table 8.1 - Distortions and charges of dislocation in a solid  
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Everything happens as if in fact the flow of dislocation  actually left a "trace" of its passage in 
the solid in the form of creation or annihilation of lattice sites. So we will write the geometro-ki-
netic equation for the scalar of elastic volume expansion  (assuming ) in the 
form

 (8.26)

In table 8.1, we wrote all the relations concerning distortions and dislocation densities and flow 
of charges (or charges of plastic distortion) in a solid. In figure 8.6, we show schematically all 
the operations which allow us, using the geometro-compatibility and geometro-kinetic of  to 
deduct this set of equations of compatibility, of continuity and of geometro-kinetic of the disloca-
tion charges.

Figure 8.6 - decompositions of the densities and flows of charges
 and equations of continuity
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8.2 - On the macroscopic concept of charges of plastic contortions

In an elastically and anelastically deformed media, with dislocation charges, we can also ex-
press the tensor of elastic and anelastic contortions .

The tensorial density of charges of plastic contortions of a solid

The relationships in table 3.1 show that the tensor expressions for  deriving from the defor-
mation field  or from the shear field  and the volume expansion , are not changed, but 
that, instead, its expression from the field  of elastic and anelastic rotations shall make use of 
the charge density tensors  and . So in the presence of dislocation charges we have for 

(8.27)

The tensorial density of charges  which appears here is thus responsible for the 
plastic contortions of the solid. We will therefore call them density of contortion charges. They 
take the following shape

 (8.28)

The tensor of contortion in a charged solid can thus be written as

 (8.29)

The tensorial density of disclination charges

The compatibility equation in table 8.5 for elastic and anelastic contortions is also modified in 
the presence of plastic charges, and is written

 (8.30)

which is in a form similar to the compatibility of equation obtained for the elastic and anelastic 
distortions.
This relationship shows a new tensorial density of charges 

 (8.31)

Since this density of charges is equal to the rotational of , it satisfies the fol-
lowing relation  

 (8.32)

which we will call the conservation equation of the tensorial charges.
Working again on relations (3.38) and (3.40) in the presence of these charges 

     (8.33)

there appears a vectorial closure defect  of the rotation field by deformation 
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taken on the closed contour  within the medium (fig. 3.7). The differential  is no longer a 
total differential, but a Pfaff differential form, which only has meaning under local and differential 
form, where it is associated with an elementary rotation of elastic and anelastic deformations 
and rotations.
It is still possible to transform the integral over the surface  in an integral on the closed 
contour   in the form

 (8.34)

Thus, the integral of the density  of charges of contortion on a closed 
contour  results in the existence of a non-zero macroscopic angular quantity , called a 
macroscopic Frank vector  defined on the contour , and which corresponds to the macrosco3 -
pic rotation necessary to accommodate the environment in the presence of the plastic charges.
This discontinuity  is called a macroscopic disclination of the solid in the sense of macrosco-
pic defects of Volterra. From equation (18.33), it is now possible to interpret the tensorial densi-
ty of charges . Indeed, as the integral over the surface  of the 
charge density provides the macroscopic Frank vector of a disclination, it will be called the den-
sity of disclination charges .

Creation of macroscopic disclinations

It is easy to imagine the realization of a disclination at the macroscopic scale in a solid conti-
nuum by locally cutting this solid and rotating a jaw of the cut relative to the other, before gluing 
them back together. This process is illustrated schematically in figure 8.7,

Figure 8.7 - creation of the twist (a) and wedge (b) disclinations by cutting and welding back

using a tube material being cut and glued together in two different ways:
- either by shear of the plane  without the addition or subtraction of material (fig. 19.3a), 
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which leads to a one-dimensional topological singularity located on the axis , called twist 
disclination
- by rotation of one of the interfaces around the edge  with the addition or subtraction of ma-
terial (fig. 19.3b), which leads to a one-dimensional topological singularity located on the axis, 
called a wedge disclination.
Under the condition that the elastic volume expansion  of the medium remained zero during 
the plastic deformation process, the vector , obtained by the integral (8.34) on a contour  
surrounding the singularity corresponds exactly to the macroscopic rotation underwent by the 
jaw .  As the vector  must remain constant if we vary the diameter of the contour of 
integration  or if we move this contour vertically, we deduce that disclination charges must be 
confined to the immediate vicinity of the axis  of the tube, and that their tensorial density 
must be constant along the axis.
Topological singularities thus obtained are responsible for a distortion field within the solid. The-
refore, they require a non-zero energy formation. They are stabilized in the solid by re-gluing of 
the two jaws of the cut, and thus by the bonds within the solid.
Comparing figures 8.2 and 8.7, there is a striking resemblance between screw dislocations and 
twist disclinations and between edge dislocations and wedge disclinations. This similarity is not 
accidental, since the operations used to generate these discontinuities are very similar. It is in-
teresting to note in particular that the macroscopic disclinations also have a displacement vec-
tor  going from  to (fig. 8.7), as well as the macroscopic dislocation (fig. 8.2). However, 
this vector , in the case of disclinations, increases linearly with the diameter of the integrating 
loop  used to calculate it. This means that in the presence of a macroscopic disclination as-
sociated with a disclination charge distributed along the axis of the pipe , there must also be 
a dislocation charge density, as seen in the last term of equation (8.34). But the latter, instead of 
being located on the axis of the tube as is the case for a macroscopic dislocation, will be evenly 
distributed on a surface in the cut plane (fig. 8.7) such that the Burgers vector  in-
creases linearly with the diameter of the integration loop .

         Figure 8.8 - creation of a twist disclination loop by rotation of jaws
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One can also proceed as in figure 8.4a, and move the two jaws by rotating them relative to 
each other by a rotational angle  in the cleavage plane, as shown in figure 8.8a. After re-
bonding, the medium is deformed by the  rotation and the torus then contains a macroscopic 
twist disclination loop.
Note here that the field of displacement of the media on each side of the cut plane is tangential 
to this plane and that the curvilinear displacement motion vector  on the cut plane increases 
from a zero value at the center to a maximum value on the edges of the torus. On the torus, the 
local displacement field  closely resembles the displacement field of a screw dislocation clo-
sed in on itself, but it is actually a pseudo-dislocation because the curvilinear Burgers vector, 
tangential to the dislocation line is not preserved  (fig. 8.8b).4

      Figure 8.9 - creation of a wedge disclination loop 
by adding or removing a part of the media in conical shape

One could also remove a piece of medium from the center of the torus, with a lenticular or coni-
cal shape with angle  to the base, as shown in figure 8.9a. In this case, the plane of re-bon-
ding has a local displacement field  corresponding to perpendicular Burgers vectors whose 
lengths have a circular symmetry (fig. 8.9b). On the torus, the required deformation for re-bon-
ding is a rotation  tangential to the torus, which would therefore correspond to a macroscopic 
wedge disclination loop, but which is actually a pseudo-disclination because the Frank vector, 
still tangential to the disclination line is not retained along the line (figure 8.9c).
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The vectorial density of flexion charges

As for the flexion vector  due to elastic and anelastic bending, it is not modified when expres-
sed as a function of the deformation field  or a function of shear fields  and volume ex-
pansion , while its expression from the vector of elastic and anelastic rotations  depends on 
a new vector  corresponding to the anti-symmetric part of , the density tensor of disloca-
tion charges

 (8.35)

We deduce the interpretation of this  vector which is nothing other than the density of flexion 
charges, given from the density  of dislocation charges by the relation

 (8.36)

From equations (8.29) and (8.35), we deduce that the contortions  and flexions  associa-
ted to elastic and anelastic deformation  of the lattice, cannot be deduced directly from the 
elastic and anelastic rotations , since it adds terms dependent on the density 
charges.

The scalar density of curvature charges

The compatibility equation in table 3.1 for elastic and anelastic curvature is also modified in the 
presence of plastic charges, and is written

 (8.37)

This relationship shows that it is possible to introduce a new scalar density of charges , res-
ponsible for the plastic contortions of the solid, defined from the divergence of the vector densi-
ty  of flexion charges

 (8.38)

Note that this charge density  can also be connected directly to the trace of the disclination 
density charge , which is easily verified from equation (8.31).
The geometro-compatibility equation (8.37) for the flexion vector  is similar in shape to that 
obtained for the vector rotation , and will play later an important role. Now we can write

 (8.39)

According to figure 3.8, this scalar density  of plastic charges allows us to write

 (8.40)

Thus, the localized presence of a scalar density of plastic charges  gives rise to a 
divergence of the flexion field surrounding this charge and therefore a divergent "curvature" 
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around the charge. This is why we call  the scalar of curvature charge.
From equation (8.35), we can also deduce the rotational field of flexion 

 (8.41)

and it is found to depend on the vectorial density charges , which represents the density 
of rotational flexion charges, which is put on equal footing with the density of divergent flexion 
charges, namely the density of charges of curvature. However, this equation (8.41) differs from 
equation (8.38) by the fact that it is not a geometro-compatible equation since the rotational 
field  appears in it.

8.3 - Complete topological description of charged solids

In figure 8.10, we show all the operations that give all the distortion and contortion tensors go-
verning the topology of the charged solids as well as the compatibility equations that these ten-
sors must satisfy. It shows a beautiful symmetry in the arrangement of relations to derive the 
tensor of distortion and contortion, as well as in the geometro-compatible equations. It also 
shows the torsion tensor , and it is easily shown, using (18.29), that this tensor is expres-
sed from the rotational field , and a density of torsion charges .
The different tensor of density of dislocation and disclination charges are not independent of 
each other, since all are derived from the initial tensorial density dislocation charge , as illus-
trated by figure 8.11.
In fact, only the two scalar densities  and  are completely independent of 
one another, because the density of rotational charges  is deducted from the trace of , 
trace that is not involved in the charge curvature  as it is derived from the anti-symmetric part 
of  via the divergence. This independence of the scalar charges  and  will play an impor-
tant role in the future.

Symmetry of the tensor of density of disclination charges

It should also be noted that the tensorial density  of disclination charges is symmetrical. In-
deed, equation (8.31) gives the tensor , and using the conservation equation of dislocation 
charges , we show that the anti-symmetric part of  is identically zero

 (8.42)

To finish this chapter, all the relations concerning contortions and the charges of contortions are 
reported in table 8.2.
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Figure 8.10 - complete decomposition of the tensors of distortion and contortion.
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Figure 8.11 - Complete decomposition of the tensorial charges
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Table 8.2 - Contortions and charges of disclination in a solid  
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Chapter 9

Topological singularities associated with the charges

Since the tensorial density  of distortion charges must satisfy a conservation 
equation , it is impossible for it to appear in a punctual way. It must al-
ways occupy a field of nonzero volume in the solid medium. We therefore treat ma-
thematically the different possible topologies of charged domains, namely strings, 
membranes, torus loops and clusters, by illustrating them with quantified topologi-
cal singularities such as dislocations, disclinations and loops that appear within a 
structured lattice.
On the other hand, writing of the tensor density of disclination charges 

 implies that the appearance of disclinations in a place 
of a solid medium is a direct consequence of the presence in this place of disloca-
tions, so that there cannot be isolated disclinations within a lattice.
Finally, we show that the vector density  of flexion charges, the scalar density  
of rotation charges and the scalar density  of curvature charges are the 
three fundamental quantities necessary and sufficient to describe the long-range 
effects of topological singularities localized within a lattice.

9.1 – Strings and dislocation lines

As the density of charges of distortion  is a tensorial quantity, the non-zero density areas of 
charges must be extended in space, and their spatial topology is constrained in order to satisfy 
the conservation equation . In this section, we will analyze a particular type of field 
topology of charges, namely tubular areas that can be called strings.

The dislocation strings and their charge density 

Suppose a region of a solid lattice, which is approximately in homogeneous volume expansion 
, that is to say wherein the spatial variation of the volume expansion  is very small. This hy-

pothesis is one that almost always applies to the case of real solids such as metals. But sup-
pose also that significant rotations are possible at great distances in this solid, which is perfectly 
feasible in the case of real solids. If there exists within this solid a localized area in string form,  
a tubular shape, containing a non-zero density of dislocation charges, shown in figure 9.1 by a 
shaded area, it is possible to define in the frame  of GO a volume partially containing 
this domain. The integral over the volume  of the conservation equation of tensorial charge 
density can be transformed into an integral over the surface surrounding the integration volume

(9.1)
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Figure 9.1 - string (domain of tubular shape) of density  of charges of distortion
and the dislocation line (central fiber of the string)

With the geometry described in figure 9.1, the surface  may be divided into a side surface , 
on which the charge density is zero, and therefore does not contribute to the surface integral, 
and two cutting surfaces  and , areas of non-zero density of charges, so that the curved 
surface integral can be decomposed by the difference of surface integrals  and 

(9.2)

The integrals on  and  can be made in the local reference frames  and 
 of observers PO and PO’ respectively. According to the integral relationship of 

compatibility (8.11), these integrals then represent the projections of the Burgers vector on the 
axes of the local frames  and , so we have the following consequence of 
the equation of conservation of the tensorial density  of charges of dislocation

(9.3)

This relationship has a very important topological result concerning the geometrical forms ac-
ceptable for a non-zero density field of charges . Indeed, as the projections  of the Bur-
gers vector  on the axes of local frames, projections defined in these local repositories by a 
transversal surface to the nonzero density of field , these are invariant scalars throughout the 
area where density is not null, and thus this area must necessarily be continuous (connected). It 
cannot end abruptly in the solid as the scalar  must be kept on any plane intersecting the 
domain. Therefore, this area has the form of a tubular string, which must necessarily cross the 
solid through-and-through, or be a loop-shaped ring.
As for the Burgers vector , defined by the relationship , it is not necessarily an 
invariant vector in the absolute frame along the dislocation since only its scalar components  
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are invariant along the string, while the associated base vectors  associated with local frame 
may change along the string in the case where the medium undergoes strong rotations from 
one place to another. That is, if the volume expansion  remains homogeneous, the vector  
is of invariant norm in the absolute frame, but its direction can change along the string in exactly 
the same way as the local frames do along the string in the solid.
On the other hand, the Burgers vector  is a real invariant within any local frame  de-
fined along the dislocation since within the scope of a local frame,  and  cannot present 
significant variations. In other words, the Burgers vector  can be considered as an invariant in 
local frames, and this regardless of the direction  that the dislocation can take in the local 
frame , where  is the unit vector tangent to the central fiber (figure 9.1).
In relation (8.11) giving the Burgers vector  of a dislocation from the tensorial density , it is 
always possible to integrate on a surface  perpendicular to the direction of the central fiber 
by writing (figure 9.1)

(9.4)

Dislocation lines, or dislocations, and their linear charge 

The field of tubular string of charges  can be modeled in the form of a dislocation line, com-
monly called dislocation, represented by a one-dimensional core fiber in the center of the non-
zero density  of the string of charges (fiber is represented by line hatched in the drawing of 
figure 9.1). This dislocation line must necessarily either pass through the solid from end to end, 
or form a dislocation loop closed on itself. In the local frame, the vector  must remain 
constant, if ever the diameter  of the contour of integration is varied or this contour along the 
string is displaced, with the sine qua non condition that this contour is always located outside 
the central area containing the charge density , and that the volume expansion is uniform in 
all the local frame. We deduce that if the dislocation string is sufficiently thin (of sufficiently small 
cross-section), the charge density  can be represented by a magnitude confined to the im-
mediate vicinity of the central fiber of the string, which will be called dislocation line, by introdu-
cing the concept of linear tensorial charge of dislocation , namely a set of three vectors defi-
ned on the central fiber by the following relationship

(9.5)

where the surface  is the area of the core of the string. These relationships are then used to 
deduce the Burgers vector  from , as well as its components  (which are invariant 
along the dislocation line)

(9.6)

To satisfy the relations (9.6), it is necessary and sufficient to state that the vectors  represen-
ting the linear tensorial charge of the dislocation line have conservative tangential components 

 that satisfy the following relationships

(9.7)
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Thus, regardless of the direction  of the central fiber of a dislocation, the components , 
tangential to the dislocation line are directly deducted from the knowledge of the components 

 of the Burgers vector  of the string.
From the trace of the linear tensorial charge  we deduce linear scalar charge of rotation of 
the dislocation, using the relations (8.17) and (9.7), and note that this scalar charge depends on 
the scalar dot product of the Burgers vector  by the natural vector  tangent to the disloca-
tion line

(9.8)

As for the antisymmetric part of the linear tensorial charge , it can be represented by a linear 
vector charge of flexion of the dislocation, which depends on the cross product of the vector  
by the natural vector tangent to the dislocation line 

(9.9)

Thus, the relative orientation of the Burgers vector  of the dislocation and of the natural tan-
gent vector  to its central fiber plays an important role in the expression of different linear ten-
sorial charges, and actually determines the nature of the dislocation line.
Decomposing the Burgers vector into its parallel part  and perpendicular part  to the tan-
gent vector  , we have the following relationship

(9.10)

which shows that a dislocation can be perfectly and completely described by the data of the li-
near charge of rotation , which is linked to the parallel portion  of the Burgers vector, and 
its linear flexion charge , which is related to the perpendicular part  of the Burgers vector.

On the quantification and taxonomy of dislocations in a lattice

The connected areas of non-zero dislocation density charges can be modeled in the simplest 
way as thin strings. In this section, we will show that the straight strings appearing in a solid lat-
tice are quantified on a microscopic scale (fig. 9.2 and 9.3), and that these strings then re-
present elementary plastic distortion singularity fields, ie "elementary particles" of the plastic 
deformation of the lattice. 
If we consider the case of an ordered array of particles on the microscopic scale, one can intro-
duce dislocations by cutting links in a plane of the lattice, parallel movement of the jaws and 
reconstruction of bonds, as shown in figures 9.9 and 9.10 in the case of a simple cubic lattice.
The Burgers vector  of singularities thus obtained is deduced by considering a closed circuit 

 on the solid, which surrounds the singularity, and seeking the closure  of the correspon-
ding open circuit in the undistorted virtual lattice.
With figures 9.2 and 9.3 , we see that the microscopic singularities of the lattice have an essen-
tial characteristic: their Burgers vector is quantized, that is to say, its components can only be 
integer multiples of the unit cell length  of the lattice.
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Figure 9.2 - screw dislocation is quantified in a cubic lattice

Figure 9.3 - edge dislocation is quantified in a cubic lattice

The nature of the microscopic plastic singularity can change according to the respective direc-
tions being taken in the local coordinate system, the Burgers vector  and the unit vector 
tangent to the line:
- when  is parallel to (fig. 9.2) , the linear dislocation charge  has a non-zero trace 

, so has rotational charge, and zero antisymmetric part . One speaks in this 
case of screw dislocations , and of linear charge of rotation  of the screw dislocation. We 1
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symbolically represent it by a screw on the dislocation line.  As  when the screw 
dislocation has a right rotation, identical to the rotational direction of a normal screw or corks-
crew,  is positive and vectors  and  are oriented in opposite directions. On the other 
hand, if the screw dislocation has a left rotation, identical to the rotational direction opposite to 
that of a normal screw or a corkscrew,  is negative and vectors and  are oriented in the 
same direction (fig. 9.4). Note that the choice of a given direction  is quite arbitrary as only the 
sign of  is fixed. 

Figure 9.4 - screw dislocation, left and right respectively

Figure 9.5 - edge dislocation

- when  is perpendicular to (fig. 9.3), the linear dislocation charge  has zero trace
), so no charge of rotation, but a non-zero antisymmetric part . One speaks in 

this case of edge dislocations , and of linear flexion charge  of the edge dislocation, and 2

symbolically we represent the latter by a sign  on the dislocation line, oriented so as to re-
present the additional particle plane. The vector  always has the direction of the additional 
plane  of the edge dislocation. This is the only fixed size, so that  if the direction  
is given, and   if the Burgers vector  is given (fig. 9.5).
- when  is neither parallel nor perpendicular to  the linear charge of dislocation  has a 
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non-zero trace , but also a non-zero anti-symmetric part , such that it behaves 
both as a source of rotations and elastic and anelastic flexion. We speak in this case of mixed 
dislocations.
In a discrete lattice, a dislocation may well change direction. In other words, along the disloca-
tion line, the tangent vector  is not necessarily preserved. In this case, as the Burgers vector 

 is conserved in the local frame, this means that the dislocation should change type. For 
example, figure 9.6 shows a simple cubic lattice model in which a screw dislocation enters the 
front of left, turns inside the lattice by becoming mixed, and emerges as an edge dislocation on 
the adjacent face to the right.

Figure 9.6 - dislocation changing from a screw type to an edge type in a cubic lattice

The lattice dislocations, the «elementary particles» of the plastic deformation

Quantized dislocations are the most basic vectors of the plastic deformation of a lattice. In this 
sense, they might be called the "elementary particles" of plastic deformation. Moreover, any dis-
location string has its “anti-string". Indeed, it is easy to see that two parallel dislocations in the 
same direction  and Burgers vectors  and  respectively, annihilate completely if they 
come to meet within the lattice.
Using an integration of the compatibility relationship (8.17) on a volume surrounding a screw 
dislocation on a length  (fig. 9.7) we have

(9.11)
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We notice that screw dislocations, carrying a linear scalar charge , are sources of a field 
of divergent local rotations, which is, as we have seen, the analog of the electric field. Thus, at a 
distance of the string, the norm of the rotation field is simply .

Figure 9.7 - the radial field of rotation around a screw dislocation

As to the edge dislocations, which are carriers of a flexion charge , they are a source of a 
lattice flexion, and therefore of a local curvature of the lattice in their vicinity as the flexion vector 

 satisfies the relationship .

On the importance of the microscopic structure of the lattice

The microscopic structure of a solid plays a significant role on the nature of dislocations that 
may appear in this solid, but it is beyond the scope of this book to describe in detail these mi-
croscopic aspects. In the excellent book   by Hirth and Lothe, the reader will find a detailed des3 -
cription of most of these aspects of lattice dislocations. One can also find an excellent history of 
the discovery of dislocations in the twentieth century in the article by Hirth  (1985).4

In fact, it is essentially the structure of the core of the quantized dislocation which will depend on 
the microscopic structure of the network. A first important effect of the periodic structure of the 
lattice is that the energy of a line dislocation depends strongly on the direction in which the line 
points in the lattice. For example, consider an edge dislocation like the one shown in figure 9.3. 
It seems quite clear that the movement of its position along the axis  must change the 
energy of this dislocation periodically with a spatial frequency which is that of the lattice. The 
minimum and maximum energy positions are respectively called Peierls valleys and hills, na-
med Peierls  who was the first in 1940 to have considered this problem. For example, to move a 5
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dislocation from a Peierls valley to another, we must then apply a force called the Peierls-Nabar-
ro force .6

It is also conceivable that a dislocation is oblique to the Peierls valleys, and that it must there-
fore overcome these valleys. In this case, it is logical to think that the oblique line dislocation 
does not necessarily have the lowest energy configuration, and the dislocation could be interes-
ted in taking a polygonal shape by the formation of kinks    that minimize the portions of the dis7 -
location lying on the hills of Peierls, and therefore help to minimize the overall energy (fig.9.8). 

Figure 9.8 - The kinks and their mobility within the Peierls hills

The existence of these kinks also has the advantage of allowing the mobility of the dislocation 
perpendicularly to the valleys Peierls simply by the movement of the kinks along the dislocation 
line (fig. 9.8). In conventional materials such as metals of different structures we can change the 
mobility of dislocations through a process of creation and annihilation of pairs of kinks, a pro-
cess that is usually thermally activated, and is responsible for some of the macroscopic anelas-
tic and plastic properties of these materials. These processes have been extensively discussed 
in the literature 3. 

On the existence of partial dislocation and the ‘strong force’ that bind them

Dislocations appearing in a more complex structures than the simple cubic lattice, such as face-
centered cubic lattices, cubic or hexagonal centered lattices, generally have much more compli-
cated structures within them. Due to energetic reasons and according to the crystal system 
considered, there will appear a dissociation of the core of the dislocation into two or more partial 
dislocations  whose Burgers vectors are individual fractions of the lattice translation vectors.8

 F. R. N. Nabarro, Proc. Phys. Soc. London, vol. 59, p. 256, 19476

 J. Weertman, Phys. Rev., vol. 101, p. 1429, 1956; A. Seeger, Phil. Mag., vol.1, p. 651, 19567

 J. Frenkel,T. Kontorava, Fiz. Zh., vol.1 , p. 137, 1939; R. D. Heidenreich, W. Shockley, Report of Conf. on 8

Strength of Solids, Phys. Soc., London, p. 57, 1948; F. C. Frank, Proc. Phys. Soc. London, vol. 62A, p. 
202, 1949; N. Thompson,Proc. Phys. Soc. London, vol. 66B, P. 481, 1953
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For example, in the face-centered cubic metals (FCCs), the stacking of atoms is characterized 
by sequences abc abc abc … (fig. 9.9). The Burgers vector  of a perfect dislocation should 
in principle be connecting two lattice nodes. But for energetic reasons, the most favorable Bur-
gers vectors are those who have a minimum length because the distortion energy stored in the 
lattice by a dislocation is proportional to the square of the Burgers vector as we will discuss la-
ter. Thus in the case of figure 9.9, the dislocations dissociate on their sliding plane into two par-
tial of Burgers vectors   and , so that . In the case of this dissociation 

 so we have . 

Figure 9.9 - partial dislocations and ribbon of stacking faults in a FCC

The two partials obtained in figure 9.9 by the dissociation are called of Shockley type 8. The dis-
tance between the two partials is then controlled by a competition between the energy decrease 
associated with the increased distance between the partials that repel and the energy increase 
due to the formation of an energetic ribbon of stacking faults (abc abc abc ac ...) between the 
two partial dislocations, as illustrated by figure 9.10.
As the ribbon has a stacking fault energy  per unit area, the total energy  per unit 
length of dislocation for a dissociated dislocation over a distance  is written 

, where  is the energy of the two partials depending on the distance 
that separates them, which is a monotonically decreasing function, decreasing from  for  

 to  pour  in the case of the Shockley partials illustrated in figure 9.9.
The energy , therefore, presents a minimum for the distance  (fig. 9.10), which is 
the equilibrium distance between the two partials, controlled by the competition between the 
energy decrease associated with the increase in distance between the partials and the energy 
increase due to the formation of a ribbon of stacking faults between the two partials. This beha-
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vior of the energy  induces an interaction force between the two partials that could be 
called a "strong force" in the sense that the energy of the pair of partials has a minimum which 
fixes the position of equilibrium , but increases if one tries to increase the separation dis-
tance beyond it. The "strong force" qualifier proposed here as the behavior of the interaction 
force between the partials presents an interesting analogy with the strong force acting between 
quarks in the Standard Model of elementary particles as we shall see later.

Figure 9.10 - The energy of two partial dislocations as a function of the distance that separates them

As an example, consider the illustration (fig. 9.11) of a model of a mixed dislocation (with edge 
and screw at once) separated into two partial in a face-centered cubic structure. It clearly shows 
the existence of a stacking fault between the two partials. And since this is a mixed dislocation, 
both partials present a series of steps (kinks), such as we have described previously. Moreover, 
one can even observe network flexion induced by the edge portion of the dissociated disloca-
tion.

Figure 9.11 - Model of a mixed dislocation in a FCC,
showing a dissociation between two partials, as well the kinks on the partials

The set of all the consequences related to the network structure are obviously too specific to the 
type of crystal structure to be treated here in detail.  But they can be addressed in any book 
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dealing with dislocations in the crystal structures.

The effects of a spatial variation of volume expansion

In the case of imaginary medias in which the volume expansion is no longer uniform, say with 
large variations of  , it is not possible to represent a dislocation of the lattice by a linear densi-
ty of charge   focused on a line on the center of the dislocation. Indeed, in this case, the in-
tegral over a surface  surrounding the center of the dislocation

(9.12)

will not give the same result at different locations along the dislocation line, and does not give 
the same result according to the size of the selected area , which implies that the charge 
density  is not localized in the center of dislocation, but is now disseminated in a tube more 
or less bulky around the center, so that the integral (9.12) gives the actual Burgers vector asso-
ciated with , the selected surface in the local referential  we used to measure it (fig. 
9.12).

Figure 9.12 - effects of a spatial variation of the volume expansion on a lattice dislocation

But it is clear that throughout this tube, the condition (9.2) remains valid if the surfaces  and 
 are chosen broadly enough to encompass the charge density  surrounding the core of 

the lattice dislocation. It goes without saying that this kind of situations where the volume ex-
pansion and local rotations are not homogeneous within a large portion of the solid with disloca-
tions, is much more difficult to treat than the case where there is homogeneity of  and  over 
great distances or when the lattice dislocations are confined to small enough regions so that 
they can be considered homogeneous.
However, it will always be possible to describe locally any dislocation as a localized string in a 
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coordinate system  as shown in figure 9.12, by using locally relations (9.8) to (9.10) to 
calculate the linear densities ,  and , and by assuming that the volume expansion  
may be regarded as homogeneous in the referential . In this case, the Burgers vector 
length is given locally by the relation

(9.13) 

so that the linear density in a region where the volume expansion  is not zero will be connec-
ted to the same linear density of the dislocation at   by the relations

(9.14)

Since linear density  is derived as the product of the volume density  by a surface, it is 
deduced that the volume density  in a region compressed or expanded to a non-zero value of 

 is connected to the initial volume density of the same region with  by the following rela-
tions

(9.15)

We also deduce that 

(9.16)

On the impossibility of finding isolated disclination lines

It can be shown that there cannot exist isolated disclination lines in a solid, i.e. charged tubes 
whose overall Frank vector  is not zero. Indeed, as the density of dislocation charges  and 
disclination charges  are confined in the same tube, it is possible to replace  by its expres-
sion  in equation (8.34). It is then found that the Frank vector  
may be derived by the integral over the contour (figure 9.1) of the density , 
and that this density is zero on this contour on the outside of the tube, so that . It there-
fore follows that there cannot be isolated charged tube whose overall Frank vector  is not 
zero.

9.2 – Membranes of dislocation
         and torsion, flexion and accommodation boundaries

We call charged membrane a thin interface containing charges, which separates two media 
containing no charges (fig. 9.13). It is clear that these membranes can be any surfaces in space 
(infinite surfaces, closed spheroidal surfaces or torus, ribbons or hollow tubes, thin plates, etc.), 
with the only topological condition that on any point of the membrane the dislocation charge 
conservation equation is satisfied and with the charges of disclination derived from 
the dislocation charges via the equation  . Passthrough conditions 
for topological tensor through such a charged membrane are derived from the geometro-compa-
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tibility equations and are easy to establish. It is sufficient to write the full compatibility of the 
equation taking on a thin volume, with the movable membrane, of which each face is located on 
either side of said membrane (Fig. 9.13).

Figure 9.13 - bi-dimensional charged membrane

The surface charge  of dislocation of a joint in the presence of gradients of 

To establish the passthrough conditions for the distortion tensor, we must integrate its compati-
bility equation in the volume  of the membrane, which contains the dislocation density 

(9.17)

Provided that the membrane is sufficiently thin, the surface integral can be written as the sum of 
the surface integrals on both sides of  and the volume integral can be decomposed as follows

(9.18)

wherein  and  are the unit vectors normal to the surface from the membrane on each side 
of the membrane.
Thus, if the charged membrane is very thin, it is possible to introduce the concept of surface 
charge of dislocation  by writing

(9.19)

which allows us to deduce that

(9.20)

The topological interpretation of this passthrough condition is simple: the existence of a surface 
charge of dislocation  in the membrane leads to a discontinuity of the tangential components 
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of the distortion vector  on both sides of it. But on both sides of the membrane, outside the 
volume, the medium contains no plastic charges, so that the tensor  must derive from the 
gradient of the components of the displacement field , i.e.  . It is therefore pos-
sible to write

(9.21)

In the local framework, this expression implies that the presence of the charged membrane lo-
cally induces a dislocation of the displacement field  associated with the elastic and anelastic 
distortions whose Burgers vector  is then given by

(9.22)

so that 

(9.23)

According to this relationship, the existence of a nonzero surface charge  in the membrane is 
therefore subject to the condition that there is a gradient of the components of the Burgers vec-
tor on the surface of the membrane. This means among others that if the Burgers vector is 
constant over the whole membrane, meaning if the membrane is a simple translation of the two 
surfaces  and  relative to each other, the surface density  is zero.
Finally, it is noted that the three vectors  making up the surface tensor charge must be tan-
gent vectors to the surface of the membrane, which is in fact a direct result of the dislocation 
charge conservation equation . Indeed, considering the integral over a volume  in 
figure 9.13 we have

(9.24)

which can be satisfied for any volume  which closely surrounds the charged interface only if 
the vectors  are perpendicular to  and  on either side of the interface, in other words if 
they are tangent to the surface of the membrane.
As in the case of one-dimensional dislocation lines, one can extract the trace and the anti-sym-
metric part of the tensor  of dislocation surface charge, by writing

(9.25)

The two-dimensional modeling of a thin membrane obtained by calculating the surface charges 
is usually called a joint or a boundary . The boundary is then fully characterized by the given 9

surface tensor  of charges of dislocation, whose vectors are tangential to the surface. But it 
can also be given by the anti-symmetric part  (the surface charge of a flexion boundary) and 
the trace  (the surface charge of a rotation boundary) of the tensor of charges , as in the 
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case of the one-dimensional lines of dislocation. This point is well illustrated in Figure 9.14, whe-
rein we show three thin membranes whose Burgers vectors linearly increase along the axis 

, and which are respectively oriented along the axes  and .  As these thin mem-
branes of dislocation actually allow us to disorient or to accomodate the solid grains located on 
either side of the membrane, they are  generally called grain boundaries.

Figure 9.14 - dislocation membranes of edge type (a and b) or screw type (c)

One can for example consider that these membranes are actually charged with edge and screw 
dislocations oriented parallel to the axis . If the Burgers vectors of each individual disloca-
tion have a length  and the distance between these individual dislocations is , we have,  

, which allows us the calculation of expressions (9.25).
But we can also simply represent each individual dislocation by a line charge vector  if we are 
dealing with an edge dislocation or by a line charge scalar  if dealing with a screw dislocation. 
It then verifies that:

- the edge-type thin membrane with a Burgers vector perpendicular to the surface and increa-
sing along the axis  (fig. 9.14a) can be completely characterized by a vector  of surface 
charges of flexion , which is a vector tangential to the plane of the membrane, directed along  

, and worth

(9.26)
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Since this type of edge membrane allows us to disorient the solid grains located on either side 
of the membrane, it is called a disorientation boundary, and in this particular case, as disorienta-
tion corresponds to a flexion of the solid, one speaks of a tilt boundary.

- the edge-type thin membrane with a Burgers vector parallel to the surface and increasing 
along the axis  (fig. 9.14b) can be fully characterized by a vectorial surface charge of flexion 

, whose vector is perpendicular to the membrane, and which satisfies

(9.27)

As this type of edge membrane area actually allows us to change, in direction , the density 
of crystal planes of the solid grains located on either side of the membrane, it can be described 
as a misfit boundary.

- the screw-type thin membrane with a Burgers vector parallel to the membrane and increasing 
along the axis  (fig. 9.14c) is fully characterized by the scalar surface charge of rotation , 
satisfying

(9.28)

This type of screw membrane also corresponds to a disorientation boundary between the solid 
grains located on either side of the membrane. In this particular case, as disorientation corres-
ponds to a rotation of the grains with respect to each other, it is called a twist boundary.

On the quantification of membranes of dislocation on a lattice

Dislocation membranes also quantify on a microscopic lattice, as shown in figure 9.15 represen-
ting a screw dislocation ribbon consisting of three aligned screw dislocations, corresponding to 
the case of figure 9.14c.
It is of course also possible to imagine ribbons of similar quantified dislocations, but made of 
edge dislocations, corresponding to the cases of figures 9.14a and 9.14b.

Figure 9.15 - quantified bi-dimensional dislocation ribbon made up of three dislocations of screw type
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The effects of a volume expansion

In case a medium expands or contracts locally, it is useful to know how the charges of disloca-
tion change. Knowing that the surface charges of flexion  and rotation  of the joint is given 
by the relationships   and  by using equations (9.16) and the fact that  , 
it is found that

(9.29)

It follows that the surface densities of dislocation charges are conserved when the medium ex-
pands or contracts, which leads to the relations

(9.30)

9.3 – Strings and lines of disclination 
         at the frontiers of membranes of dislocation

While isolated strings of disclinations cannot exist (19.19), it will appear disclinations in the pre-
sence of an extended domain of dislocation charges, such as a dislocation membrane. One can 
consider for example the case of a flat membrane of dislocation charges having two regions 
with different surface densities of charges separated by a boundary (fig. 9.16).

Figure 9.16 - string of disclination at the frontier of two membranes of dislocations

Assuming that the surface charges of dislocation  and  of the two regions are constant 
but with different values in each region, it is possible to calculate the Frank vector  on a sur-
face  intersecting the membrane surrounding the boundary between the two zones and per-
pendicular to this border, using the relationship
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(9.31)

This relation transforms in the following way

(9.32)

In this relationship, the terms  and  are zero since the charge densities  in a mem-
brane can only be vectors parallel to the membrane (9.25). We have for 

(9.33)

Figure 9.17 - ribbons of dislocation bordered by disclinations of wedge type (a) 
and of twist type (c). The ribbon of dislocation (b) is not bordered by lines of disclination

It is found that the value for  is independent of the contour chosen as long as this contour 
surrounds the border between the two regions of the membrane. Thus, for a contour closely 
surrounding the border, one obtains a line having a constant Frank vector along the line, which 
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can therefore be called disclination string or line of disclination or simply disclination . In figure 10

9.17, the disclination lines are plotted, and they border the dislocation ribbon similar to those 
presented in figure 9.14. In this figure, we see the following:

- the ribbon of edge dislocations with a Burgers vector perpendicular to the membrane and in-
creasing along the axis  (fig 9.17a) corresponds to a localized tilt boundary. It is bordered 
by two wedge disclinations since ,

- the ribbon of edge dislocations with Burgers vector parallel to the membrane and increasing 
along the axis (fig 9.17b) is a localized accommodation boundary. It is not bordered by dis-
clination since ,

- the ribbon of screw dislocations with Burgers vector parallel to the membrane and increasing 
along the axis  (fig 9.17c) corresponds to a localized twist boundary. It is bordered by two 
twist disclinations since .

Note that the disclination of figure 9.17a is the macroscopic disclination shown in figure 8.7b, 
while the disclination of figure 9.17c corresponds to the macroscopic disclination of figure 8.7a. 
Furthermore, the quantization of a ribbon of dislocations similar to that of figure 9.17c has alrea-
dy been illustrated in figure 9.15, in which are drawn the two disclinations bordering the quanti-
zed dislocation ribbon.
Finally, the relation (9.33) justifies a fortiori that the surface densities are retained in case of ex-
pansion or contraction of the volume, as expressed by the relationship (9.30), since the rotation 
angles  must be an invariant under this kind of transformation.

The scalar charge of curvature of a wedge disclination line

In the previous chapter, we have introduced the notion of scalar density of curvature charges 
defined by the relation . Then one can legitimately ask whether the disinclination ob-
tained at the border of a dislocation membrane as seen in figure 9.16, can be represented by a 
scalar linear charge , in the same way that a screw dislocation can be fully represented by its 
linear scalar charge . To answer this question, we need to resume with relationship (9.31), 
and consider only the terms in  and  since the term in  is not involved in the case of a 
disclination on the border of a membrane dislocation, as shown in equation (9.32). We then 
have

(9.34)

In the first term, one can replace  by . The second term is zero by the fact that, in the 
configuration shown in figure 9.16, there cannot be a gradient of  in the direction of the discli-
nation, and the third term can be obtained on the contour surrounding the surface integration, 
so that
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(9.35)

The first term corresponds to the case of a wedge disclination (figure 9.17a) and the second 
term corresponds to the case of a twist disclination (figure 9.17c). By then introducing the linear 
scalar curvature charge , we can write for a wedge disclination, in the case of figure 9.16

(9.36)

from which we deduce that it is possible to calculate the linear charge of curvature  via the 
expression

(9.37)

Introducing here the unit vector  perpendicular to the disclination line and radial with respect 
to its center, the following expression is obtained for 

(9.38)

The effects of a variation of the volume expansion

In the case where the medium expands or contracts locally, knowing that the surface densities 
of dislocation of charges  on a membrane does not depend on (9.30), and using the rela-
tion (9.38), we find

(9.39)

The quantification of disclinations of wedge type in a lattice

While isolated disclinations cannot exist, it is possible to imagine a structured solid media which 
contain line disclinations quantified on the lattice in the case of wedge disclinations, as illustra-
ted by figure 9.18. In this figure, two wedge disclinations are shown with  in a simple 
cubic lattice, and there we show the curvature vector  due to the charge .

Figure 9.18 - Examples of quantified wedge disclinations  on a cubic lattice

 

!
Ω = − θ d

!
S

S
∫∫ − λd!r

C
"∫ =

!
Ω
#
!
t
+
!
Ω

⊥
!
t

Θ
!
Ω
"
!
t
=
!
Ωwedge = − θ d

!
S

S
∫∫ = −Θ

!
t == −

!
Π(1) ∧ !n1 −

!
Π(2) ∧ !n2

Θ

Θ = −
!
Ωwedge

!
t =
!
Π(1) ∧ !n1( )!t + !Π(2) ∧ !n2( )!t = !Π(1) !n1 ∧

!
t( )+ !Π(2) !n2 ∧

!
t( )

 
!m

Θ

Θ = −
!
Ωwedge

!
t =
!
Π(1) !m +

!
Π(2) !m

 
!
Π τ

Θτ≠0 =Θ0 τ=0

 Ω = ∓ 90°

 
!
χ Θ

 Ω = ∓ 90°

 



chapter 9194

Figure 9.19 - quadratic or hexagonal arrangements of particles in a plane

Figure 9.20 - families of quantized wedge disclinations in a quadratic plane arrangement

 C2  : Ω = -180° : Θ = +π

 C3  : Ω = -270° : Θ = +3π / 2

 C1  : Ω = -90° : Θ = +π / 2      C1  : Ω = +90° : Θ = -π / 2

 C2  : Ω = +180° : Θ = -π

 C3  : Ω = +270° : Θ = -3π / 2

(b) hexagonal arrangement(a) quadratic arrangement
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Figure 9.21 - families of quantized wedge disclinations in a hexagonal plane arrangement

 H3  : Ω = -180° : Θ = +π

 H1  : Ω = +60° : Θ = -π / 3

 H2  : Ω = +120° : Θ = -2π / 3

 H5  : Ω = +300° : Θ = -5π / 3

 H1   : Ω = -60° : Θ = +π / 3

 H4  : Ω = +240° : Θ = -4π / 3  H4  : Ω = -240° : Θ = +4π / 3

 H5  : Ω = -300° : Θ = +5π / 3

 H3  : Ω = +180° : Θ = -π

 H2  : Ω = -120° : Θ = +2π / 3
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One can then imagine that there may be various families of quantized wedge disclinations by 
considering a solid media with different arrangements of the particles in a secant plane to the 
disclination line . For example, we will consider here simple arrangements such as quadratic or 11

hexagonal arrangement of the particles in a plane (figure 9.19). But one could obviously be 
considering more complex arrangements such as three-dimensional centered cubic, hexagonal 
or cubic face centered structures.
In the case of quadratic arrangement, there may be at most 3 different quantized wedge discli-
nations , which we will call ,  and , with rotation angles  of + 90 °, + 180 ° and + 
270 °  to which correspond three quantized wedge anti-disclinations ,  and , with ro-
tation angles  of  -90 °, -180 ° and -270 ° (fig. 9.20).
In the case of hexagonal arrangement, there are at most 5 quantized wedge disclinations ,

, ,  and , with rotation angles  of + 60 °, + 120 °, + 180 °, + 240 ° and + 300 °, 
to which correspond 5 quantified wedge anti-disclinations , , ,  and , with rota-
tion angles  of  -60 °, -120 °, -180 °, -240 ° and -300 ° (fig. 9.21).
In both cases of figures 9.20 and 9.21, we show the disclinations with a size calculated so that 
the volume expansion  is the same in all figures. Note also that the disclinations of + 270 ° in 
the quadratic arrangement and of +300 ° in the hexagonal arrangement may exist or not exist 
according to the imaginary medium considered, because their existence is linked to the ability to 
connect between them two bonds of the same "particle" in the solid medium we consider.

The multiplets of  quantized wedge disclinations

Figure 9.22 - doublet of quantized wedge disclinations with a ribbon of virtual dislocation.

It has been shown that there cannot be isolated disclinations with nonzero Frank vector. There-
fore, it is necessary to combine several disclinations near each other so that the Frank vector 
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 The disclinations have been observed essentially in the lattices of flux lines in superconductors of type 11

II, in certain polymers and in the nematic liquid crystals. See:  E. Kröner, K.-H. Anthony, Annu. Rev. Mater. 
Sci., vol. 5, p. 43, 1975;  M. Kleman, J. Friedel, Reviews of Modern Physics, vol. 80, p.61-115, 2008
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obtained on a contour surrounding these disclinations is zero.
The example shown in figure 9.22 illustrates this fact: by coupling two quantized wedge disclina-
tions of type  and  in a simple cubic structure, the Frank vector becomes zero, and there 
appears a virtual ribbon of edge dislocation between the two disclinations with nonzero overall 
Burgers vector . The ribbon of edge dislocation is similar to the one shown in figure 9.17a 
and therefore contains a vectorial surface charge of flexion . But this flexion charge  is not 
associated with a real quantized dislocation network, but to a virtual ribbon of edge dislocations.
We can find the multiplets of disclinations with global null Frank vector that can be built on the 
basis of the quantized wedge disclinations that we have described in the case of simple cubic 
lattice in figure 9.19a. The basic multiplets with zero Frank vector, that is to say, those that can-
not be further broken down into two or more multiplets of non null Frank vector, are reported in 
table 9.1. It is found that, in a simple cubic lattice, there may be three doublets, 4 triplets and 2 
quadruplets.

Table 9.1 - the multiplets of quantified wedge disclinations in a simple cubic plane structure

In the case of the lattice of figure 9.19b, with plans having a hexagonal structure of the particles, 
there may be 5 doublets, 12 triplets, 8 quadruplets, 4 quintuplets and 2 sextuplets as shown in 
table 9.2.
In both tables, the multiplets made with disclinations  (+ 270 °) or (+ 300 °) are grayed 
out because they could not exist, for example in structured media that do not allow a “self 
connection” of two bonds of a same particle.

C1 C1

 
!
B

 
!
Π  

!
Π

C3 H5

 

3 doublets

+90° / -90°

+180° / -180°

+270° / -270°

4 triplets

+90° / +90° / -180° -90° / -90° / +180°

+90° / +180° / -270° -90° / -180° / +270°

2 quadruplets

+90° / +90° / +90° / -270° -90° / -90° / -90° / +270°
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Tableau 9.2 - the multiplets of quantized wedge disclinations in a hexagonal plane structure.

In both tables, the multiplets made with disclinations  (+ 270 °) or (+ 300 °) are grayed 
out because they could not exist, for example in structured media that do not allow a “self 
connection” of two bonds of a same particle.

Examples of quantized multiplets of disclinations in the cubic structure

In this section, as examples, we study some imaginary cases of doublets and triplets of disclina-
tions in the simple cubic structure (fig. 9.23 to 9.28).

C3 H5

5 doublets

+60° / -60°

+120° / -120°

+180° / -180°

+240° / -240°

+300° / -300°

12 triplets

+60° / +60° / -120° -60° / -60° / +120°

+60° / +120° / -180° -60° / -120° / +180°

+60° / +180° / -240° -60° / -180° / +240°

+120° / +120° / -240° -120° / -120° / +240°

+60° / +240° / -300° -60° / -240° / +300°

+120° / +180° / -300° -120° / -180° / +300°

8 quadruplets

+60° / +60° / +60° / -180° -60° / -60° / -60° / +180°

+60° / +60° / +120° / -240° -60° / -60° / -120° / +240°

+60° / +120° / +120° / -300° -60° / -120° / -120° / +300°

+60° / +60° / +180° / -300° -60° / -60° / -180° / +300°

4 quintuplets

+60°/+60°/+60°/+60°/-240° -60°/-60°/-60°/-60°/+240°

+60°/+60°/+60°/+120°/-300° -60°/-60°/-60°/-120°/+300°

2 sextuplets

60°/+60°/+60°/+60°/+60°/-300° -60°/-60°/-60°/-60°/-60°/300°
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For each case shown, we indicate in an inset the number of edge dislocations on each side of 
the quadrangle ABCD. This number of edge dislocations is composed of a fixed number de-
pending on the number of disclinations in play and their respective arrangement, plus a number 
of edge dislocations due to the inclusion of additional  "particle" planes placed between the 
disclinations to vary the distance between them (these additional plans are shown in red in the 
figures).
In the figures 9.23 and 9.24, we show the doublets  and , by varying in each 
case the orientation of the pair relative to the crystal structure (with an angle of 45 ° and 0 ° res-
pectively with respect to the structure). One immediately notices that in the case of doublets, 
there is always a fixed number of edge dislocations emerging from the quadrangular figure 
ABCD, and that the addition of insert planes systematically increases this number. 

Figure 9.23 - doublets  of wedge disclinations in a cubic lattice

Figure 9.24 - doublets  of wedge disclinations in a cubic lattice

ni

C1− C1 C2 − C2

C1 − C1

C2 − C2
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In figure 9.25, we plotted triplets , varying the direction of alignment of these tri-
plets with the structure (0 ° and  45 ° respectively), while in figure 9.26, the triplet  
and its "antiparticle “  are plotted.

Figure 9.25 - triplets  of wedge disclinations in a cubic lattice

In all these cases of triplets, for which disclinations components are aligned on an axis, we see 
that if the additional insert planes are placed symmetrically, these triplets remain perfectly sym-
metrical and there is no edge dislocation that emerges in quadrangle ABCD. 

C1− C2 − C1
C1− C2 − C1

C1− C2 − C1

C1 − C2 − C1
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Figure 9.26 - triplets   and  of wedge disclinations in a cubic lattice

However, even if no edge dislocation emerges, it is clear that there is strong local deformation of 
the lattice, which must correspond to a strain energy which is nothing but the energy of the tri-
plet formation. In addition, the introduction of additional infill symmetrical planes has the effect of 
increasing the distance between the disclinations triplet, and thus increases the energy of the 
triplet.

C1 − C2 − C1 C1 − C2 − C1
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Figure 9.27 - the different spatial positions of triplets   C1 − C2 − C1
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In figure 9.27, we show triplets , but this time by varying the relative spatial arran-
gement of disclinations with each other. The angles formed by the straight lines connecting the 
two disclinations  and  are 180 °, 120 ° and 60 ° respectively. It is found that the triplet 
with an asymmetry, in cases 120 ° and 60 °, shows a fixed number of edge dislocations emer-
ging from the quadrangular figure ABCD, and this number increases with the dissymmetry, 
since it goes from 2 to 4 when the angle goes from 120 ° to 60 °. It is easy to imagine on the 
basis of these figures that, in all cases, an increase in the distance between the disclinations of 
the triplet by adding intermediate planes may only increase the energy of the triplet.

Figure 9.28 - two spatial configurations of triplet 

Finally, in figure 9.28, we show examples of more “exotic" triplets, by drawing two different spa-
tial configurations of the triplet .

C1− C2 − C1

C1 C2

C2 − C3 − C1

C2 − C3 − C1
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The ribbons of virtual dislocations connecting the disclinations in a multiplet

All the examples we have shown in the previous section show that each multiplet of disclina-
tions can have many different configurations, depending on the number of disclinations compri-
sing the multiplet, the spatial arrangement of disclinations and the number and disposition of 
infill planes. Moreover, one can well imagine that, for the multiplets obtained in a hexagonal 
structure, there is a greater multitude of different configurations since the number of singlets, 
that is to say, quantified disclinations, is greater and the number of possible angles between the 
arms of the multiplets is also higher. It would therefore be very convenient to find a mathemati-
cal way to characterize the various configurations which may occur for a given multiplet in a gi-
ven structure. We will treat the case of a doublet and a triplet wedge disclinations, the other mul-
tiplets can easily be treated similarly.

Figure 9.29 - ribbons of virtual dislocations of a doublet (a) and a triplet (b) of wedge disclinations

In the case of the doublet shown in figure 9.29a, both disclinations are separated by a distance 
, and the direction of the dipole is the one given by the unit vector . The disclinations of the 

doublet are characterized by their Frank vectors  and . As we have 
seen previously, the doublet of disclinations must be linked by the existence of virtual disloca-
tions, which we will represent by a dislocation membrane of length  connecting the disclina-
tions and containing a vectorial surface density of dislocation charges , with . By ap-
plying equation (9.38) on the edges  and , the following relations are obtained

(9.40)

from which it is deduced that .
At large distances, the doublet of disclinations may be considered as an edge dislocation with 
linear density charge  given by the relation

(9.41)

This shows that the dislocation equivalent to the doublet of disclinations has a Burgers vector 
 proportional to the scalar charge density  and to the distance  between the disclinations
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(9.42)

As the Burgers vector  associated with the charge  must be quantized in a lattice, the mi-
nimum value  of the distance  obtained when there is no intermediate planes between 
the disclinations of the doublet, satisfied

(9.43)

Consider then the case of doublets ,  and , in a simple cubic lattice, 
assuming that there are no intermediate planes like those placed between the disclinations of 
the doublets in figures 9.23 and 9.24. As  in the cubic lattice with  depen-
ding on the doublet , the value  satisfies

(9.44)

in which  must be a multiple of the lattice step , or the diagonal  of the base 
square. Thus we have:

- in the case of figure 19.30a ,  and , giving ,

- in the case of figure 19.30b ,  and , giving ,

- in the case of figure 19.31a ,  and , giving ,

- in the case of figure 19.30a ,  and , giving .

In the case of a perfect hexagonal lattice , the Burgers vector must be quantified as a multiple 12

of the distance  between two hexagons in the perfect lattice. For the doublet  shown 
in figure 9.30,  and it was found that , so we have the relationship  

.
In the case of the triplet shown in figure 9.29b, the three disclinations are separated by dis-
tances  and  respectively, and the directions of the two branches of the triplet are those 
given by the unit vector  and , in such a way that the angle  formed by the two arms is 
given by the relationship . The disclinations of the triplet are characterized by Frank 
vectors ,  and . They must be linked by the existence of 
virtual dislocations which are represented by two membranes of dislocations with length  and 

, linking the disclinations and containing a vector surface density of dislocation charges  
and , with   and . By applying equation (9.38) on the contours ,  and 

, we have relationships

 (9.45)

from which we can see that .
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Figure 9.30 - illustration of  doublet   and distances  and 

At large distances, the triplet of disclinations may be considered as two parallel strings of edge 
dislocations with linear charge densities  and , given by the relations

(9.46)

These two parallel dislocations can be replaced by a single dislocation, equivalent to the discli-
nation triplet, which has a Burgers vector  given by the relation

(9.47)

In the case of the symmetric triplet with alignement of three disclinations on a single line (figures 
9.29 and 9.30), we have , and the total Burgers vector is written

(9.48)

In this case, if , the triplet has no overall Burgers vector at a distance, but only 
two local Burgers vector which cancel each other.
According to equations (9.41) and (9.46), the energy of a multiplet, associated with the local 
deformations induced in the lattice, may only increase if the distances  separating the discli-
nations of the multiplet increase. This implies that there is a force of attraction between the dis-
clinations which increases the more one separates these disclinations. By analogy with the na-
ming in the Standard Model of elementary particles, one could speak here of a force of strong 
nature which links the disclinations of the multiplet, and one could assimilate the virtual disloca-
tion ribbons  to kinds of gluons, since it is these virtual charges that bind together the discli-
nations, and prohibit the isolation of one of them.

9.4 – Strings of dispiration and solid lattices with axial symmetries

We will call dispiration strings, or lines of dispiration or simply dispirations , mixed strings resul13 -
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ting from the combination of strings or lines of disclination with strings or lines of dislocation.

On the combination of wedge disclinations and edge dislocations

Figure 9.31 shows two examples of dispirations composed of a wedge disclination and an edge 
dislocation, represented in the dense plane of a face-centered cubic structure or a hexagonal 
structure. From the dense plane of a perfect crystal (a), we construct a wedge disclination with  

=+60° (b). By then cutting the crystal along the line A-B, and by adding a line A’-B’  of par-
ticles, we introduce a linear density  of edge dislocation in the center of the disclination (c). 
Similarly, by removing the particles along the line C-D in figure 9.31 (b), and by gluing the jaw 
with the particles of the line A-B, we introduce again a linear density  of edge dislocation in 
the center of the disclination, as shown in (d) of figure 9.31.
The absorption and emission of edge dislocations with a quantified wedge disclination is the 
basic process that explains the movement of a disclination in a lattice . Here we leave the rea14 -
ders to try to illustrate this type of process.

Figure 9.31 - dispirations (c) and (d)  by combination of a wedge disclination (b) 
with an edge dislocation in the dense plane of a FCC or a hexagonal lattice

Lattices with axial symmetries  

One can imagine lattices which have an axial symmetry in the particles, such as cubic lattices 
(a) and (b) and hexagonal lattices (c) and (d) shown in figure 9.32. This axial symmetry of the 
particles can simply present a preferred orientation of the particles in the plans of the structure, 

Ω
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!
Λ

 W. F. Harris, L. E. Scriven,  J.  Appl. Phys. 42 , p 3309, 1971; R. deWit, J. Appl. Phys. 42, p. 3304, 197114
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as in the cases (a) and (c), or may have an orientation and a preferential direction as in cases 
(b) and (d). This type of lattice thus has an alternating structure of layers a, b, c, d, ...
In addition, the rotation axes of the particles along the vertical axis produces a directed medium, 
that is referred to as dextrorotatory (right-handed) in the case (b) and levorotatory (left-handed) 
in the cases (c) and (d).

Figure 9.32 - cubic and hexagonal lattices presenting an axial symmetry of the particles 
of dextrorotatory type (right-handed) in (b) and of  levorotatory type (left-handed) in (c) and (d)

If it is forbidden to break the axial orientation of the particles in a plane, it is not possible to in-
troduce a vertically oriented screw dislocation with any Burgers vector. Indeed, if the distance 
between the horizontal planes is , in order to ensure the continuity of the particle orientation, 
and also their direction in cases (b) and (d), the length of the Burgers vector of the screw dislo-
cation  has to be equal to  in case (a),  in case (b),  in case (c) and in 
case (d).

a

 
!
Bvis ±2a ±4a ±3a ±6a
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The dissociation of screw dislocations and the “strong force” linking the partials.

In the axially symmetric environments such as those reported in figure 9.32, screw dislocations 
must have Burgers vectors  whose lengths are multiples of the unit length of the lattice . 
In this case, the screw dislocations have an incentive to split into partial with Burgers vectors of 
length ,  and , forming respectively 2, 4, 3 or 6 partial in cases (a) to (d) respectively. 
Between the partial dislocations form ribbons of connection faults between axial planes ab, bc, 
cd, etc. The separation distance between partials then depends on the energy per unit area 
of the connection fault.
For example, figure 9.33 illustrates the dissociation in the case of axial lattice (c). In this case, 
the screw dislocations have an incentive to dissociate into three partial Burgers vectors, , 

and , all of length , so that . In the case of this separation, since 
the length  is , we have   and since the energy due to the dis-
location is proportional to the square of the Burgers vector, the energy of the three isolated par-
tial is 3 times lower than the energy of the original screw dislocation. If the connection fault rib-
bon has an energy  per unit area, the total energy  per unit length of dislocation for a 
screw dislocation dissociated over distances  is written  where 
is the energy of the three partials depending on the distance separating them. This function is 
monotonically decreasing from for  to  for  in the case of the partials 
shown in figure 9.33.

Figure 9.33 - dissociation of a screw dislocation in three partials in the case of an axial lattice (c) 

The energy  thus has a minimum similar to that reported in figure 9.10 for the distance 
, which is the equilibrium distance between the three partial, controlled by the competi-

tion between energy decrease associated with the increased distance between the partials and 
increased energy due to the formation of an energy ribbon of connection faults between the 
three partials. 
This behavior of the energy  induces and interaction strength between the partials that 
we qualify as strong force in the sense that the energy of the triplet partials will increase if we try 
to increase the distance separation beyond . This therefore presents a kind of strong force in 
its behavior and an interesting analogy with the strong force acting between quarks in the Stan-
dard Model of elementary particles.
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Structural dispirations in a lattice with axial symmetry.

Then we immediately imagine that there must also be connection conditions ensuring the conti-
nuity of the axial symmetry if we want to introduce a disclination in such a lattice. In fact, to en-
sure this continuity, it will be necessary to associate a screw dislocation with the Burgers vector  

 to the disclination. There then appears here a structural need to introduce dispirations in 
such a media .15

Figure 9.34 illustrates this perfectly. In order to introduce a disclination = + 90 ° in the me-
dium shown in figure 9.32 (b), it is necessary to add a screw dislocation correctly oriented, with 
Burgers vector  and length , which ensures the continuity of the axial orientation of particles 
on the middle of the planes. Note that a screw dislocation with an inverted Burgers vector direc-
tion and length  could also have ensured the continuity of the axial orientation of the par-
ticles, so there are two different dispirations with rotation =+90°, both with a linear charge of 
curvature , but differing in their Burgers vector  associated with a rotation charge 
per unit length  equal to   or .

Figure 9.34 - dispiration of +90° introduced in the axial medium of figure 9.32 (b)
showing the need to add a translation vector  to insure axial continuity 

It is not too difficult to find what linear charges of torsion  must be associated with the dif-
ferent wedge dispirations with charge of curvature  that can be introduced in the cubic and 
hexagonal structures shown in figure 9.32.
In table 9.3, we plotted these charges for the cubic structures of figures 9.32 (a) and (b). In case 
(a), the structure shows no difference between dextrorotatory and levorotatory direction orienta-
tion of the lattice particles. On the other hand, there is a difference between these two orienta-
tions in case (b), which implies a change of the sign of the charge  between dextrorotatory 
and levorotatory medias.
In table 9.4, we show the charges  and  for the hexagonal structures of figures 9.32 (c) 
and (d). Since there is in both cases a difference between the dextrorotatory and levorotatory 
orientations of the medium, it appears in both cases a sign change of the charge  between 
these two axial directions.
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Table 9.3 - linear charges of curvature  and of rotation  of the dispirations 
in the cubic structures of figures 9.39 (a) and (b)

Tableau 9.4 - linear charges of curvature  and rotation  of the dispirations 
in the hexagonal structures of figures 9.35 (c) and (d)
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With the dispirations of tables 9.3 and 9.4, it would be possible to build, in each of these four 
medias, doublets and triplets of dispiration strings having zero overall line charge  and some 
overall line charge  which may be zero or not, on the basis of the models shown in figure 
9.29.

9.5 – Loops of dislocation and disclination
 
To satisfy the conservation equation , a line of dislocation or disclination cannot sud-
denly stop in the middle. However a line closing on itself to form a localized loop still meets the 
conservation equation. In this section, we will therefore present such loops and their properties 
in a solid lattice. To simplify the mathematical treatment of loops, it is wise to start by developing 
the appropriate mathematical tools.

On the vectorial geometry of loops of charged strings

To develop a mathematical tool to simply describe the vectorial geometry of straight or curved 
strings, we consider a radius of circular string in three-dimensional space (fig. 9.35).
This string is "charged" with vectorial volume densities  and  and with a scalar density . 
We want to write the vector operators acting on the charge densities contained in the string, ie, 

 et  as operators acting on the linear charges ,  and , and defined on 
the central fiber of the string

(9.49)

Figure 9.35 - vectorial geometry of a loop of string

It is useful to define in advance the linear charges ,  and , as functions of the angle 
along the loop, and to express them in the natural local frame tangent to the string, defined by 
the unit vectors ,  and  , by writing

(9.50)
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In the case of the divergence operator, it is possible to calculate the integral of  on a 
volume element  contained in the angular region  (fig. 9.35). With the diver-
gence theorem we have

(9.51)

which we can write by expressing the integral on the volume as

(9.52)

so that  is given by the relationship

(9.53)

Taking the limit , we have the expression for the divergence operator applied to the 
linear density  which represents the central fibre in the local frame of the string

(9.54)

In the case of the operator , a similar procedure gives us

(9.55)

which, when we use the fact that  , can be writ-
ten

(9.56)

Taking the limit , we have the rotational operator expression applied to the linear den-
sity  of the line representing the central fibre in the local frame of the string

(9.57)

Operators acting on the linear charges of a loop (9.54) and (9.57) still deserve a few comments:
- choosing the orientation of the loop as shown in figure 9.42, i.e.  parallel to , the natural 
unit vectors of the natural frame tangent to the string can be expressed in the local frame of the 
observer PO, and vice versa

        and       (9.58)

- the derivatives of the unit vectors ,  and  with respect to the angle  can be written

(9.59)

- in the case of a rectilinear string, the operators (9.54) and (9.57) can be expressed by repla-
cing the derivative in  by a derivative in , the curvilinear index along the central fibre of the 

 c = div
!
b

V α,α + Δα[ ]

 
cdV

V
∫∫∫ = div

!
b dV

V
∫∫∫ =

!
b d
!
S

S
"∫∫ =

!
t
!
B
S2
−
!
t
!
B
S1

 
RΔα cdS

S1
∫∫ = RΔαC =

!
B(α + Δα ) −

!
B(α )⎡⎣ ⎤⎦

!
t

C

 
C = lim

Δα→0

1
RΔα

!
B(α + Δα ) −

!
B(α )⎡⎣ ⎤⎦

!
t

Δα → 0
 
!
B

 
c = div

!
b      ⇒     C =

1
R
∂
!
B

∂α
!
t

 b = rot
! "! "a

 
RΔα

!
b dS

S1
∫∫ = rot

" !" !a dV
V
∫∫∫ = d

!
S ∧ !a

S
#∫∫ =

!
t ∧
!
A
S2
−
!
t ∧
!
A
S1

 
!
t ∧
!
A = (

!
t ∧ !m)Am + (

!
t ∧ !n)An = An

!m − Am
!n

 

!
B = lim

Δα→0

1
RΔα

An (α + Δα ) − An (α )[ ] !m − Am (α + Δα ) − Am (α )[ ] !n{ }
Δα → 0

 
!
A

 
b = rot
! "! "a      ⇒     

"
B =

1
R

∂An
∂α
"m −

∂Am
∂α
"n⎛

⎝⎜
⎞
⎠⎟

 
!n  

!e3

 

   
!
t = cosα !e2 − sinα

!e1
    !m = cosα !e1 + sinα

!e2
    !n = !e3

⎧

⎨
⎪

⎩
⎪

 

   !e1 = −
!
t sinα + !mcosα

   !e2 =
!
t cosα + !msinα

   !e3 =
!n

⎧

⎨
⎪

⎩
⎪

 
!m  
!
t  

!n α

 

∂
!
t

∂α
= − !m     ;      ∂

!m
∂α

=
!
t     ;      ∂

!n
∂α

= 0 

α ζ

 



chapter 9214

string, by using the fact that

(9.60)

Glide loops and prismatic loops of dislocations

Now if we want to study the effect of the curvature of a dislocation in the local framework, the 
easiest method is to consider a circular dislocation loop, and describe it using mathematical 
tools developed in the previous section. For a circular dislocation loop of radius , the tensorial 
linear charge  can be connected to the Burgers vector using equation (9.7)

(9.61)

Figure 9.36 - glide loops and prismatic loops of dislocation

It appears then three types of dislocation loops according to the orientation of the Burgers vec-
tor with respect to the normal  to the surface of the loop, as shown clearly in figure 9.36:
- the glide loops when , which have edge portions (where )), screw portions 
(where ) and mixed portions, which have a kind of “vector" nature as their Burgers vector 
can take any orientation in the plane perpendicular to ,
- the prismatic loops when , which have a kind of  “scalar" nature, since their Burgers vec-
tor have a given direction,
- the mixed loops when  has a component in the direction  and a component in the plane of 
the loop.
We can verify that these dislocation loops satisfy the conservation equation  for the 
charges of distortion. Indeed using relation (9.54), we have

(9.62)
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This relationship implies that  , and therefore that  does not depend on the 
angle , which corresponds to the expression of the invariant component of the Burgers vector 
of a dislocation line. We can deduce the linear scalar charge  of rotation of the dislocation 
loops by using relation (9.8)

(9.63)

As  does not depend on , it is deduced that the slip dislocation loops have a dipole mo-
ment of rotation charges. Integrating the linear density  of torsional charge on the contour of 
the loop, it is deduced that the dislocation loops show no global scalar charge rotation 

, whichever their nature

(9.64)

We can still deduce the vectorial linear charge  of flexion of the dislocation loops using the 
relations (9.9) and (9.58). It follows

(9.65)

We then deduce the linear scalar curvature charge  of the dislocation through the relationship 
 and the expressions (9.54) and (9.65)

(9.66)

so that

(9.67)

As  may only be a constant independent of , this relationship implies that the prismatic 
dislocation loops have a total scalar curvature charge  given by the integral of the linear den-
sity  on the contour of the loop

(9.68)

As , we also have

(9.69)

The effect of a uniform variation of volume expansion on the curvature charge 

As the scalar charge of curvature  of a prismatic loop does not depend on the radius  of 
the dislocation loop, but only on the component  of the Burgers vector, the dependency of 
the curvature charge on the local volume expansion  of the medium is easily deduced

(9.70)

Quantification of the dislocation loops on a lattice

At the microscopic scale of a solid lattice, the Burgers vectors of dislocation loops are quanti-
zed, as shown schematically in figure 9.44 for prismatic loops and glide loops in a cubic lattice.
In figure 9.37, there is also clear that:
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- the prismatic dislocation loops, which are of a “scalar" nature are obtained by the addition or 
the deletion of a plane of particles within the loop (translation perpendicular to the plane of the 
loop), so that the system presents extra material in the loop plane. Note that the overall scalar 
charge  of diverging curvature of the prismatic loop is directly related to the existence of this 
"extra material”.
- the glide dislocation loops, which are of “vectorial" nature are obtained by slip (translation pa-
rallel to the plane of the loop) in the direction of the Burgers vector, so that the lattice does not 
have "extra-material" in this case. However, the presence of a screw component in regions 
where  induces a dipolar field of rotation in the vicinity of the glide loop.

Figure 9.37 - quantification of the dislocation loops on a lattice

The loops of wedge disclinations

In figure 8.9, we have shown an embodiment of a macroscopic loop of wedge disclination. Now 
let's try to express the mathematics of it. For this, consider a loop consisting of a doublet of 
wedge disclinations bound by a virtual ribbon of dislocation, as shown in figure 9.38. According 
to the relationship (9.40), the linear density of scalar charge of curvature  and  of the two 
disclinations are given by the relations

(9.71)

From this we deduce the existence of these two densities  and  on either side of the dis-
location ribbon which generates a dipole field of flexion , located essentially in the vicini-
ty of the two disclinations. This dipole field is shown in figure 9.39 in the case of a doublet of 
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disclinations quantified at in a cubic structure. It is easy to see the positive and negative 
flexion curvatures surrounding the two disclinations.

Figure 9.38 - loop of doublet of wedge disclinations linked by a ribbon of dislocation

It is interesting to see that the ribbon of dislocation of surface flexion charges  can be redu-
ced, by integration over the distance  separating the two disclinations, to a virtual linear 
charge  of edge dislocation distributed over a radius dislocation loop . Thus, the 
disclinations of the doublet loop may be considered similar to a charge of edge dislocation loop 
with linear charge  such that

(9.72)

Figure 9.39 - local dipolar field of flexion due to charges  and  
and divergent flexion field due to the charge  of a loop of doublet of wedge disclinations

The relationship (9.69) can be used to calculate the overall scalar charge of curvature of the 
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virtual edge dislocation loop, and we obtain, knowing that 

(9.73)

One can also imagine that the diameter of the inner loop disclination goes to zero and there re-
mains only the external disclination loop of linear charge  and radius . In this case, the 
overall charge of curvature  remains unchanged and is always given by the same equation 
(9.73). The global charge of curvature  is the one due to the dislocation ribbon as a whole, 
and the one that is seen at large enough distance for the loop to be no longer possible to distin-
guish this loop from a simple edge dislocation loop. The charge  is then responsible for the 
overall flexion  of the lattice at large scale, as figure 19.46 illustrates in the case of a dou-
blet of quantified disclinations of  in a cubic structure.

The loops of twist disclinations

In figure 8.8, we have shown a macroscopic implementation of a loop of twist disclination . We 16

will give their mathematical description here. For this, consider a loop consisting of a twist dis-
clination generated by a rotation  of the upper plane at an angle  relative to the lower 
plane, as shown in figure 9.40.

 
Figure 9.40 - loop of twist disclination with its charged membrane

The fact that one glues together two planes which have been moved relative to each other wi-
thin the loop must create on the plane of the loop a surface charge  of dislocation. By using 
relation (9.35), one can write on the contour  surrounding the edge of the loop, and knowing 
that the surface charge  comes from a volume density  distributed in the thickness of the 
membrane with height 

(9.74)

in such a way that the angle of rotation  is written

(9.75)

The surface charge of rotation can be integrated on the surface of the loop, giving us the 
overall charge of rotation of such a loop
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(9.76)

This global charge is actually the charge of rotation of the loop of twist disclination as seen 
at a great distance of the loop. This means that such a loop can act as the source of a divergent 
field of rotation  in the solid medium.
Note that it is possible to see a disclination loop somewhat differently. Indeed, the act of carrying 
out the rotation of the two planes with respect to the other causes a displacement along the 
string similar to that of a screw dislocation. The Burgers vector and the linear charge of this 
pseudo-dislocation is then worth

(9.77)

so that the global charge of this pseudo-loop can be written

(9.78)

We therefore obtain much the same value of the overall charge  that was obtained by consi-
dering the surface charge , which allows either consider this singularity as a twist disclination 
loop or as a screw pseudo-dislocation loop.

The effects of a variation of volume expansion on the torsional charge 

Since the scalar charge of torsion  of a twist disclination loop depends on  and , and  
as the surface charge  is independent of the local volume expansion of the medium (9.30), 
the dependence of the overall charge of rotation  of screw disinclination loops on the local 
volume expansion  is easily deduced

(9.79)

On transforming a rectilinear string in a closed loop

A string of dislocation, disclination and/or rectilinear dispiration is fully characterized by its three 
linear charges ,  and . Its linear scalar charge  is connected to the screw dislocation 
portion , its linear vectorial charge  is connected to its edge dislocation portion

, and its linear scalar charge  is connected to its wedge disclination part 
 (fig. 9.41a). From a straight string satisfying the conditions set out above, it is 

possible to construct a loop, by bending the string and closing it on itself to form a loop of radius  
. For this, there are rules to follow, that we will now discuss.

The edge dislocation part of the string, represented by its Burgers vector  has to 
be conserved to meet the conservation equation . To satisfy this conservation neces-
sarily involves bending the rope in the plane perpendicular to the Burgers vector , which 
also implies that the vector density  is contained in the plane of the resulting loop (fig. 9.41b). 
Thus, the loop can only be a prismatic loop vis-à-vis its Burgers vector , so it has a scalar 
charge of curvature  according to equation (9.68).
If there is additionally a part of wedge disclinations on the linear string, its scalar charge  
will generate a virtual dislocation membrane of surface charge  within the loop, as shown 
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by the example in figure 9.37. Thus, the portion of the wedge disclination of the linear string 
leads to a loop of wedge disclination. Using the relation (9.73) in which  is replaced by , 
one easily obtains the contribution  of this disclination part to the 
scalar charge of curvature. We deduce that the overall charge of curvature of the loop due 
both to the edge dislocation and the wedge disclination of the initial string is worth

(9.80)

Figure 9.41 - transformation of a rectilinear string in a closed loop string

The fact of having closed on itself a string containing a linear charge, associated with a screw 
Burgers vector  , implies that this screw Burgers vector  can be a disloca-
tion vector conserved along the loop, which appears quite paradoxical at first sight. But it is per-
fectly possible precisely because  is a scalar. By closing the string on itself, the screw dislo-
cation  loses its dislocation identity in favor of a disclination loop of the same type as the 
one described in figure 9.39. Then former Burgers vector  becomes a simple displace-
ment  along the loop, connected with the rotation  of the upper plane at an angle 

 relative to the lower plane of the loop. There must therefore appear a surface 
charge of rotation  on the  plane of the loop, such that

(9.81)

But the conservation of the length   which becomes  during the process of curving 
of the string to form a loop, implies that

(9.82)

The initial linear charge  of rotation of the string disappears with the creation of a scalar sur-
face charge  of rotation of the loop, satisfying the simple transformation relation . 
The loop becomes then a loop of twist disclination vis-a-vis of the ex-vector of Burgers , 
which carries then a global scalar charge  of rotation , with 

(9.83)

The transformation rules for converting a rectilinear loop in a closed loop are summarized in 
table 9.5.
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Table 9.5 - rules of transformation of a rectilinear string into a closed loop string

The quantification of the radius of a localized loop in an ordered lattice

A localized loop can contain, as we have seen, a global scalar charge  of curvature and/or a 
global scalar charge  of rotation. We can now show that the existence of a non null scalar 
charge of rotation  may involve, under certain conditions, a quantization of the radius of the 
loop  if it is in an ordered array. Indeed, if we assume that, during the formation of the loop, 
the environment in question requires that the upper jaw closes again to the lower jaw in the 
orientation of the network structure, the angle of rotation  can then take quantized values 

 dependent on the lattice structure (for example,  in a lattice having a cubic 
symmetry or  in a lattice having a hexagonal symmetry). This implies that the 
surface charge  also takes the quantized values . But since, on the 
other hand, the length of the Burgers vectors  of the original string must also take quanti-
zed values in an ordered array, the linear charge  also has quantized values .
The result of the quantization of  and  is immediate, and results in a quantization of the 
radius of the loop , which can only take eigenvalues 

(9.84)

There are several interesting consequences of the quantification of the radius of twist disclina-
tions. We will list them here:

- the first and very important result lies in the fact that the quantification of  automatically en-
tails a quantization of the overall scalar charge of torsion  of the loop, since in this case

(9.85)

- the second interesting result is linked to expressions of the quantized radius and the quantized 
torsional charge, i.e.  and , as they clearly show that the 
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radius and overall charge of rotation of the loop increase with the value of the charge of the 
string  from which the loop is formed. This implies among other things that there cannot be 
a linear relationship between  and , for a series of given loops, unless the ratio

 remains constant, which also implies that the radius does not change from one loop 
to another.

- the third important consequence is that the value of the global charge of curvature  may 
depend on the quantification of , but only its wedge disclination part  depends on it, 
while its edge dislocation part does not depend on it.

- finally, for a loop whose charge of rotation  is zero, there are no conditions requiring quanti-
fication of the radius  of the loop in an ordered array, so that the radius can take any value.

9.6 – Clusters of dislocations, disclinations and dispirations
 
Since the strings of dislocations, disclinations and dispirations containing nonzero tensorial den-
sities of charges can be closed on themselves in loops, it is possible to imagine the existence of 
small clusters of very localized such loops within a solid medium, such as the cluster shown in 
the absolute frame of reference in figure 9.42.

Figure 9.42 - clusters of localized strings of dislocations and disclinations

Such clusters are in principle fully characterized by their tensorial density  of dislocation 
charges, which are non-zero in the strings, in the area represented by a hatched area in figure 
9.42. By then defining a volume  such that its surface  intersects the cluster of charges, 
the cutoff section is represented by the dark gray area in the figure 9.42, it is possible to break 
the surface surrounding the volume  into three parts ,  and . Then using the relation-
ship (9.5), we can show that, in this case, the components  of the Burgers vectors, and 
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consequently also the components  of the Frank vectors obtained in the local referential  
 by integration on the surface  going through the cluster are identically zero

(9.86)

This is due to the fact that each loop of strings or super-strings of the cluster cuts through the 
surface  twice, once in one direction and the second time in the opposite direction, so that the 
contributions associated with each of these crossings exactly offset.
In the local referential  the lack of vectors  and  which are nonzero on all the 
contour surrounding the cluster without crossing it implies that there are no discontinuities in the 
virtual field of displacement  and no discontinuity in the rotation field in the solid surrounding 
the cluster, and that, therefore, the solid remains perfect outside of the cluster.
However, the presence of a cluster in the solid must certainly involve an elastic and inelastic 
distortion field of the perfect solid surrounding the cluster and this up to a certain distance the-
reof. This is analogous to the way the presence of a localized density  of electrical charges  
involves an electric field of displacement  at a distance of such charges.
To find this field, it is necessary to introduce here the fact that there is, apart from the tensorial 
charge conservation equation , no restrictions on the scalar densities  and  of 
charges of rotation and flexion. Therefore, it is to possible, depending on the nature of the  
charges in the cluster, to have non-zero global scalar charges  of rotation and  of curva-
ture. These global scalar charges are defined in the local referential frame by the sums on all 
closed loops of global charges  and  as we have defined them for each individual loop 
in the previous section . These considerations are then used to find the fields of elastic and 17

anelastic distortions at long distances due to the presence of a localized cluster of charges, 
such as we are going to show in the following sections.

The divergent torsion field associated with a localized cluster of charges

The geometrocompatibility equation  for the rotation vector  gives us the scalar 
density of torsional charges , linked to the trace of the tensorial density  of distortion 
charges. It allows us to write a full relationship of compatibility in the following form in the local 
frame 

(9.87)

This relationship implies that a global scalar charge of rotation , localized and non-zero,  
acts as the source of a divergent field of rotation  of the perfect solid in the neighborhood of 
the cluster of charges (fig. 9.43). The rotational field then has a topological singularity where is 
the cluster of charge , and its norm  is a decreasing function of  as a function of 
the distance  from the cluster.
Everything happens in fact exactly as in electromagnetism, where a local density  of electric 
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charges leads to a localized macroscopic electric charge , which behaves like a singularity 
responsible for an electric displacement field which is divergent in the neighboring  space.

Figure 9.43 - divergent fields of rotation and flexion in the neighborhood of a cluster of charges

The divergent flexion field associated with a localized cluster of charges

The equation of geometro-compatibility  for the vector  of flexion shows the scalar 
charge density  of curvature. It allows us to write a full relationship of compatibility in the fol-
lowing form in the local referential frame 

(9.88)

This relationship implies that a macroscopic scalar charge of curvature , localized and non-
zero, acts as the source of a divergent flexion field  within the perfect solid surrounding the 
cluster of charges (fig. 9.43). The flexion field then has a topological singularity where is the 
charge , and its norm  also shows a  decrease as a function of the distance 
from the cluster. In other words, in the vicinity of a localized overall charge of curvature , the 
solid bends by flexion with a spherically symmetry around the singularity.

The singularity of the shear strains and the volume expansion in the vicinity of a cluster

As the flexion field  is directly related to the shear fields  and the volume expansion  by 
(8.35), we can write the relation (9.88) in the following form in the local frame 

(9.89)

which implies that the presence of a localized global scalar charge  induces radial shear 
strain and volume expansion fields whose norms  and  must decrease as  in the 
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vicinity of the cluster. However, it is clear that equation (9.89) does not allow to determine 
unambiguously the fields  and , unlike fields  and  that are defined unambiguously by 
the equations (9.87) and (9.88). In fact, the exact determination of the distortion fields  and 

 will require an additional equation representing the equilibrium conditions of the elastic forces 
in the perfect solid surrounding the charges. These equation are necessarily linked to the va-
rious elastic moduli of the solid considered.

The simplified description of a solid in the presence of clusters of localized charge

Consider a hypothetical solid wherein the charges are confined in localized clusters, as illustra-
ted for example in figure 9.44, and therefore in which there are no strings of dislocations and 
disclinations propagating over large distances compared to the scale at which the solid is stu-
died. It is clear that, depending on the complexity of the internal structure of these clusters, i.e. 
the complexity of the intricate curls forming these clusters, the description of the fields of distor-
tion and contortion within clusters can be very complex. But if these clusters have stable internal 
structures and that they can move individually within the solid, but not sufficiently interact with 
each other to change their internal structure, it is then possible to greatly simplify the description 
of the distortion fields prevailing in the solid.

Figure 9.44 - description of a solid containing localized clusters of charges

In this case indeed, and so far as we are mainly concerned with describing the fields of distor-
tion and contortion of elastic and anelastic nature in the perfect solid surrounding the clusters, 
that is to say at a certain distance external to the charged clusters, the problem can be solved 
much more simply by considering only the scalar charge densities  and  within the clusters, 
which can lead to the existence, at great distance, of two macroscopic scalar charges  
and  for each cluster number .
In fact, knowledge of the distribution of charge densities  and  within a cluster allows us to  
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find purely topological conditions, and therefore independent of the elastic properties of the solid 
considered, which are imposed on the rotation and flexion fields  and  prevailing in the per-
fect solid outside of the cluster. These conditions are simply expressed by the scalar equations 
of geometro-compatibility  and .
Depending on the inhomogeneity of the internal distribution of the charge densities  and  in 
the cluster, it may appear dipolar or multipolar fields  and  at short and medium distance of 
each cluster.
On the other hand, at long distances from the charge clusters, it is essentially the presence of 
non-null macroscopic scalar charges  and  which will be responsible for the appea-
rance of monopole radial fields of rotation  and flexion , as we have already shown in fi-
gure 9.43.
Thus, in this particular case of charges located in clusters, both invariant vector fields, namely 
the rotation  and flexion  fields, are affected at great distances from the clusters. And it is 
remarkable that each of these clusters can be individually and thoroughly characterized, 
concerning its long-range effects on the fields of distortion and contortion, from only the two ma-
croscopic scalar charges  and , although these clusters may have very complex 
structures, of tensorial nature and therefore highly dependent on their spatial orientation in the 
local referential frame.
In the analogy developed with electromagnetism, the rotation field  is analogous to the elec-
tric displacement , and the macroscopic charge of rotation   is the analog of the macro-
scopic electric charge  of a particle in electromagnetism. But is there a similar analogy to the 
flexion field  and the overall charge of curvature ? A partially positive answer can be 
given here. Indeed, the presence of a macroscopic charge cluster  is responsible for a 
nonzero vector field  of flexion, which is divergent in the neighborhood, and thus is also res-
ponsible for a spatial curvature of the solid lattice surrounding the cluster, which results in the 
appearance of nonzero fields of shear strains and volume expansion. Thus, the presence of a 
cluster of charges  implies vis-à-vis the solid lattice, a result analogous to that stipula-
ted in the general theory of gravitation of Einstein vis-à-vis the spacetime in the presence of 
matter, i.e. that a matter accumulation (cluster) located in a volume of space is directly respon-
sible for a curvature of the neighboring space-time. We will return later in detail to this analogy.
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Chapter 10

Flows of dislocation charges and Orowan’s relations

In this chapter, we try to interpret the concept of flow of dislocation charges, and 
link it to the concept of density of dislocation charges we described in the previous 
chapter.
We then recover the relationship between the velocity of the macroscopic plastic 
deformation described in section 7.9 and the existence of flow of dislocation 
charges in the solid medium in the form of Orowan’s relationships.

10.1 – Interpretation of the flow of charges

The macroscopic interpretation of the tensorial density  of dislocation charges and the 
conservation equation  which these tensors satisfy, revealed the concepts of strings  
and loops of dislocation, disclination and dispiration. It was also shown that, at great distance 
from the clusters of plastic charges, it is essentially the two invariant vector fields, ie the fields of 
rotation  and of curvature , which are affected by the scalar components  and  of 
charge density. We still have to make the connection between these quantities and the flows of 
charges   and  introduced in chapter 9.

The continuity equation of the dislocation charges

Consider a tube filled with a dislocation density , which moves with a relative velocity  with 
regard to the lattice, which itself moves at velocity  in the local frame  of a PO. De-
fine a mobile contour  surrounding the charge tube, with a movable surface , which moves 
along with the tube at velocity  with respect to , as depicted in figure 10.1.

Figure 10.1 - tube of charges  moving with velocity in the frame 

 
!
λi

 div
!
λi ≡ 0

 
!
ω  

!
χ λ θ

 
!
Ji  

!
J

 
!
λi  

!
v

 
!
ϕ Ox1x2x3

C S

 
!
v +
!
ϕ Ox1x2x3

 
!
λi  

!
v +
!
ϕ Ox1x2x3



chapter 10228

According to relation (9.3), the global Burgers vector  defined by this contour is given by

(10.1)

so that the temporal variation of the Burgers vector on the tube of charges in movement can be 
written

(10.2)

It is possible to apply the formula of the derivative of an integral on a mobile surface (see ap-
pendix F)  to relation (10.2) and we obtain

(10.3)

As the components of the Burgers vector are locally conserved in the referential , in 
order to be a change in the overall Burgers vector  defined by the movable contour, it is ne-
cessary that there is a non-zero source of charges  in the lattice, so that

(10.4)

For the equality between relations (10.3) and (10.4) to be satisfied for any velocity , it is 
necessary that

(10.5)

The condition of geometro-compatibility imposes that , and we obtain the following 
relation, defined on a mobile lattice with velocity 

(10.6)

It then follows that the equation of continuity describing the material derivative for the density of 
charges in a lattice which moves at velocity  in the referential frame 

(10.7)

The term of sources of dislocation charges

This continuity equation can now be compared to the equation of continuity for the charges  
(8.14) which states that

(10.8)

Thus, in the case of a charge tube moving with velocity  relative to the lattice, the term of non-
commutativity between brackets, which expresses the creation of local non-compatibility due to 
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the charges may be connected to the existence of a non-zero source of charges  and the 
terms  and 

(10.9)

The term of charge sources  can only be due to the existence of a process of creating 
charges in the lattice, for example the production of dislocations by a Frank-Read type mecha-
nism (see section 12.9).
The source term  is a decrease or an increase of the charge density  due respective-
ly to an increase or a decrease of the local volume expansion . In the case where the lo-
cal volume expansion varies homogeneously, this term ensures that charge density  indeed 
changes according to the equation (9.16).
Concerning the source term , it provides an increase or a decrease of the density of 
charges  due respectively to an elongation or a shrinkage of the medium in the direction of 
the dislocation string since the vectors  are oriented in the direction of the string. In the event 
that the medium elongates only in the direction of the dislocation line, we can verify that this 
term  compensates exactly the term , and thus ensures that the charge density 

 does not change in this case.
But near the origin of the frame , the velocity is, by definition, very low, and if we as-
sume that , the charge continuity equation can be written simply as follows, as we will 
adopt in the later parts of this chapter

(10.10)

The relations between flows and densities of charges

The comparison of equations (10.7) and (10.8) allows us to write a simple correspondence bet-
ween the curl operators applied to  and 

(10.11)

From which we deduce the relation that must exist between the charge density  moving with 
velocity  with respect to the lattice and flow of charges  associated with this movement

(10.12)

In this relationship, we introduced the term , which is a vector field, gradient of an arbi-
trary scalar , which perfectly meets the relation (10.10).
We can then deduce the relationship between the vector flow of charge and the charge densi-
ty  by using equation (8.20)

(10.13)

The first term of this relationship can be expressed as a function of the scalar torsion charge 
thanks to the relation (8.16), and the third term is none other than the curl of the vector 
constructed with components 
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(10.14)

With regards to the second term we can use the following relation

(10.15)

in which the term  is zero since  is parallel to , while  is perpendicular to , and in 
which the sum of terms  can be replaced by the relation (8.36). The vectorial flow of 
charges  is therefore composed of two components  and  which depend, respective-
ly, on the scalar charge density  and the vectorial charge density 

(10.16)

Finally we can calculate the trace of the vectorial flow  by using relation (8.25)

(10.17)

By using once again relation (8.36), and by remarking that the second term is the divergence of 
the vector  built with components , we have

(10.18)

The three main relationships we have obtained between the charge density tensors and the 
tensors of charge flows are given in table 10.1. As we do no have, for the moment, a direct in-
terpretation for the vector  appearing in the continuity relations, other than the fact that this 
vector is the origin of flows  and  and source  which are not directly related to 
charges ,  and , and since these flows and this source disappear in the continuity equa-
tion (10.10) of charges, we neglect them in table 10.1.

The continuity equations of the densities of dislocation charges

For the movements of charges at homogeneous velocity  such that , it is easy to 
show thanks to the equation of conservation (8.12), that

(10.19)

which allows to write the equation of continuity (10.10) for the tensorial density  of charges in 
the following equivalent forms 

(10.20)

By applying relation (8.36) to this last relation, we have the equation of continuity for the density 
 of charges of flexion

(10.21)

in which we have introduced the source  of charges , defined as
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(10.22)

By using again the following relation, with the density of charges of curvature 

(10.23)

which calls upon the density of charges of curvature , the vectorial flow of charges of 
flexion  and the vectorial flow of charges of curvature , the equation of 
continuity for the charges  can be written under the following forms

(10.24)

By applying relation (8.17) to relation (10.20), we obtain the continuity equation for the density 
 of charges of rotation 

(10.25)
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Table 10.1 - Relations between tensors of charge densities and tensorial flows of charges
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in which we have introduced the scalar source  of charges , defined as

(10.26)

By using again the following relation

(10.27)

which calls upon the vectorial flow , the equation of continuity for the scalar charges 
 can be written under the following forms

(10.28)

The equations of continuity for the density of charges ,  and  are also shown in table 
10.1, with the definitions of the sources of charges  and .

10.2 – Charges and linear flows for lines of dislocations

To interpret the relationships of table 10.1, it is useful to apply them to the case of dislocation 
lines. So consider a line like that reported in figure 10.2, which moves relative to the lattice with 
velocity . 

Figure 10.2 - lines of dislocation moving with velocity in the referential 
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bile contour . Integrations of the contour’s surface of charge flows  and  will give the li-
near flow associated with the movable dislocation, which we represent by the symbols  and 

. As flows  and  have dimension of the inverse of a time (1/s), the linear flows  and   
have as dimension a surface per time unit (m2/s). As for the source of lattice sites , its 
integral also represents a surface per unit of time (m2/s), and we will write it . We have, taking 
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into account relationships (9.5), (9.8) and (9.9) for the linear charges ,  and  of the dis-
location

(10.30)

We may now introduce the relations which link the linear charge of a dislocation with he Burgers 
vector of said dislocation, namely

(10.31)

in relations (10.30) and we obtain the following expressions for the linear flows

(10.32)

Thanks to these relations, we will be able to interpret the different terms of the flow of charges 
associated with the movement of dislocations.

The flow associated with the slipping of a screw dislocation

If the dislocation contains only a screw component, the flux  will be given by relation

(10.33)

This relationship shows that, as the velocity  is always perpendicular to the direction  of the 
line, the pure screw dislocations can move in all directions perpendicular to the direction . One 
speaks in this case of a slipping movement of screw dislocations, and the planes on which the 
screw dislocation moves are called slip planes.

The flows associated with the slipping or the climbing of an edge dislocation

In the case of a pure edge dislocation, the flows  and  may appear, since the edge disloca-
tion is completely represented by the charge , so that

(10.34)

With relations (10.33) and (10.34), one understands the dimensions (m2/s) of the linear flows  
and  since these flows are the product of the length of the Burgers vector with the relative 
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speed of the line relative to lattice.
According to (10.34), there appears two types of movements of the edge dislocation:

- the movement for which  is perpendicular to , and which is responsible for a vectorial flow 
of charges . This movement is shown in figure 10.3a. It corresponds to a conservative 
slipping movement of the edge dislocation on its slip plane, which is defined as the plane per-
pendicular to , so the plane that contains both the Burgers vector , the direction  of the 
line and the velocity vector .

- the movement for which  is parallel to  and which is responsible for a scalar flow of 
charges . This movement is shown in figure 10.3b. It corresponds to a non-conservative 
upward movement of the edge dislocation perpendicular to its slip plane. The dislocation goes 
"up" in the lattice, it climbs, creating or destroying a plane of the lattice. This movement is not 
conservative in the sense that it destroys or builds the lattice, and it is this movement that is 
responsible for the existence of a source of lattice sites  in the equations of geometro-kinetic 
volume expansion (8.25), and which is given by

  (10.35)

 Figure 10.3 - movement of slipping (a) and climbing (b) of an edge dislocation

The various flows associated with the slipping and climbing movements of dislocations are 
summarized in table 10.2.
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The flow associated with the movement of a local charge of rotation

If we consider a localized charge of rotation  moving with velocity  relative to the solid me-
dium, we obtain the relation between charge and flow by integrating the equation (10.13) on the 
volume of the charge, by asking that . It then comes, by introducing a current which 
has a dimension of volume per time unit  (m3/s)

(10.36)

This relationship implies that a localized scalar charge , whose analogy is a localized electric 
charge becomes, as it moves in the solid medium, the source of a current  which is an analog 
current to the electric current.

10.3 – Relations of Orowan

From the knowledge of the flows  of dislocation charges, it is possible to retrieve the macro-
scopic plastic distortion of the solid , as defined in chapter 8, thanks to the relation (8.8). 
Total derivatives , , ,  and can be written

 (10.37)

Similar relationships can be established in the case of many dislocations moving with velocity 
 relative to the solid medium. For example, imagine the same dislocations, all parallel to one 

direction and moving all at the same velocity . The integral  on a surface perpendicular 
to the direction of the lines is written

Table 10.2 - Relations between tensors of density and flow for a line dislocation
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 (10.38)

where  is the number of lines which cut perpendicularly the surface . 
We obtain

 (10.39)

wherein  is the density of active dislocations, that is to say the number of dislocation 
lines crossing perpendicularly the surface unit. It can be ensured that the dimension of the total 
derivative corresponds to the inverse of a time (1/s), because the density  has dimension 
of the inverse of a surface (1/m2) and the product  has dimension (m2/s). The quantity 

 can also be interpreted as the length of lines of active dislocations per unit volume of lattice 
since its size can also be written as (m/m3).
By applying the same treatment to all relations (10.36), we obtain the following equations set, in 
which we can introduce the linear flow of charges ,  and  associated with the movement 
of the dislocation lines

(10.40)

These relationships between the macroscopic deformation velocity and the dislocation move-
ment velocities at the microscopic level are usually called relations of Orowan . We can also 1

express these relationships of Orowan as functions of the Burgers vectors of the dislocations 
instead of the linear charge densities of the dislocation lines

 (10.41)
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Chapter 11

Evolution equations of a charged lattice
and the force of Peach and Koehler 

The tensor of density  and the tensor of flow  of dislocation charges, defined 
in the previous chapters, allow us to find in this chapter all the fundamental and 
phenomenological equations of spatiotemporal evolution to be met by a lattice pre-
senting elastic, anelastic and self-diffusive properties and containing dislocation 
charges. Furthermore, from the energy balance equation of charged solids, it is 
possible to find the forces acting on the dislocation charges in the presence of non-
zero stress fields. These forces are called forces of Peach and Koehler.

11.1 - Replacement of the tensor of plastic distortion

To write the spatiotemporal evolution equations of an elastic and anelastic solid containing dis-
location charges, we will simply consider all evolution equations obtained in chapter 6, and re-
ported in table 6.1, and we will replace in them all the terms showing the tensor of plastic distor-
tions  by the concepts of density and flow of dislocation charges that we developed in the 
previous chapters. In other words, we perform the following systematic replacements of the 
plastic distortion tensors

(11.1)

In reality, the number of transformations to be performed is relatively low. Indeed, we find that 
only the topological equations, the heat equations and the energy balance equation are affected 
by these replacements. While the transformation of topological equations are immediate since 
we established them in detail in the previous chapter, we need to discuss in more detail in this 
chapter the changes in the thermal equations and the energy balance equation.

The equation of heat and the source of entropy

Considering again equations (6.23) and (6.30), and doing all the necessary changes, we have

(11.2)
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(11.3)

The dissipative equations of plasticity

The terms of source of entropy associated with plastic deformation generated by the movement 
of the plastic charges in equation (11.3) are the following

(11.4)

From these sources of entropy, it is possible to define the dissipative equations of plasticity that 
characterize the tensorial flow of dislocation charges. The first of these concerns the trace of 

, which is associated with the source of creation or annihilation of lattice sites  
via the phenomenon of climbing of edge dislocations with velocity . This climbing is controlled 
by the source of vacancies and interstitials, and depends essentially on creation-annihilation 
energies  and , but certainly also on the local pressure within the medium and 
the local dislocation density charge  of edge dislocation which are able to leave a "trace" of 
their passage

(11.5)

The other two relationships are deduced from the product of charge flows  and  and ther-
modynamic forces  and . These products show that the tensorial flow of charges 

 must depend essentially on the tensor of shear stress , while the vector flow of charges 
 should depend on the torsor of moment , so that

  (11.6)

These two relationships are the dynamic equations of motion of charges  and  within the 
medium. Indeed, we will see in section 11.2 that forces dependent on  and  apply to the 
charges of dislocation  and . In this way, the associated flows  and 

 depend on  and  via a dynamic equation which should allow us to 
calculate the velocity  of the charges by knowing the forces that depend on  and . We 
will return later to the problem of the dynamic equation of dislocation movement, which will lead 
us to the string model of the dislocation.
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The dissipative equations of sources of plastic charges

By taking the continuity equations for dislocation charges of table 10.1, there appears the 
sources of charges , and , which are partially responsible for the non-commutative 
nature of the operators of time and space on distortion tensors  and . The expression of 
these sources , and  will certainly depend on the variables , but can 
be obtained through the description of the dynamics of dislocation charges at the level of the 
lattice itself. We cannot fully understand the nature of this until we develop the string model of 
dislocation, the dynamic equation of motion of the dislocations, which will allow us to describe 
the existence of dislocation sources (see section 12.9).

The equation of energy balance

The main change to the energy balance equation is the emergence of new dissipative terms 
associated with the flows  and , as well as the source of lattice sites 

(11.7)

These terms  will allow us to find, in the following section, the forces acting 
on the dislocation charges in the presence of non-zero stress fields.

11.2 - Force of Peach and Koehler acting on the dislocation charges

In the energy balance equations, the power  supplied to the dislocation charges by the 
stress fields corresponds to the balance of the term containing the flow of charges

(11.8)

In this term of power, it is possible to replace flows ,  and  by their expression as a 
function of the velocity   of the charges, from table 10.1. One obtains an expression of 
containing the charge densities ,  and 

(11.9)

The power  given to the charges is thus the product of a velocity by a term that is a force 
 acting by unit of volume on the charge densities 

(11.10)

This force depends on the stress tensors ,  and/or , and is usually called the force of 
Peach and Koehler. The use of the stress tensors ,  and/or  depends of course, as we 
saw in chapter 5, on the choice of how we write the free energy state function of the solid me-
dium considered.
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As the dimension is an inverse of a length (1/m) and the dimension of the torsor of moments is a 
moment per unit volume, namely (Nm/ m3), the force  has the dimension of a force per unit 
volume (N/m3). 
The last term containing a vector  is added here because it is a term for a possible force 
which would not produce work, so that it does not appear in the expression (11.9) of power. We 
will also later see that this term actually corresponds to a relativistic force similar to the Lorentz 
force in electromagnetism.

The force of Peach and Kohler acting on a dislocation line

The force of Peach and Koehler can also be written in the case of a dislocation, integrating 
equation (11.10) on the surface of a section of the string. It then comes, neglecting the term 
containing the vector 

(11.11)

The integral of  on the section of a dislocation string gives linear densities, so that the 
force of Peach and Koehler acting on the dislocation line is given by

(11.12)

The dimension of the force  acting on the dislocation is a force per unit length (N/m). This is 
in fact the force per unit length of the string in the presence of the stress fields . Writing 
the force of Peach and Koehler using the constraint tensors  is in fact very interesting 
because it gives a much clearer picture than by using the notation  usually 
used with the symmetric stress tensor . Indeed, imagine a solid in which the volume expan-
sion is zero, so that one would have a negligible pressure . In this case, it is already known 
that we can replace the shear tensor  by the vector of rotation , so that the force becomes 
a sliding force, which is written , wherein the term  is the force ac-
ting on the screw component  of the dislocation and the term  is the force acting 
on the edge component  of the dislocation. As the component  of torque is associated 
with the shear components  and  of the stress tensor, it can give a very clear representa-
tion of the forces acting on a dislocation. The same here goes for the pressure force , which 
acts on the edge component  of dislocations and which matches, given its direction (figure 
10.3b), a climbing force for the dislocations.
We can again use relations (10.31) to express the Peach and Koehler force directly from the 
Burgers vector of the dislocation

(11.13)

The Peach and Kohler force acting on a localized charge of rotation

In the case of a localized charge of rotation ,  we obtain the force of Peach and Koehler by  
integrating equation (11.10) on the volume of the localized charge. It gives

(11.14)
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In this case, the dimension of  is that of a pure force, expressed in (N), and which is analo-
gous to the electrical force acting on a localized electrical charge ( ).
The possible expressions of the strength of Peach and Koehler are shown in Table 11.1.

11.3 - Equations of spatio-temporal  evolution in charged solids

It is now easy to combine all of the results obtained in this chapter with the equations of tables 
6.1 and 10.1 to obtain the complete equations of spatio-temporal evolution of a solid self-diffu-
sive lattice, with phenomenological behaviors of elasticity and anelasticity, and containing densi-
ties and flows of dislocation charges. As shown in Table 11.2, this system of equations is quite 
complex, especially in the high number of  phenomenological equations of state and phenome-
nological equations of dissipation required for a complete description of all possible phenomena 
in such an environment .
We can already imagine that the new concepts of density and flow of dislocation charges are 
expected to describe the plasticity phenomena and the anelasticity at the microscopic scale in a 
discrete solid lattice by introducing a scalable microstructure of plastics charges which should 
help us to encode the non-Markovian behavior of plasticity. Moreover, the approach by plastic 
charges of a microscopically discrete solid lattice should also permit, in principle, to find exact 
local expressions for the dissipative equations (11.5) to (11.9) associated with the plastic 
charges.
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Table 11.2 - Fundamental equations of evolution of self-diffusive solids
 with elasticity, anelasticity and charges of dislocations
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k
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dτ
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+ div
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φ (3)
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!
λi = 0 (4)
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λ = − !ek ∧
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λk
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∑ (5)

  λ =
1
2
!ek
!
λk

k
∑ = div

!
ω (6)

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
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βi =

!
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!
ωO(t) =

!
βi
él +
!
βi
an + !ei ∧

!
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   !ω = −
1
2
!ek ∧
!
βk

k
∑ =

!
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!
ω0 (t) =

!
ω él +

!
ω an +

!
ω0 (t) (8)

  τ =
!
βk
!ek

k
∑ =

!
βk

(δ )!ek
k
∑ = τ él    (τ an ≡ 0 par hypothèse) (9)

   !εi =
!
βi −
!ei ∧
!
ω =
!
βi
(δ ) − !ei ∧

!
ω (δ ) =

!
εi
él +
!
εi
an (10)

   !α i =
!
εi −

1
3
τ !ei =

!
α i

él +
!
α i

an (11)

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

  d / dt = ∂ / ∂t + ( !ϕ
!
∇) (12)

   !ϕ =
!
φ −
!
φO(t) −

!"ωO(t)∧
!r                                             (13)

⎧
⎨
⎪

⎩⎪
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Thermal equations

 

nT ds
dt

= − µL
* + µI

*( )SI −L − µL
* + h*( )SLpl − µI

* − h*( )SIpl + T
!
JL
!
XL       

             +T
!
JI
!
XI +

!sk
dis d
!
βk
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dt
+ !mdis d

!
ω an

dt
+ !sk
!
Jk +

!m
!
J − div

!
Jq

(22)

 

  µL
* = µL −

1
2
m
!
φL
2 − 2Δ !ϕ 2

L( )                               (23)

  µI
* = µI +

1
2
m
!
φI
2 (24)

⎧

⎨
⎪⎪

⎩
⎪
⎪

  
!
Xq = grad

" !""" 1
T

(25)

  
!
XL =

1
T

− grad
" !"""

 µL
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!
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!
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⎝⎜
⎞
⎠⎟

(26)

  
!
XI =

1
T

− grad
" !"""

 µI
* − m d
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!
φI( ) + m!g⎛

⎝⎜
⎞
⎠⎟

(27)

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

h* = f + Ts + pv + 1
2
m
!
φ 2 − µLCL − µICI                     (28)

Charge equations

 

   d
!
λi
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≅
!
Si
(
!
λi ) −

!
v
!
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v ∧
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!
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   d
!
λ
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≅
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!
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!
v
!
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!
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v ∧
!
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!
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!
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!
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!
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   dλ
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!
v
!
∇( )λ = S(λ ) − div λ

!
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!
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⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

 

   
!
Ji =
!
λi ∧
!
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!
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!
J (λ ) +

!
J (
!
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!
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!
λ ∧
!
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!
λ
!
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⎧

⎨
⎪⎪

⎩
⎪
⎪
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!
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(
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!
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⎧

⎨
⎪⎪

⎩
⎪
⎪

 

!
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1
2
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!
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!
A         (37)
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 Phenomenological equations of evolution of self-diffusive solids 
with elasticity, anelasticity and charges of dislocations

Dissipation equations: anelasticity

     

 

  !si =
!si
cons !αm

an ,v,T ,...( ) + !sidis d
!
αm

an

dt
,v,T ,...

⎛
⎝⎜

⎞
⎠⎟
           (51)
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!
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,v,T ,...

⎛
⎝⎜

⎞
⎠⎟

(52)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Dissipation equations: self-diffusion and creation-annihilation of pairs

                          

 

  
!
Jq =

!
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!
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!
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!
XI ,n,T ,CL ,CI ,...)           (47)
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⎧

⎨
⎪⎪

⎩
⎪
⎪

SI −L = SI −L µL
* + µI

*,n,T ,CL ,CI ,...( )                   (50)

Functions and equations of state   
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⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

  sij
dis =

n
2

∂f
∂α ij

an +
∂f
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⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪
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  µI =
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∂CI
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él ,ωn

él ,τ él ,α lm
an ,ωn
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⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
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Dissipation equations: sources of dislocation charges

 

 

!
Si
!
λi =
!
Si
!
λi (!sm ,

!
λn ,v,T ,...)    (59)     ⇒     

   
!
S (
!
λ ) = − !ek ∧

!
Sk
(
!
λi )

k
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!
S (
!
λ )(!sm ,

!
λn ,v,T ,...)    (60)

   S(λ ) = 1
2
!ek
!
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(
!
λi )

k
∑ = S(λ )(!sm ,

!
λn ,v,T ,...)        (61)

⎧

⎨
⎪⎪

⎩
⎪
⎪

Dissipation equations: flows of dislocation charges
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Jk =
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λk ∧

!
v =
!
Jk
!sm ,
!
λn ,v,T ,...( )                          (53)

  
!
J = −

1
2
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!
Jk

k
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!
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1
2

!
λ ∧
!
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Jk

k
∑ = −

!
λ
!
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1
n
SL
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⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

  SL
pl = SL

pl µL
* + g*( ), p, !λ,v,T ,CL ,CI ,...⎡⎣ ⎤⎦                                (56)

  SI
pl = SI

pl µI
* − g*( ), p, !λ,v,T ,CL ,CI ,...⎡⎣ ⎤⎦   (57)

⎧

⎨
⎪

⎩
⎪

g* = f + pv + m
!
φ 2 / 2 − µLCL − µICI                                              (58)

Additional equations of evolution

Energy balance

 

n
!
φ d!p

dt
− m
!
φI
dCI

dt
+ m
!
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dCL

dt
⎛
⎝⎜

⎞
⎠⎟
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⎛
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⎞
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n
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⎠⎟
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1
2
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Entropy source
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T

µL
* + µI

*( )SI −L − 1T µL
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!
JI
!
XI +

1
T
!sk
dis d
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⎛

⎝⎜
⎞

⎠⎟
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⎞
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      (65)

Flux of work and surface forces

 

  
!
Jw = µL

* !JL + µI
* !JI −φk

!sk −
1
2
!
φ ∧ !m( ) + p!φ     (63)

  
!
FS =

!ek
!sk
!n( )

k
∑ +

1
2
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Mass continuity

 

∂ρ
∂t

= −div ρ
!
φ + m

!
JI −
!
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Chapter 12

Elements of dislocation theory in usual solids
           
In this chapter, we introduce the simplest solid that can be considered, namely the 
perfect isotropic solid, and discuss Newton's equation of this solid. We can then 
show that this solid is perfectly described by equations analogous to the Maxwell 
equations when the volume expansion is homogeneous in the solid.
Then we calculate the distortion fields, energies and interactions of dislocations in 
that perfect solid. In the case of immobile dislocations in the solid lattice, the static 
lattice distortions induced by these dislocation store elastic energy within the lat-
tice. This stored energy can then be considered as the rest energy of these immo-
bile dislocations. In the case where dislocations are mobile within the lattice, the 
movement of lattice itself induced by the movement of dislocations are associated 
with a kinetic energy.  At low speed, the kinetic energy is directly linked to the rest 
energy of the dislocations through relationships similar to the famous expression of 
Einstein . This allows us to introduce, in a completely classical way the 
notion of inertial mass of dislocations.
From the distortion fields induced by the dislocations and the force of Peach and 
Koehler, we then describe some interactions that may occur between dislocations. 
Finally, we introduce the string model of dislocation, which can process the dyna-
mics of a dislocation line that moves and deforms in the lattice.

12.1 – The perfect solid and its equation of Newton

We will call perfect lattice, the isotropic lattice as it has been defined in section 7.1, with the 
state function (7.7). It is further assumed that, very generally, only the modulus  is strictly po-
sitive in this state function, while the moduli  and  can be either positive, negative or zero. 
Furthermore we will assume that these moduli can be temperature dependent (section 7.3). The 
purely elastic part of the state function of the perfect lattice depends only on the values of ,  

 and 

(12.1)

so that the equations of state which completely characterize the elasticity of the perfect lattice 
are limited to the scalar pressure  and the symmetric tensor of transverse shear stresses 

     and     (12.2)

It is found that the pressure  depends on scalar modulus  which may contain the effects 
of temperature, and the volume expansion  through the modulus .

E0 = M 0c
2

k2
k1 k0

τ
τ 2 ( !α i

el )2

f el = −k0 (T )τ + k1τ
2 + k2

!α i
2

i
∑

p  
!si

!si = n
∂ f
∂α ik

el
!ek = 2nk2

!α i
el p = −n ∂ f

∂τ el = n k0 (T )− 2k1τ
el( )

p k0 (T )
τ k1
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The equation of Newton of the perfect solid

By neglecting the force of gravity, knowing that the torsor of moment  is null, and by using 
state equations (12.2), the equation of Newton (6.11) is written as

(12.3)

By taking into account the fact that , we obtain the following equation of 
Newton

(12.4)

Written in this form, the Newton's equation does not allow to separate the effects leading to a 
“rotational" quantity of movement, which would be related to pure shears without volume expan-
sion of the lattice, from those leading to a “divergent" quantity of movement, which would be 
linked to the local volume expansions of the lattice.
But it is possible to find another formulation of the Newton's equation to separate these effects. 
Indeed, one can use the equations giving the vector of flexion to connect the space derivatives 
of the distortion tensors

(12.5)

If we assume the existence of elasticity in the lattice but only by shear, the deformations of the 
lattice are entirely characterized by  and  so that

Hypothesis 1:       and     (12.6)

Expression (12.5) can be written

(12.7)

This relationship combines elasticity effects with anelasticity effects, which cannot be separated, 
given the presence of the density  of flexion charges, which greatly limits the applicability of 
this relationship. But we can assume that the presence of a vector density  of flexion charges 
in the lattice should primarily be related to the behavior of elastic distortions, so that we will 
make the simplifying assumption that the relation (12.7) can be split into two separate relation-
ships, one for the elastic part and the other for the anelastic part of the distortions in the follo-
wing form

Hypothesis 2:      (12.8)

Using then the first relation (12.8), the equation of Newton (12.4) can also be written
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∑ =
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∑ =
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⎨
⎪

⎩
⎪
⎪
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 (12.9)

In this new form, Newton's equation becomes really interesting because it is now possible to 
separate the effects of pure shear in the lattice without volume expansion from the effects of 
pure volume expansion of the lattice. The only term of this equation which is not linear is the 
coupling term . For small deformations, as in the common solids, this se-
cond order term may be usually neglected.

12.2 - Analogy with Maxwell’s equations under homogeneous expansion

By supposing a solid in which the volume expansion is homogeneous, and which therefore sa-
tisfies the following

Hypothesis 3:     (12.10)

and by assuming further that the concentrations of vacancies and interstitials are independent 
of time

Hypothesis 4:     (12.11)

the Newton equation becomes

 (12.12)

In this case, it is possible to introduce in equation (12.12) a new quantity, namely the torsor of 
moment  copied after the torsor of moment which appears in the equation of Newton (6.11), 
by writing 

 (12.13)

Thus, in the perfect lattice with homogeneous volume expansion, the torsor of moment  is 
linked to the vector of elastic rotation  by a very simple relation

 (12.14)

As a consequence, if we imagine that the torsor of moment  derives from a state equation, 
we obtain the volume density of free energy of elastic rotation by lattice site, at homogenous 
expansion, under the form

(12.15)

Thus, the volume density of free energy of elastic rotation, linked to the deformation by pure 
elastic rotations at homogenous volume expansion is equal to the elastic energy of deformation 
by pure shear at homogenous volume expansion

(12.16)

Finally, by using the second relation of hypothesis (12.8), namely that there exists a one-to-one 
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relationship  between spatial derivatives of the anelastic shears and 
anelastic rotations, we deduce that the anelasticity of the lattice by pure anelastic shear without 
changes in the volume expansion can also be reduced,  at homogenous volume expansion, to a 
simple lattice anelasticity by pure anelastic rotation. This anelasticity can then be represented 
by a global rotation vector of the lattice  , by writing the following relationship

  (12.17)

where  represents the uniform global rotation of the lattice.
It is concluded that, in the lattice where the volume expansion may be regarded as homoge-
neous, it is possible to treat univocally the elastic and anelastic pure lattice shear using only 
rotation vectors  and , which is very useful for dealing with the problem of the fields, 
energies and interactions of dislocations in a perfect lattice.
As the density  of flexion charges associated with the edge dislocation charges, which are 
likely to bring locally a solid volume expansion variation, it will be assumed a-priori here a solid 
in which this type of charge is negligible, posing

Hypothesis 5:     (12.18)

As  is a constant in this case, we can rewrite the equations of Newton (12.13) as

      (12.19)

The equations needed for a complete description of the pure shear of a perfect solid still need to 
incorporate the topological equations for the rotation vector , i.e. the geometrokinetic equa-
tions and the equation of geometrocompatibility in the presence of dislocation charges

      and      (12.20)

With hypothesis 4, we have that  and , so that the density of mass  be-
comes a constant

 (12.21)

We also have that the equation of evolution of this density in the local referential  al-
lows us to deduce that the divergence of  is null

(12.22)

The quantity  can then be deduced thanks to the following relationships 

  (12.23)

Furthermore, by imagining that there are no sources  of charges of rotation

Hypothesis 6:    (12.24)

we also obtain an equation for the continuity of charges of rotation

(12.25)

Finally, we can establish a continuity equation of the energy from equations (12.19) and (12.20)

 
!ek div

!
α k

an∑ = −rot
" !" !

ω an

 
!
ω

!ω =
!ω el +

!ω an +
!ω 0 (t) =

!m
4nk2

+
!ω an +

!ω 0 (t)

 
!
ω 0 (t)

!ω el
 
!
ω an

 
!
λ

 
!
λ ≈ 0

n

 

d!p
dt
 = −2k2 rot

" !" !
ω = − 1

2n
rot
" !" !m

 
!
ω

 

!
J = −

1
2
!ek ∧
!
Jk

k
∑ = −

d !ω
dt

+
1
2
rot
" !" !

φ
 
λ =

1
2
!ek
!
λk

k
∑ = div !ω

CL = cste CI = cste ρ

ρ = m n + nI − nL( ) = mn 1+ CI − CL( ) = cste
Ox1x2x3

 n
!p

 ∂ρ / ∂t = 0 = −div n!p( )     ⇒     div !p = 0

 
!p

 

!p = 1
n

ρ
!
φ +
!
Jm( ) = 1n ρ

!
φ +m

!
JI −
!
JL( )⎡⎣ ⎤⎦ = m

!
φ + CI −CL( ) !φ + 1

n
!
JI −
!
JL( )⎡

⎣⎢
⎤
⎦⎥

Sλ

Sλ = 0

 

dλ
dt

= −div
!
J



elements of dislocation theory in usual solids 253

(12.26)

The relations thus obtained for the pure shears of a perfect solid in the local framework 
 in translation  and in rotation  in the absolute referential frame are written 

in table 12.1, and compared to the equations of Maxwell for electromagnetism
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the Maxwell equations only involve the partial derivative with respect to time. However, it is re-
called here that the material derivative in the local frame  can be replaced without pro-
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This analogy will be discussed in detail in the third part of the book. For now, let’s enumerate 
the following analogies:
- the rotational field  is analogous to the electrical field of displacement ,
- the quantity of movement and the flow of mass  is analogous of the magnetic induction 
field  ,
- the torsor of moment  is analogous to the electric field ,
- the velocity field  is analogous to the magnetic field ,
- the density  of rotational charges is analogous to the density  of electric charges
- the flux  of rotational charges is analogous to the density  of electric current
- the anelasticity  is  analogous to the dielectric polarisation  of matter,
- the mass transport  by the movement of the lattice is analogous to the term  of ma-
gnetic induction of vacuum,
- the mass transport  by the drag-along movement of point defects of the lattice 
is analogous to the term   of paramagnetism and diamagnetism of matter,
- the mass transport  due to self-diffusion of vacancies and interstitials is analogous 
to the magnetization  of matter,
- the inverse of elastic modulus  is analogous to the dielectric permittivity of vacuum ,
- the density of mass  is analogous to the magnetic permeability of vacuum ,
- the speed of transversal waves  is analogous to the speed of light ,
- the flow of elastic energy  is analogous to the vector of Poynting  .

12.3 – Fields and energies of a screw dislocation

The rotational field of a screw dislocation

Let’s consider a screw dislocation string, in the form of a straight cylinder of infinite length and 
radius, containing a density  of rotational charges (figure 12.1).
Apply the compatibility relationship  and integrate on a cylindrical volume of radius 

 and length unit. We have

 (12.27)

in which  is the vector normal to the surface cylinder. 
Outside the charge, meaning for , this relation gives us the following  field

 (12.28)

where  is the linear charge of rotation of the string given by the integration of density  on 
the unit length of the string

 (12.29)

Inside the charge, meaning for , we then have

 (12.30)
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is shown in figure 12.2. 

The displacement field by rotation of a screw dislocation

Knowing the field of external rotations  outside the string, it is possible to derive easily the 
elastic displacement field  associated with the rotation due to the presence of the charged 
string since outside of the string  is zero. We have

 (12.31)

It is clear that the field  must be parallel to  to satisfy this relationship, so that

 (12.32)

              

            Figure 12.1 - cylindrical charge                  Figure 12.2 - the norm of the field  inside
                 of radius  and density                       and outside of the linearly charged string 

so that we obtain the following system of partial differential equations

     et      (12.33)

for which the solution is
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the displacement field can be written
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we can use without problem equation (12.15), and write the stored elastic energy of rotation 
stored outside of the string per unit length in a "quasi-infinite" environment, as such 

 (12.36)

and the energy stored inside the string as

 (12.37)

It is remarkable that the energy of the interior of the dislocation  thus obtained does not 
depend on the radius of the string .
The sum of the two energies stored in the lattice can be considered as the rest energy  of 
the dislocation string, expressed by unit length of the string or radius , and thus is worth

  (12.38)

We notice that the internal energy of the string, which does not depend on radius , is a lot 
smaller than the energy stored outside the string, which depends on the radius  of the string 
and the size of the lattice . Since the internal energy by unit of length does not depend 
on , we can neglect it compared to  and write approximatively the rest energy of dis-
location under the following forms, by using the relation  and the Lamé coeffi-
cient 

 (12.39)

In the expressions of the rest energy of a screw dislocation appears the external dimension of 
the lattice in question. Thus, the rest energy of a single line of dislocation  in an infinite 
network should be infinite. However, apart from the fact that a real solid is not of infinite size and 
the presence of a single dislocation in a solid is an exceptional fact, the size  is generally 
limited to smaller values than the actual size  of the solid . Indeed, if there exists in the lattice 
a large number of dislocations separated by an average distance , and these dislocations 
have random orientations in the solid, we have a screening effect of the individual fields of dis-
placement of each lines by the opposite sign lines located in the immediate vicinity, so that long-
distance energy stored by an individual line becomes negligible (one can show that it actually 
decreases as  for distances  greater than ). In this case, a fairly good estimate of 
the rest energy of the dislocation is obtained by choosing, for , the average distance  bet-
ween two adjacent lines of opposite sign. Note that  appears in a logarithm, which greatly 
mitigates the effects of large variations of .
It should also be noted that the energy associated with a line segment of length  of screw dis-
location does not depend on the volume expansion of the solid lattice. Indeed, it is easy to verify 
that
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The kinetic energy of rotation at low velocity of a screw dislocation

In case a screw dislocation is moving in the direction  at low velocity  compared to the 
speed of transverse waves , the dynamic displacement field associated with rotations is ob-
tained by substituting  by  in the expression (12.34)

 (12.41)

The velocity field is then obtain by temporal derivation of this expression

 (12.42)

The kinetic energy per lattice particle can then be deduced. For this, it is convenient to express 
it in the referential frame , which is in translation with velocity  with the dislocation 
line and in which  is , and then switch to polar coordinates in this referential frame 
with  and  in the plane of the moving cylinder. We have

 (12.43)

The kinetic energy stored in the lattice by the dynamic field of rotation, expressed in unit of 
length of the screw dislocation that is in movement with velocity  is obtained by the integration 
of energy density    on a cylinder of radius  and of unit length 

 (12.44)

Using the fact that  and that the specific mass of the medium is , we 
can write the kinetic energy associated with the movement at low velocity of the screw disloca-
tion under the following forms

 (12.45)

By comparing the kinetic energy stored in the medium by the movement of the string with 
the elastic potential energy  stored in the medium by the presence of this line, using the 
expression (12.39) of the rest energy of the screw dislocation and the relationship  
of the speed of the transverse waves in the medium (7.59), we find the following relationship 
between the rest energy and the kinetic energy of a screw dislocation
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without any appeal to a relativistic dynamics of the string, because it is due to the fact that the 
rest energy and the kinetic energy of the line are the elastic potential energy and the kinetic 
energy stored in the lattice by the dynamic distortions imposed on the lattice by the presence of 
the moving screw dislocation.

12.4 – Fields and energies of an edge dislocation

The rotational field and the volume expansion field of an edge dislocation

Consider now an edge dislocation string in the form of a straight cylinder of infinite length and 
radius , as shown in figure 12.1, containing this time a vector density of flexion charges 
perpendicular to the direction of the string, which points in the direction of the axis . In 
conventional solid media, the volume expansion is still very low, and the modulus  associated 
with thermal effects is negligible vis-à-vis the moduli  and . So we can make three simpli-
fying assumptions: the volume expansion  is still very small ( ) and can therefore be 
treated as a disturbance , and the modulus  can be neglected

Hypothesis:      and     and    (12.52)

One can then use the linearized equation of Newton (12.9), expressed in terms of  and 
, to find the static fields of elastic torsion  and perturbation of volume expansion   

associated with the presence of the vector charge density . We thus get the following equili-
brium equation around the charge

 (12.53)

To avoid manipulating expressions containing the elastic moduli  and  we can use the 
Poisson’s modulus (7.25 and 7.30) of the solid, and write the equilibrium equation

 (12.54)

Outside of the dislocation string , the vector of rotation should have a single-axis 
component along  which must depend on , while the expansion scalar  should 
depend on . On the other hand, the two variables  and should decrease with the 
distance as  in the same way as for the screw dislocation string treated before, so the solu-
tion must surely be written in the following form

 (12.55)
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We can then calculate  and 

 (12.56)

which, when introduced in the equation of equilibrium, give us the relation existing between  
and 

 (12.57)

Inside the string, we can integrate the equilibrium equation on a cylinder containing the density 
of charge , of radius  and of unit length. We then have the integral relation

 (12.58)
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previous relation is easily transformed in

 (12.59)

By symmetry, the integrals on the two sections (lateral faces) of the cylinder cancel each other, 
so that with 

  (12.60)
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The displacement field of an edge dislocation

It is possible to find the displacement field  outside an edge dislocation string. Indeed, as the 
field  can only have components along  and , and that  must not depend on , 
we have

 (12.63)

So that we have two differential equations

 (12.64)

We can try the following classic solution  for the displacement field  1

 (12.65)

where  are constants to be determined.  The fields  and  are then written
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solve for the moment the general problem without making a prior choice as to the respective 
values of  and . Therefore introduce an adjustable parameter  such that we can write
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        et        (12.69)

The displacement field is then written

(12.70)

How we got here the displacement field associated with an edge dislocation is new. Indeed, it is 
based on finding the equilibrium of the solid conditions on the basis of Newton's equation (12.9) 
containing a vector density  of flexion charges, whereas in the classical approach , the field 2

displacement is obtained from a particular solution of the differential equation for the Airy func-
tion of plane stress, which is much more complicated, and involves a strong a priori of not ha-
ving restrictive external constraints.

The deformation and shear fields of an edge dislocation

From these expressions, using the relationship (2.48), we can deduce the elastic deformation 
tensor  and the tensor of elastic shear strains  outside of the dislocation line

                                                       

                                                   (12.71)                                                                                         (12.72)

The derivatives of the components of the displacement field that appear in these relations are 
deduced from (23.56)
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(12.73b)

As will be preferable thereafter, for the sake of simplicity, to work in polar coordinates 
  and  in the plane of the cylinder (fig. 12.1), the relationships

     and     (12.74)

allow us to obtain the derivatives as function of coordinates 

 (12.75)

The tensor of elastic deformation  and the tensor of elastic shear  can then be expres-
sed in polar coordinates by introducing these derivatives in (23.58) and (23.59)
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The rest energy of an edge dislocation

The rest energy of an edge dislocation is obtained by integrating the elastic potential energy 
stored outside of the string by the lattice
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(12.78)

We deduce with the following integration

(12.79)

the rest energy  by unit of length of the edge dislocation by using relations (12.77) and 
(12.62)

(12.80)

It is found that this rest energy contains a term dependent on modulus  associated to shear 
deformations, and a term dependent on modulus  associated to deformation by volume ex-
pansion of the medium. The rest energy per unit length of the edge dislocation line can also be 
expressed more simply by using the relation (7.30)

(12.81)

It should be noted here that the energy associated to a certain segment of length  of a line of 
edge dislocation does not depend on the state of volume expansion of the solid lattice. Indeed it 
can easily be verified that 

(12.82)

To compare the value of the rest energy of an edge dislocation with that of a screw dislocation, 
it is enough to remember that the relationship between the linear charge  and the Burgers 
vector  is simply written  and the modulus  is connected to the Lamé coeffi-
cient by the relationship . It is then found that for Burgers vectors of equal length, the 
edge dislocation has a different rest energy than the screw dislocation by a factor that depends 
on both the tunable parameter  and the Poisson's ratio  of the material

  (12.83)

The kinetic energy of a low velocity edge dislocation

In the case where a string of edge dislocation is moving in direction , with velocity  which 
is small compared with the speed of transversal waves ,  the components of the velocity field 
are obtained by replacing  by  in expressions (12.70) of the components of 
the field of displacement, and then by taking the derivative 
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 (12.84)

After derivation, it is useful to jump into the coordinate system  which is in transla-
tion with velocity  with the line of dislocation, in which  becomes 

(12.85)

and to use in  the polar coordinates  and   expressed 
in the plane of the moving cylinder

(12.86)

The kinetic energy of the edge dislocation is then obtain by operating the following integral

(12.87)

It is a rather long computation that leads finally to the kinetic energy of an edge dislocation.  
This energy is given by unit of length, and it depends on the parameter  and the Poisson mo-
dulus , just as with the rest energy of a screw dislocation (12.81)

(12.88)

12.5 – Effects of the boundary conditions and of the nature of the lattice

The edge dislocation in a usual, finite and free medium

In the case of a finite and free lattice, that is to say not subjected to any boundary stress, the 
presence of an edge dislocation may bend the solid, as illustrated by the model in figure 9.11, 
which is taken into account by a non-zero value of the constant  in the relations (12.65). To 
determine the constants  and  completely, look for the value of the adjustable parameter 

, so it minimizes the rest energy of the edge dislocation. From equation (12.81) we have
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 (12.89)

Thus, the value of  that minimizes the rest energy of the edge dislocation string is 1. It can be 
verified that if the string moves relative to the lattice with velocity , the value that minimizes 
the sum of potential energy and kinetic energy is always equal to 1. Indeed, as we have, from 
the relation (12.88)

 (12.90)

Thus in the case of a usual medium, free and finite, the energies of the edge dislocation are 
written

 (12.91)

The rest energy then corresponds to the classic value obtained in the literature .3

Since the usual solids have a Poisson modulus close to 1/3, the Einstein relation is modified 
and is approximatively worth .
It is interesting to realize that the field of displacement is in this case written as
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and that it corresponds exactly with what is found by the classical theories of dislocations3. Only 
the sign of the expressions  and  are inverted, which is a result of the 
fact that the displacement field expressed in Euler coordinates has a sign opposite to the dis-
placement field expressed in Lagrange coordinates. The tensor of elastic deformation  can 
be written

(12.93)
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(12.94)

The edge dislocation in a usual medium which is prevented from bending

If the solid medium is subjected to boundary conditions, it is the adjustable parameter  which 
will be chosen so as to satisfy said boundary conditions. The simplest case we can consider, for 
example, is to assume a rectangular solid in which an edge dislocation is introduced in the di-
rection  with a line charge  pointing in the direction . In case the solid is completely 
free, we know that it bends in the direction  because of the term  of the 
component  in the relations (12.65). But if, due to the boundary conditions imposed 
on the solid, it is unable to bend, the term  in the relations (12.65) must be zero, 
which is possible since there is the free parameter  to adjust  and . 
We then have

 (12.95)

The energies of the dislocation in this constrained lattice are deduced from (12.81) and (12.88)

 (12.96)

Since solid media usually have a Poisson modulus on the order of 1/3, the Einstein relation is  
modified to .

The dislocation in an auxetic media, finite and free

In a more exotic environment where the modulus  would be a negligible modulus vis-à-vis the  
 modulus, so a medium for which the Poisson modulus would be close to -1, and which is 

called an auxetic solid medium, the energy of the edge dislocation is written

(12.97)

In the auxetic medium, finite and free, the Einstein relation reads .

    !α1
edge =

!
Λ!e3

4π 1−ν( )  
1
r

−2 2 −ν( ) / 3− cos2ϕ⎡⎣ ⎤⎦sinϕ
!e1 + cos2ϕ cosϕ

!e3{ }

    !α 2
edge =

!
Λ!e3

4π 1−ν( )  
1
r
2 1− 2ν( )sinϕ !e2 / 3{ }

    !α 3
edge =

!
Λ!e3

4π 1−ν( )  
1
r

2 1+ν( ) / 3+ cos2ϕ⎡⎣ ⎤⎦sinϕ
!e3 + cos2ϕ cosϕ

!e1{ }

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

ς

Ox2  
!
Λ Ox3

Ox1x3 ln x1
2 + x3

2( )
u3
edge(x1, x3)

ln x1
2 + x3

2( )
ς u1

edge(x1, x3) u3
edge(x1, x3)

3− 4ν
4 1−ν( ) −

ς
2
= 0     ⇒     ς = 3− 4ν

2 1−ν( )

E0
edge = nk2

!
Λ2

4π
16ν 2 − 20ν + 8
4 1−ν( )2

⎡

⎣
⎢

⎤

⎦
⎥ ln

R∞

R
= 16ν 2 − 20ν + 8
16ν 2 − 20ν + 7
⎡

⎣
⎢

⎤

⎦
⎥M 0

edgect
2

Ekin
edge = mn

!
Λ2

8π
16ν 2 − 20ν + 7
4 1−ν( )2

⎡

⎣
⎢

⎤

⎦
⎥ ln

R∞

R
⎛
⎝⎜

⎞
⎠⎟ v

2 = 1
2
M 0

edgev 2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

E0
edge = 1.47 M 0

edgect
2

k1
k2

E0
edge = nk2

!
Λ2

8π
ln R∞

R
= 8
25

⎡
⎣⎢

⎤
⎦⎥
M 0

edgect
2

Ekin
edge = ρ

!
Λ2

8π
25
16
⎡
⎣⎢

⎤
⎦⎥
ln R∞

R
⎛
⎝⎜

⎞
⎠⎟ v

2 = 1
2
M 0

edgev 2

⎧

⎨
⎪⎪

⎩
⎪
⎪

E0
edge ≅ 0.32 M 0

edgect
2



elements of dislocation theory in usual solids 267

The edge dislocation in an auxetic media, which is prevented from bending

In the case of an auxetic medium prevented from bending, the energy of an edge dislocation 
reads

(12.98)

In an auxetic media which is prevented from bending, something quite remarkable happens, 
namely that the Einstein equation is very close to an exact Einstein equation, since 

.

12.6 – Interactions between dislocations

Distortion fields associated with dislocations allow us to calculate the interaction forces acting 
between dislocations through the force of Peach and Koehler. In this section, we will present 
some cases of these interactions, limiting ourselves to the dislocations usually found in conven-
tional, finite and free solids, that is to say, including edge dislocations satisfying the "traditional" 
relationships (12.91) to (12.94).

The interactions between two dislocations

In the case of screw and edge dislocations, the force of Peach and Koehler acting per unit 
length of a dislocation (2) by the effect of a dislocation (1) is given by the expression (11.12), 
namely

(12.99)

in which the linear charges  and  are obtained from the vector of Burgers  
of the dislocation (2) and the tangent vector  to the dislocation (2) by the following relation-
ships

(12.100)

With regards to the stress fields ,  and  which appear in the force of Peach and 
Koehler, they are obtained from the elastic distortion fields generated by dislocation (1), via rela-
tions (12.2) and (12.14), and are written

(12.101)
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For example, we will calculate in the following sections the interaction forces that occur between 
two parallel dislocations, for two screw strings, an edge and a screw string, and two edge 
strings.

The interaction between two parallel screw dislocations

A screw dislocation with charge  in the direction , with , loca-
ted at coordinates , is the source of a field of moments obtained from expression 
(12.31),  which we can recast in polar coordinate in the plane 

 (12.102)

If a second string parallel to the first one with a charge , is situated at a 
distance  from it, with polar coordinates  and  in the plane , it undergoes a force by 
unit length which is given by the force of Peach and Koehler 

 (12.103)

The interaction force between two parallel screw dislocation is therefore repulsive if 
 and attractive if .

The interaction between an edge dislocation and a parallel screw dislocation

An edge dislocation in the direction  ( ), located at coordinates  and , 
of Burgers vector in the direction , has a charge . It is then the source of 
stress fields ,  et  obtained from expressions (12.62) and (12.94)

 (12.104)

 (12.105)

If a second line parallel to the first one, but of screw type, is at a distance , with charge 
, it will undergo a force per unit length given by the force of Peach and 

Koehler 

 (12.106)
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We conclude that the interaction force between an edge dislocation and a parallel screw dislo-
cation are always null, whatever their respective positions.

The interaction between two parallel edge dislocations

Given an edge dislocation in direction  ( ), located at  and , with a 
Burgers vector in the direction , with a charge , which interacts with a paral-
lel edge dislocation at polar coordinates  in the plane  (fig. 12.3), and with charges 

 or  are given by

 (12.107)

Th first line (1) is the source of fields of stress ,  and  given by (12.104) and 
(12.105).  In those fields, the line (2) undergoes the following force of Peach and Koehler by unit 
length

 (12.108)

which is written

 (12.109)

and finally

 (12.110)

By further transforming this expression, we obtain the classical expression of the interaction 
between two parallel edge dislocations

 (12.111)

which can also be written by reintroducing the vector of charge  under the form
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In figure 12.4, we have shown the direction of the components of the force of Peach and Koeh-
ler in the case where charge  of line (2) points along the axis . 

Figure 12.3 - interaction between two parallel edge dislocations along  
with charges  and 

One interesting consequence of this figure is related to the fact that, as an edge dislocation can 
only easily move by sliding, it is the component of the force of Peach Koehler along the axis 

 which is important in this particular case. The second interesting consequence of this fi-
gure is that the force along the axis  tends to separate the two lines if the angle  is less 
than 45 °, but it tends to superimpose them, if the angle  is greater than 45 °. The latter case 
explains why there is formation of a stable ribbon of aligned edge dislocations, with their 
charges  more or less in the plane of the ribbon, and can thus form a dislocation membrane 
bounded by two lines of disclination, these are called flexion joints as were shown in fig. 9.17a.

Figure 12.4 - components of the force of Peach and Koehler due to the interaction between

 two edge dislocations parallel to axis  and with charges  and along the axis 
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12.7 – The string model of curved dislocation

The dynamic behavior of a dislocation that curves in a conventional solid, finite and free, can be 
addressed by introducing the concept of line tension of the dislocation, which allows us to write 
Newton's equation for an infinitesimal segment of string.

The line tension of a dislocation

Imagine a dislocation which passes through two fixed points  and  separated by a distance  
, which is smoothly curved into an arc of radius of curvature  between the two points (fig. 

12.5). At great distance from the string, it can be seen as a straight dislocation, but in the vicinity 
of the string, it has a length equal to  because of its curvature. If we introduce the quan-
tity  corresponding to the distance where we go from the short distance to the long distance, 
and which roughly corresponds to several times the length , we can calculate the energy 
of the dislocation segment of length  using the formulas (12.43) for a screw dislocation or 
(12.99) for an edge dislocation, the mathematical expressions are used to separate the ener-
gies of the string at short and long distance. We have

 (12.113)

where , since  is equal to  in the case of the screw dislocation and 
 in the case of an edge dislocation.

Figure 12.5 - curved dislocation between two points A and B separated by a distance

The increase in energy  due to the curvature of the string reads

     with     (12.114)

The fact that the energy of a curved string is greater than the energy of the straight string im-
plies that a curved string will try to become straight like a rubber band stretched between two 
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points. In the case of an elastic, the elongation of a length equal to  requires an energy 
equal to  where  is the tension force of the elastic. By analogy with an elastic, we can 
introduce a concept of line tension  of the dislocation, corresponding to a fictitious force tan-
gential to the string, which is therefore

 (12.115)

In fact, the analogy between the line tension and an elastic is certainly not very rigorous and 
somewhat unclear . But despite this, it plays a significant role in dislocation theory, for it is that 4

representation that is used for solving dislocation dynamics problems.

The force of Peach and Koehler acting on a dislocation

Imagine a curved dislocation situated in its slip plane, that is to say in the plane containing both 
its Burgers vector  and , the vector tangential to the line. Suppose further that this disloca-
tion is subjected to a shear stress tangential to the slip plane, which can be fully characterized 
by a torsor of moment  belonging to the slip plane and perpendicular to the plane of shear. 
The Peach and Koehler force acting on unit length of this dislocation can then be deduced from 
the relation (11.13), taking only the terms containing the torsor moment

 (12.116)

Figure 12.6 - Close loop of dislocation in its slip plane

We represent in figure 12.6 a closed loop dislocation in its slip plane , with a tangential 
vector  going clockwise and with Burgers vector  in the direction . This disloca-
tion is subjected to pure shear stress  applied in the plane . This shear stress can be 
perfectly represented by a torsor of moment  headed in the direction , with , 
so that the strength of the Peach and Koehler force  can be written as
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 (12.117)

We then check that the Peach and Koehler force is always directed along the normal vector 
of the dislocation, contained in the slip plane , whatever the direction , so that

 (12.118)

The dynamic equation of a non-relativistic string

Now consider a similar dislocation to that described in the previous section, but with any shape 
in its slip plane , and subjected to pure shear stress  which may be time dependent 
(fig. 12.7). Describe its shape by a displacement vector  in the slip plane, oriented in the 
direction .

Figure 12.7 - definition of displacement  of a dislocation in its slip plane

The goal is then to find the dynamic equation which manages the evolution of the shape 
 of the dislocation subjected to shear stress. For this, we will try to write Newton's equa-

tion of an infinitesimal segment of string of length , which has an inclination angle  relative 
to the axis , which is obviously defined by

 (12.119)

If the dislocation moves in the sliding plane, the local velocity  can only be perpendicu-
lar to the string, and its projection on the axis must be equal to the time derivative 
of the displacement. The local velocity is thus written

 (12.120)

As for the local acceleration  of the dislocation, it can also only be perpendicular to the 
string, and such that its projection onto the axis  is equal to the second time derivative of 
the displacement . The local acceleration is written therefore

  (12.121)
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Newton's equation of non-relativistic dislocation segment  then involves the inertial mass at 
rest of the segment , and is written thus

 (12.122)

where the  represent the diverse forces acting on the segment .
We can now find the set of forces that act on this infinitesimal segment (fig. 12.8), namely:
- the force of Peach and Koehler due to the shear stress 

 (12.123)

- the tension forces acting tangentially on the two extremities of the segment

     and      (12.124)

- a braking force related to the possible existence of a viscous friction of the moving dislocation 
within the solid (this is for example the case of braking of dislocations by their interaction with 
phonons and electrons in metals). If it exists, the braking force is proportional at the first order to 
the speed of the segment, and can be written by introducing a coefficient of viscous friction 
by unit of length of the string

 (12.125)

Figure 12.8 - the forces acting on an infinitesimal segment of string in the sliding plane

With these forces, the non-relativistic vectorial equation of Newton for the segment is written

 (12.126)

which becomes, by introducing the values of  and 

 (12.127)
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 (12.128)

we can project equation (12.135) on axis , and we have

 (12.129)

The ratio in the last term is the infinitesimal expression of the partial derivative of  with 
respect to , so that 

 (12.130)

All we have to do is to use (12.127) in order to express  and  as a function of  

 (12.131)

and we obtain the following differential equation, which is called the “string model of dislocation”

  (12.132)

that calculates the dynamics  of a non-straight dislocation on its slip plane, in a solid 
subjected to shear stress .
In this equation, the line tension  may depend on the orientation of the string in the sliding 
surface since the line tension is different for a screw dislocation and an edge dislocation, in 
which case we must introduce  as a function of the angle  with the form 

. But, generally, we introduce an approximate 
constant value of  , which already allows us to obtain satisfactory results.

12.8 – Applications of the string model

The string model is extremely useful and effective for treating plasticity and anelasticity pro-
blems due to dislocation motion and involving conventional solids, such as metals for example. 
But it is beyond the scope of this book to detail these phenomena, which can be read about in 
many books on this particular subject. However, we will outline how this problem can be ad-
dressed on the basis of the string model.

The plasticity and anelasticity due to the dynamics of the dislocations

The dislocation motion interacting with obstacles is one of the main phenomena responsible for 
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the plasticity and the anelasticity of conventional materials . Plasticity is then associated with 5

irreversible long-distance movement of dislocations under the effect of an external stress, while 
anelasticity is associated with short, but recoverable, dissipative movements of dislocations 
strongly anchored in the solid and subject to a cyclical external constraint. If these microscopic 
movements at long or short distance can be calculated for a dislocation from the string model, 
then it is easy to deduce the speed of plastic  or anelastic macroscopic deformation of 
the solid due to a set of dislocation density  through the relationships of Orowan (10.37) 
(10.40) or (10.41).

The control of mobility of dislocations by obstacles

In conventional materials, such as metals for example, the movement of dislocations is typically 
controlled by interactions at short or long range, with obstacles more or less localized, as pho-
nons and electrons, other dislocations, point defects, precipitates, grain boundaries, crystal lat-
tice itself, etc.

Figure 12.9 - The stress fields due to obstacles represented in the slip plane

To introduce this type of interaction in the string model, we must know the spatial distribution of 
the obstacles in the solid, and the internal stress fields generated by them. These stress fields 
due to obstacles can be expressed and displayed in the dislocation slip plane (fig. 12.9), where 
they become responsible for a Peach and Koehler force acting on the dislocation (relations of 
table 11.1).
In this way, one can add in the equation of the string (12.132) all the forces  due 
to the obstacles surrounding a dislocation
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  (12.133)

But it is clear that such an approach to dislocation dynamics quickly proves very complex. In 
general, we address these problems of dislocation interactions with obstacles in a much more 
pragmatic way, by developing simple models based on the string model and judiciously adapted 
to the problem at hand. To further study this, we find many examples of dislocation interaction 
mechanisms with obstacles, illustrated by experimental results and theoretical models in many 
books on dislocations, or in review articles as "dislocation point defect interactions”  and "dislo6 -
cation-lattice interaction”  .7

The role of thermal activation during interactions with obstacles

The string equation (12.133) in the presence of interactions with obstacles is a purely mechani-
cal equation, which cannot take into account the effects of temperature, such as migration of 
obstacles by diffusion or obstacle crossing by thermal activation. Introducing the effects of tem-
perature in the string equation is theoretically possible by developing an image of "Brownian" 
dislocation, that is to say by introducing a thermal fluctuation of the local force 

 due to local temperature in the equation of the string, modeled after the 
term of thermal fluctuations in the model of the Langevin equation 8

  (12.134)

Such an approach of thermal fluctuation phenomenon proves again very complex, so that, in 
general, we also address the more pragmatic problems by developing models of the thermal 
activation suitably adapted to the problem to be treated.
For interested readers, typical examples of this type of thermal activation approach is developed 
by the author in the articles "overview on dislocation-point defect interaction: the brownian pic-
ture of dislocation motion”  and "theory of plasticity and anelasticity due to dislocation creep 9

through a multi-scale hierarchy of obstacles” . In the latter, it is shown among other things that 10

the thermally activated motion of a dislocation moving in a hierarchy of different barriers is of a 
fractal appearance (fig. 12.10), with interesting effects on the plasticity and anelasticity of the 
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macroscopic solid.

Figure 12.10 - the fractal behavior of a dislocation moving amid many types of obstacles

12.9 – The effects of a strong static stress on a pinned dislocation

Suppose a dislocation segment of length  anchored on its sliding surface at two pinning 
points  and  located on the axis ,  and  as shown in figure 12.7. Such 
pinning of the dislocation in the medium may be due to the existence of strong localized interac-
tions between the dislocation and obstacles (other dislocations, precipitates, etc.).

The static deformation of a pinned dislocation

If this segment is subjected to a constant shear stress , it will take a curved static form which 
we will try to determine. We make the simplifying assumption that one can use an approximately 
constant line tension, which is independent of the orientation of the segment in the sliding plane. 
The static equation of the string model (12.140) can then be written

  (12.135)

This equation can easily be integrated a first time with respect to .  We have, by introducing 
an integration constant , a new differential equation

  (12.136)

This equation can also be modified to extract a value of the derivative , and we obtain 
the following differential equation of first order

     with       (12.137)

The solution is simply

       (12.138)

where  is a second integration constant. The two integration constants  and  are obtai-
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ned from the boundary conditions of the string, namely the pinning points for which  
and 

     et        (12.139)

With these values, the deformation of the string segment is described by

       (12.140)

This deformation is an arc of circle which goes through the pinning points  and , whose 
radius of curvature corresponds to , as illustrated in figure 12.5.

The limit of the static deformation and the source of dislocations of Frank-Read

The radius of curvature of the segment  is inversely proportional to the static 
shear stress , which means that it decreases when  increases. However, it is clear that 
there is a minimum limit for the radius of curvature, which occurs for a critical stress such that 
the radius of curvature  becomes equal to , therefore

       (12.141)

For any value of  greater than , there cannot be static solutions for the deformation of 
the string. What appears instead is a complex dynamic solution of equation (12.132), which cor-
responds to a mechanism of source of dislocations of Frank-Read  (fig. 12.11).11

Figure 12.11 - the mechanism of source of dislocations of Frank-Read

The initial rectilinear segment represented by (1) in figure 25.7 bends between the two pinning 
points to form a half-circle (2). Then it continues to extend beyond the pinning points, steps (3), 
(4) and (5), until the strand segment leaving  join the segment strand starting from  (6) . 
Here, as the two strands have the same Burgers vector, they bind to each other forming, first of 
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all a new segment (1) growing between the pinning points  and , and secondly a closed 
loop (6) that will not stop growing. This mechanism is equivalent to an uninterrupted source of 
dislocation loops. It is essentially this phenomenon, which is very well observed by electron mi-
croscopy, which makes it possible to perform large plastic deformations of certain solids such as 
metals. And it is this phenomenon that may be responsible for the existence of a non-zero 
source of dislocation charges in the continuity equation (10.9) of the density of dislocation 
charges.

12.10 – The effects of a dynamical stress on a pinned dislocation

Assume again a dislocation segment pinned in its sliding plane at two points  and located 
on the axis , at   and , as shown in figure 12.7. And suppose further that this 
segment is subject to an external dynamical stress  such that  . To solve 
the problem of this moving pinned dislocation, it is clear that the string model (12.134) is far too 
sophisticated. In the case of low stress, it is useful to develop simplified models.

The classical model of the string for weak constraints 12

In the case where , the angle  that the string forms with respect to axis  is 
always weak so that 

  (12.142)

We rewrite the string model by supposing that , and one obtains the well-known 
‘classic model’ of the string

  (12.143)

In this model we show that the static deformation obtained in the case of a stress  is ap-
proximated by a parabola of equation

 (12.144)

which maximum is worth 

 (12.145)

The «rigid rod model» of a pinned dislocation submitted to weak stresses

The model of the classic string can further be simplified by looking for an approximate equation 
for the mean displacement  of the dislocation, defined by relation

 (12.146)
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For a constant stress , the average statical displacement  satisfies the following equation, 
by introducing a restoring coefficient   due to the line tension  of the string

     with      (12.147)

We can then find a dynamical model which is approximative for the pinned dislocation, by wri-
ting that the average displacement  satisfies the following equation

 (12.148)

This equation is called the "rigid rod model" because it describes the average displacement of 
the dislocation, as if it were a rigid bar subjected to a restoring force. It is in fact nothing but the  
equation of a damped harmonic oscillator, and is obviously a rough approximation of reality, 
since it presupposes that the dynamic deformation of the dislocation remains a parabola which 
is clearly not the case if the speed of variation of  becomes very large.

The «phonon relaxation» of dislocations in metals

In a metal, there is always a substantial density  of dislocations. They generally form a three-
dimensional network known as the Frank network , consisting of nodes to which dislocations 13

converge. These nodes are to be considered as anchor points for lattice dislocations, so that we 
can consider that, for low applied stresses, dislocations are represented by segments, of ave-
rage length  that bend under the effect of applied stresses. If such a metal is subjected to an 
ultrasonic dynamic stress  of low amplitude but high frequency, these seg-
ments will begin to vibrate.
In the equation of the rigid rod model (12.148), we use the rest mass  per unit length of dis-
location, and the viscous friction coefficient  per unit length of string. In the absence of other 
interactions, the viscous friction coefficient  of a metal is essentially due to the interaction of 
mobile dislocations with phonons of the lattice . The friction coefficient is controlled by two me14 -
chanisms: the "phonon wind" which appears with a linear temperature dependence of , and 
the “slow phonon relaxation", which appears with a parabolic behavior of  while temperature 
is below the Debye temperature of the metal, and with a constant behavior of  when the 
temperature is higher than the Debye temperature of the metal. The behavior of the dislocation 
segments under the effect of ultrasound then depends primarily on the relative values of  
and .
To study this behavior, we can show that the short distance microscopic movements of the dis-
location segments will be perceived as a macroscopic anelastic shear deformation . Indeed, 
applying the relationships of Orowan (10.40) to the case of the string shown in figure 12.6, as-
suming that the dislocation loop extends at a constant velocity  in all directions, we can verify 
that we always have the following relationships, throughout the string portions
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 (12.149)

which imply that

 (12.150)

Thus, at the macroscopic scale of the metal, the microscopic motion represented by equation 
(12.148) can be put in the form of an equation of anelasticity

 (12.151)

which corresponds exactly to the phenomenological equation of anelasticity (7.89) which we 
introduced in chapter 7, namely

 (12.152)

In the presence of such an equation, we saw in chapter 7 that the response to a solicitation 
 might be a resonance at frequency , or a 

relaxation with a relaxation time , depending on whether the product
 is greater or lesser than 1, so whether  or .

Experimentally, there is a relaxation around 20 to 150 MHz in many metals, which could proba-
bly be attributed to the interaction dislocation-phonon . Therefore, it was concluded that in ge15 -
neral the coefficient of friction  due to phonon outweighs the inertial mass  of disloca-
tions, and therefore we can neglect the term in  in the string equation when dealing with 
dynamic problems of dislocations in metals.
There are several interesting consequences to this experimental observation:

- the fact that the dislocation segments have a relaxation in the field of MHz in the metal implies 
that the dislocations become perfectly still for frequencies well above the relaxation frequency, 
so that this field of very high frequency is ideal for measuring pure elastic properties of the lat-
tice without interference due to dislocations,

- this same fact implies that if we study dislocations by mechanical spectroscopy in a frequency 
range well below the frequency of the phonon relaxation, it is perfectly possible to neglect the 
term , and consequently the term  in the string model, meaning that the pinned disloca-
tion segments are always on the mechanical balance with the low frequency applied stress,

- as the coefficient of friction  due to the phonons prevails over the inertial mass  of the 
dislocations in the metals, the dislocations are over-amortized, so that pinned dislocation seg-
ments cannot present vibrations like we could observe on a tight rope. This means among other 
things that, under the effect of thermal disturbances of the network, a dislocation segment has 
to behave as a "Brownian segment" which would deform continuously under the effect of local 
thermal perturbations of stress.
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It is on the basis of these very important observations that we can quite easily develop many 
models of interactions between dislocations and obstacles, such as the reader may consult in 
numerous books on dislocations, and in the articles 2,3,5,6  cited above.  
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Chapter 13 

Perfect lattices and equations of Newton
           
In this chapter, we introduce a new perfect isotropic lattice. It is purely imaginary, 
and we will call it the cosmological lattice or the crystalline lattice, the development 
of the free energy of deformation is expressed per unit volume, which depends li-
nearly on volume expansion and quadratically on volume expansion, shear strain 
and torsional rotation deformations. It is then compared with the usual perfect iso-
tropic solid, namely the one we used in chapters 7 and 12 of the applications of the 
theory to the usual isotropic solids. We also compare the Newton's equations of 
these two types of perfect lattices.

13.1 – The «perfect solid» and its equation of Newton

We have seen in sections 7.1 and 12.1 that the elastic part of the free energy of the usual iso-
tropic solids depends only on the volume expansion  and shear strains  and , and 
that we can calculate the free energy per lattice site based on these quantities. The free energy 
function of the simplest deformation that we can imagine is that of perfect isotropic lattice, which 
we name the "perfect solid", and which is written

(13.1)

In the absence of anelastic expansion, the state equations of the deformation is limited to the 
scalar pressure  and the transverse symmetrical tensor of shear stresses  and as 
shown by the relationship (7.15)

     and     (13.2)

We also saw in section 12.1 that, in the perfect solid, pure shear in the presence of a homoge-
neous volume expansion can be treated using the elastic  and anelastic  rotational vec-
tors, with the help of the torsor moment . With these equations of state, it was shown in sec-
tion 12.1 that Newton's equation can be written in two ways, namely in terms of  (12.4) or

 according to (12.9)
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Newton's equation (13.4) of the usual perfect solid presents the advantage of directly depending 
on the elastic rotation vector, such that the shear tensor only appears once in the coupling term 
with the gradient field of volume expansion.
This Newton equation, coupled with the heat propagation equation, allowed us to calculate the 
propagation modes of thermoelastic waves in the usual isotropic solids (section 7.3). It also al-
lowed us to calculate the fields at equilibrium of an edge dislocation (section 12.4) and to show 
that the spatial and temporal evolution of a homogeneous isotropic solid in volume expansion is 
described by a set of equations perfectly analogous to Maxwell's equations of electromagne-
tism.

13.2 – The «cosmological lattice», or «crystalline ether», 
           and its Newton’s equation

We introduce here a new imaginary lattice, which we will arbitrarily call "cosmological lattice”. 
It’s free energy per unit volume becomes a development in ,  and , but also depends 
directly on the rotational vectors  and  by elastic and anelastic rotational deformations. 
Our initial conjecture is a priori the following

Conjecture 0:   the free deformation energy of the “cosmological lattice”  per unit volume
                          of lattice is given by

                     (13.5)

Such a lattice is actually the most generic perfect isotropic lattice imaginable if we assume that 
its energy depends both linearly on volume expansions and quadratically on volume expan-
sions, shear strains and torsional rotation deformations. Always in a spirit of simplification, we 
can still assume that there is no anelasticity by volume expansion in the lattice. The state func-
tion per unit volume of the cosmological lattice is written consequently

(13.6)

This deformation free energy is actually divided into two terms: a linear term in  (which repre-
sents in fact the thermal expansion in usual solids), and a purely quadratic term 

 which corresponds to 
the elastic and anelastic distortion energies. The free energy of deformation per lattice site is 
derived directly from this term:

 (13.7)

Comparing this expression of with the expression (13.1) of the usual perfect solid, we see 
immediately that it is the presence of the factor and the terms and  which primarily 
differentiates the two terms of free energy. From (13.7), knowing that , we deduce the 
five equations of state of elasticity and anelasticity respectively for the scalar of pressure , the 
transverse symmetric tensor of shear stresses  and , as well as the torques  and 
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Table 13.1 - examples of deformations and energies of expansion, shear and torsion

deformations velocity field components of the energy
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Table 13.2 - pure torsion and flexion, and energies of expansion, shear and rotation

    and     (13.8)

With regards to the state equations, one can also wonder what differentiates the usual perfect 
solid from the cosmological lattice. The first obvious difference, and one that will play a major 
role thereafter, is the expression of the pressure  within the cosmo-
logical lattice, which directly depends on the free energy  of the local elastic and anelastic 
distorsion, while it is simply written  in the usual perfect solid.
In table 13.1, we show different types of deformation and energy terms resulting in the cosmo-
logical lattice. If the homogeneous volume expansion does not change the shear energy and 
the elastic rotation energy, the inhomogeneous deformation of volume by elongation or shrin-
kage in a given direction changes the shear energy but do not affect the energy of elastic rota-
tion. In fact, only the pure shear or non-uniform rotation, that could be called torsional deforma-
tion of the lattice affect both the energies of elastic shear and rotation, but in different ways: in 
the case of pure shear, the energy of shear and elastic rotation are equal, whereas in the case 
of non-homogeneous rotation, shear energies are different from elastic rotation energy. Moreo-

deformations velocity field components of energy of de-
formation

Fτ = 0

 
F
!α i
él

= K2 x1
2 + x2

2( )g2 (t) / 2

 
F
!
ω = K3 4x3

2 + x1
2 + x2

2( )g2 (t) / 2

 
!
φ = 2 x2

!e1 + x1
!e2( )x2 "g(t)

torsion

 
!
φ = x1

!e2 − x2
!e1( )x3 "g(t)

flexion

Fτ = 2x1g(t) 2K1x1g(t)− K0[ ]

 
F
!α i
él

= 2K2 9x2
2 + 4x1

2 / 3( )g2 (t)

 F
!ω = 2K3x2

2g2 (t)

p= −n∂ f
déf

∂τ
= K0 + K0 −2K1( )τ −Fdist

!si = n
∂ f déf

∂α ik
él

!ek =2K2
!α i
él

!m= n∂ f
déf

∂ω i
él

!ei = 4K3
!ω él

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 

!si
cons = n ∂ f

déf

∂α ik
an
!ek = 2K1

an !α i
an

!mcons = n ∂ f
déf

∂ω i
an
!ei = 4K2

an !ω i
an

⎧

⎨
⎪⎪

⎩
⎪
⎪

p= K0 + K0 −2K1( )τ −Fdist
Fdist

p = n k0 − 2k1τ( )



perfect lattices and equations of Newton 291

ver, the torsion of the pure medium, as described in figure 3.2, as well as pure bending, as des-
cribed in figure 3.1, also affect both the shear tensor and the elastic rotational vector. Indeed, 
suppose the following velocity fields representing respectively a torsion of the medium along 

 and a flexion of the medium along 

     and      (13.9)

With these velocity fields, we can calculate the temporal evolution of the distortion tensors by 
using the geometrokinetic relations of table 2.3. In the case of torsion we have

(13.10)

and in the case of flexion

(13.11)

We deduce from these expressions the expansion energies, the elastic shear and rotation ener-
gies and we show them in table 13.2. It is found that pure bending and twisting both contribute 
to energy of shear and elastic rotation, but that they have different expressions.
The cosmological lattice Newton's equation is derived from the expression (6.11), in which the 
term  is neglected and we introduced state equations (13.8)

 (13.12)

By using again relation (12.8), which was deducted directly from expression (12.5) of the flexion 
vector, namely 

     and     (13.13)
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 (13.14)

We will see later that Newton's equation will play an absolutely central role in the behavior of the 
cosmological lattice. The equation is fairly complex, especially due to the presence of the flexion 
charge density , of the terms related to the diffusion of intrinsic point defects and especially of 
the term dependent  on volume density of free energy of distorsion .

13.3 – The «hidden face» of the cosmological lattice

The fact of introducing rotational energy with terms  and  in expression (13.6) of the 
free energy of the cosmological lattice, as well as the fact that we develop its free energy per 
unit volume and not by lattice site are not at all trivial to understand, and really make this lattice 
a perfectly imaginary lattice for which we have absolutely no equivalent among the usual solids.

On the search of analogies with the great theories of physics

Rather than engaging in a superfluous interpretation of the "hidden side" of this imaginary lat-
tice, it seems preferable to begin by exploring in detail the consequences that this hidden face 
entails in behaviors that may be present in the cosmological lattice. This is what we will do for 
the rest of the book. To do this, we will show that this Newton's equation we deduce has specta-
cular properties and is central to many analogies that we will develop in the third part with the 
great theories of physics ,i.e. the Electromagnetism of Maxwell, the Gravitation of Newton, the 
Einstein's general relativity, the Lorentz Transformation and the Special Relativity of Einstein, 
and even the quantum physics and the Standard Model of elementary particles.
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Chapter 14 

Modes of wave propagations and of localized
expansion vibrations in the cosmological lattice
           
In this chapter, we are interested in the propagation of waves in the cosmological 
lattice. There appears quite surprising phenomena, such as the appearance of a 
longitudinal mode coupled to the propagation of transverse waves that are polari-
zed linearly, which disappears for circularly polarized transverse waves. There is 
also the possibility of propagation of longitudinal waves. But under certain condi-
tions dependent on elastic moduli, the longitudinal propagation mode disappears in 
favor of localized vibration modes of the expansion.

14.1 – Propagation of transversal waves

In this section, we will proceed with a detailed study of the propagation of transversal waves in 
the cosmological lattice.  Let’s assume the following 

Hypothesis 1:     (14.1)

that is to say, if it is assumed that there is no anelasticity, that the concentrations of vacancies 
and interstitials are negligible, that the background of the volume expansion is a constant  
and that there is no density of flexion charges, then the transverse propagation of disturbances 
can be calculated easily.
Newton's equation (13.14) can be written through the relationship

   (14.2)

which is obtained in the absence of vacancies and interstitials, under the form

  
    (14.3)

The coupling with longitudinal wavelets

If in a local referential , let’s consider a transversal perturbation of the velocity field 
 in the form , parallel to  and varying along . The argument of the 

second gradient will vary along the axis  under the effect of the square  and  
which are non-zero, and necessarily associated with . As a result there appears a force in 
the direction , and therefore a velocity  along the axis , as well as a dis-
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turbance of the volume expansion . So we will write in this case a velocity perturba-
tion in the form

  (14.4)

Such a perturbation  implies the following perturbations  and   of the expansion 
field and the rotation field along the axis , which we deduce via the geometro-kinetic equa-
tions for  and 

  (14.5)

And the perturbation  implies also a perturbation of shear  along the axis , which 
we deduce via the geometro-kinetic equations (2.26) for 

  (14.6)

Equation (14.3) can then be fully expressed in terms of , , , and , by ta-
king into account the fact that the density  depends on  by the relation .  The 
transverse component of this equation is written along the axis as

  (14.7)

It’s longitudinal component along axis 

 (14.8)
The transversal component can be associated with the geometro-kinetic equation for 

  (14.9)

For these perturbations, the material derivative can be written, if the local referential  is 
in translation  and in rotation  in the absolute referential as

 (14.10)

Let’s assume that the local referential is not in rotation

Hypothesis 2:   The local referential is not in rotation   (14.11)
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(14.12)

But since all the propagation values vary only along , the partial derivative along  does 
not feature in the equation, and the material derivative  can be replaced by the partial 
derivative  with respect to time in whole of the local framework .
The transversal perturbation are then governed by the following equations

  (14.13)

In this couple of equations, the value of  slightly depends on  and  since the 
propagation of the transversal wave is coupled to a longitudinal wavelet expressed as

. By neglecting this dependence, assuming in first order that , the 
weak transversal perturbations  in the perfect solid with shear will satisfy the following li-
nearized wave equation

  (14.14)

which implies progressive waves

  with   (14.15)

which propagates with a phase velocity approximately equal to

 (14.16)

The longitudinal component associated with the propagation of the transversal perturbation is 
then obtained by using relation (14.8) and the following equation of geometro-kinetic
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This system of equations is evidently non-linear, but if we suppose weak amplitudes to , we 
can obtain a couple of linearized equations in
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which reduces to a single differential equation of second order in 
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(14.20)

By introducing the following solution for 

(14.21)

in the wave equation (14.19), we have the relation between the amplitude  of the longitu-
dinal wavelet  coupled to the transversal waves, as a function of amplitude  of this 
wave

(14.22)

Thus, the propagation of a linearly polarized transverse perturbation in the cosmological lattice 
satisfies a wave equation (14.14) which is completely conventional provided that its amplitude is 
not too strong. But it is always accompanied by a longitudinal wavelet which propagates in the 
same direction at the same velocity as the transversal disturbance. The frequency of this longi-
tudinal wavelet is twice the frequency of the transverse perturbation and its magnitude is propor-
tional to the square of the amplitude of the transverse perturbations. Note also that the velocity 
of propagation of transverse perturbation strongly depends on the background volume expan-
sion  of the lattice as shown in equation (14.16).

On the necessity to introduce a circular polarization
to obtain a pure transversal propagation mode

Suppose now that we couple to this rotational wave polarized along  a rotational wave pola-
rized along  ,  but out of phase by  with the same amplitude and so

(14.23)

We will say that such a wave presents a left or right circular polarization depending on the sign 
. We talk of positive or negative helicity. In this case, it is interesting to see what becomes of 

the longitudinal wavelets. Let’s consider again the coupling term appearing in (14.18) and calcu-
late it.  We have

(14.24)

We deduce that the circularly polarized transversal waves are pure, meaning that they are not 
coupled to longitudinal wavelets.

14.2 – Propagation of longitudinal waves

In a cosmological lattice, initially homogenous in volume expansion  and without shear 
strains, satisfying the hypothesis (14.11), we introduce a perturbation in the local referential 

 under the form of a velocity field  parallel to the axis  and 
varying along the  axis. In the presence of this longitudinal perturbation, there does not 

mn ∂
2τ ( p)

∂t 2
− 4
3
K2 + 2K1 1+τ 0( )− K0

⎛
⎝⎜

⎞
⎠⎟  
∂2τ ( p)

∂x j
2 ≅ −4 K2 + K3( )kt2 ω i0

( p)( )2 exp i2 kt x j −ωt( )⎡⎣ ⎤⎦

τ ( p)

τ ( p)(x j ,t) ≅ τ 0
( p) exp i2 kt x j −ωt( )⎡⎣ ⎤⎦

τ 0
( p)

τ ( p) ω i0
( p)

τ 0
( p) ≅ − K2 + K3

K2 / 3+ 2K1 1+τ 0( )− K0 − K3

ω i0
( p)( )2

τ 0

Oxi
Oxk ±π / 2

 
!
ω (x j ,t) =ω i0

( p) exp i kt x j −ωt( )⎡⎣ ⎤⎦
!ei ± iω i0

( p) exp i kt x j −ωt( )⎡⎣ ⎤⎦
!ek

±

ω i
( p) ∂ω i

( p)

∂x j
+ω k

( p) ∂ω k
( p)

∂x j
=

+ikt ω i0
( p)( )2 exp i2 kt x j −ωt( )⎡⎣ ⎤⎦

−ikt ω i0
( p)( )2 exp i2 kt x j −ωt( )⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0

(τ = τ 0 )

Ox1x2x3  
!
φ =
!
φ ( p) = φ j

( p) (x j ,t)
!ej Ox j

Ox j



modes of wave propagations and of localized expansion vibrations in the cosmological lattice 297

exist a coupling term in equation (14.3) which could give rise to a transversal perturbation 
, so that the equations which govern the purely longitudinal perturbation is equation 

(14.8), in which we remove the terms dependent on , and equation (14.17) gives

(14.25)

The fact that this system of equations is not linear in the variables  and  implies that the 
propagation of longitudinal waves in the perfect lattice is a complex process which, in addition, 
strongly depends on the background expansion state  of the lattice. One can hypothesize 
that if the disturbances are sufficiently low, we can neglect second order terms disturbances that 
appear in these equations directly, and indirectly through material derivatives. In this case, the 
small perturbations  must obey the following linearized differential equation of second order

(14.26)

We immediately deduce that the longitudinal waves only exist in a cosmological lattice if and 
only if the term in brackets is positive. In this case, for weak amplitudes, the longitudinal waves 
propagate with the following phase velocity

(14.27)

For larger amplitudes we cannot linearize the differential equations, so that the longitudinal 
waves become strongly non-linear and depend strongly on the amplitude of perturbations . 

14.3 – Localized longitudinal vibrational modes

In the cosmological lattice, if the phase velocity of longitudinal waves becomes an imaginary 
number, there is no longer propagation of longitudinal waves. In this case, we can rewrite the 
solution of complex disturbances in the form

     si          (14.28)

in which the spatial range of perturbations is given by

  (14.29)

Here we have a surprising phenomenon, namely the appearance of localized eigenmodes of 
longitudinal vibrations, which do not propagate over long distances, but are instead confined 
over distance range of the order of . For large amplitudes, these localized modes of longitudi-
nal disturbances will become non-linear and strongly dependent on the amplitude of the distur-
bances .
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14.4 – Analogy with Einstein gravitation and Quantum Mechanics

The various properties of the cosmological lattice as introduced in the previous chapter and this 
one are summarized in table 14.2. They can be compared with the similar properties obtained in 
a perfect usual isotropic solid, which are reported in Table 14.1.
The comparison of these two tables is quite telling, especially concerning the wave propagation 
speed in these two lattices. In fact, the propagation of shear waves is invariant (independent of 
lattice expansion ) in the usual perfect solid while indirectly depends on the local volume ex-
pansion  in the cosmological lattice, via the presence of the density of sites  in the expres-
sion of the velocity  . The same goes for the speed of the longitudinal waves, although there 
is a dependency to the multiplicative terms  et .

On the analogy with the helicity of photons 

Another key difference between the two types of lattices resides in the fact that the linearly pola-
rized transverse waves are perfectly pure and invariant in usual perfect solid whereas they are 
necessarily coupled to longitudinal wavelets in the cosmological lattice. In the case of cosmolo-
gical lattice, the only transverse waves which are pure, not coupled to longitudinal wavelets are 
then right or left circularly polarized waves, that is to say the transverse waves of positive or 
negative helicity. Strangely, we have already found a property of photons in the real universe, 
namely that photons are necessarily of non-zero helicity. Since photons are quantum objects, 
here we find a surprising feature which will be discussed later.
The cosmological lattice introduced in the previous chapter is, as we have already said, a purely 
imaginary construct, in the sense that it is difficult to find a match with an existing real solid. But 
this lattice becomes very interesting when we revisit more thoroughly the analogies we have 
already seen emerge between the eulerian deformation theory and other theories of physics, 
such as the analogies with the Maxwell equations (table 12.1) or the Einstein equation 

 in the case of screw dislocations (section 12.3). In fact, the cosmological lattice 
will serve us primarily to pursue further our search for analogies with the great theories of phy-
sics and to issue different conjectures to narrow down these analogies.

On the analogy with the lack of longitudinal waves in Einstein gravitation

The existence of domains of volume expansion of the cosmological lattice in which the propaga-
tion of longitudinal waves is not possible, for  , is a good analo-
gy to the fact that there is no propagation of longitudinal waves in the theory of General Relativi-
ty of Einstein. Indeed, in the latter, gravitational waves are always transverse waves, defined as 
the spread of perturbations of the space-time metric. These waves have a tensorial symmetry, 
with two independent polarizations perpendicular to the direction of propagation, unlike the lon-
gitudinal disturbances that have a scalar symmetry.
The condition  that there is no longitudinal waves implies the 
existence of a critical expansion  of the lattice  between the domains where there is and 
there is not longitudinal waves. Hence the following conjecture, which of course admits the exis-
tence of pure transverse waves of circular polarization

τ
τ n

ct
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E0
vis = M 0

visct
2
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Conjecture 1:   for the cosmological lattice to present analogies with Einstein Gravitation, 
                          with electromagnetism and with the photons of quantum mechanics,

             the following must hold:

                         (14.30)

This conjecture implies that it is only in the domain where the background volume expansion  
and the moduli are such that relations (14.30) are satisfied that we can find analogies to Gene-
ral Relativity, Electromagnetism and Quantum Physics.

On the analogy with quantum gravity and the quantum fluctuation of the vacuum

In the absence of longitudinal waves, the cosmological lattice presents localized eigenmodes of 
longitudinal disturbances, and so local variations of the scalar  of volume expansion. Such 
modes immediately remind us of the ideas of quantum fluctuations of gravity at very small scale 
since they affect the scalar  which undeniably has a link to the gravitational field. But these 
localized disturbances of the scalar volume expansion are also reminiscent of the quantum va-
cuum fluctuations described by quantum physics. We can therefore, based on this analogy bet-
ween the gravitational field and the expansion field ,  ask the question: "Is it necessary to 
quantify gravity at small scale, or rather, is it gravitation which is, at very small scale, respon-
sible for quantum physics? “ We try to bring in the following chapters a few answers to this rele-
vant topic.
On the other hand, this chapter shows that the cosmological lattice is the support of the propa-
gation of transverse waves (of light) as well as of localized longitudinal eigenvibrations (of quan-
tum wave functions), and that it is therefore quite appropriate to call it a "crystalline ether".
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Table 14.1 - Waves and eigenmodes in a perfect solid

Function and equations of state
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Table 14.2 - Waves and eigenmodes in the cosmological lattice
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Chapter 15 

Curvature of wave rays by a singularity of expansion 
and black holes
           
Among the surprising behavior that may be present in a cosmological lattice is the 
curvature of wave rays by a volume expansion gradient due to the presence of a 
strong topological singularity of expansion . This curvature can lead to the forma-
tion of "black holes" absorbing all waves passing in its vicinity, or impenetrable 
"white holes”  pushing all the waves away from its vicinity.

15.1 – Non-dispersive curvature of wave rays

In a cosmological lattice, the presence of a non-null gradient of volume expansion will give rise 
to a non-dispersive curvature in the propagation of wave-rays which we will now calculate.

On the curvature of waves in the presence of a singularity of volume expansion

The fact that transverse (14.16) and longitudinal (14.25) waves phase velocities increase non-
linearly with the value of the static volume expansion  via the value of the site density  will 
lead to a curvature in the propagation of these waves if they pass in the direct neighborhood of 
a singularity of volume expansion within the lattice, as shown in figure 15.1.

 Figure 15.1 - curvature of wave rays in the vicinity of a singularity of volume expansion  
with spherical symmetry

τ

τ n

τ
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Indeed, imagine a stationary cosmological lattice in the absolute reference frame of the obser-
ver GO containing a volume expansion singularity of spherical symmetry located in the center of 
the coordinate system . Consider also a longitudinal or transverse wave, initially plane, 
arriving on this singularity along the  axis. The propagation velocity increases or decreases, 
approaching the singularity, under the effect of the lattice density . Depending on 
whether the singularity is "positive" (reaches a maximum at the origin) or "negative" (passes 
through a minimum at the origin), there will appear a curvature of the wave rays, and the rays 
seem repulsed by a "positive singularity" or attracted by a "negative singularity”.
This phenomenon does not depend on the shape of the field around the singularity, but only on 
its gradient. For a plane wave incident on the singularity, this phenomenon of acceleration or 
braking of the wave will then produce a deformation of the plane wave similar to the effect of a 
negative lens in the case of a "positive singularity" or a converging lens in the case of a "nega-
tive singularity". Furthermore, as this phenomenon does not depend on the frequency of the 
wave, the singularity behaves like a non-dispersive, converging or diverging lens in the cosmo-
logical lattice.

15.2 – Perturbation sphere and ‘black holes’

Now imagine that in a stationary cosmological lattice in the absolute reference frame of the ob-
server GO and containing a "negative singularity" of the volume expansion of spherical symme-
try, located in the center of the coordinate system , we have a transverse ( ) or 
longitudinal ( ) wave in the vicinity of the singularity at a distance  from the origin of 
the singularity such that the following relation is satisfied

   (15.1)

In this case, the wave planes adjacent to  will always be parallel to a line passing through the 
origin, so that the radius of the transverse or longitudinal wave is in fact , a circle cente-
red on the origin.
The condition (15.1) can be explained. Indeed, it is easy to show that this condition entails that

   (15.2)

Thus, if a transverse or longitudinal wave passes at a distance  satisfying this relation-
ship, it becomes impossible for it to escape from the virtual sphere radius . If the field of the 
singularity is an increasing monotone gradient from its origin, wave rays of curvature located 
within this critical area will be further enhanced, so that all these waves will be permanently 
trapped by the singularity. By analogy with the "photon sphere" around a black hole in general 
relativity, we will call "sphere of transverse and longitudinal perturbations”  the layer at a dis-
tance  from the heart of the singularity. It is clear that the existence of such a sphere of 
perturbations is subject to the condition that it is located outside of the "object" responsible for 
the negative singularity of the expansion field. If the radius of this "object" is , with the speed 
of transverse waves given by (14.16) or longitudinal waves given by (14.25), we deduce the 
conditions of existence of a "black hole" using (15.2)
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Existence conditions of a “black hole”:        and   (15.3)

Figure 15.2 - «perturbation sphere» in the vicinity of a negative singularity of 

We have seen in the previous section that the propagation of longitudinal waves in the perfect 
lattice is subject to the condition that the expression  be positive. 
This condition takes the form of a condition on the background volume expansion , which 
must be greater or smaller than a critical value  given by

(15.4)

If propagation of longitudinal waves is possible in the lattice, that is to say if these relations are 
satisfied, then the longitudinal waves will also suffer the trapping phenomenon at the boundary 

.
In the case where  there still occurs another phenomena. Indeed, if the singularity is of 
increasing monotone gradient from its origin, there may be a surrounding radius 
beyond which the value  falls below , so any longitudinal wave initially trapped in the 
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limit , will then reach the second limit  beyond which it can no longer propa-
gate, it will then increase the longitudinal vibration eigenmodes localized within this volume.
In the case where , the same phenomenon does not exist since the existence of a pro-
pagation implies that .

15.3 – Analogy with Einstein’s gravitation

The cosmological lattice presents a very interesting analogy with the General Theory of Gravita-
tion of Einstein. In the vicinity of singularities of volume expansion, the spheres of disturbances 
are very similar to the photon sphere surrounding a black hole. We therefore deduce from this 
non-dispersive effect of curvature of rays by gradients of the volume expansion that the scalar 
volume expansion undoubtedly has a strong analog relationship with the gravitational field in 
General Relativity.

On the analogy with black holes in general relativity

It is also interesting to note that only a negative singularity of  has properties similar to that of 
a "black hole”, namely catching all the waves passing by its vicinity, while a positive singularity 
would behave like a "white hole", that is to say as an entity that would repel the waves and 
which could not be penetrated by waves. Hence the following conjecture has to be satisfied for 
our analogy with Gravitation

Conjecture 2:  the usual singularities of the field of expansion must be ‘negative’ 
                         for them to correspond to the usual gravitational field                           (15.5)

It is also remarkable that the curvature of the waves by a gradient of volume expansion and the 
existence of a localized sphere of perturbartions around a singularity of volume expansion is 
exclusively due to the development of the free energy per unit volume that we have used for the 
cosmological lattice. Indeed, if we look more closely at what happens in the case of conventio-
nal perfect solid, for which it is the free energy per lattice site that is developed, we find that the 
speed of transverse waves is "invariant" regardless of the expansion of the lattice, which does 
not lead to a bending of wave rays in the presence of a volume expansion gradient, or the ap-
pearance of a sphere of perturbations in the presence of a localized singularity of volume ex-
pansion. This analogy thus justifies a fortiori the conjecture 0 (13.5) that we formulated in sec-
tion 13.2, since such analogy cannot appear within the usual perfect solid.

r = rcr r = rcr2
(l ) < rcr

K1 < 0
τ (r) < τ 0 < τ 0cr

τ



Chapter 16

Cosmological evolution of a finite perfect lattice
           
Considering a finite imaginary sphere of a perfect solid or a cosmic lattice, we can 
introduce the concept of "cosmological evolution" of the lattice, assuming that one 
injects a certain amount of kinetic energy inside the lattice. In this case, the lattice 
has strong temporal variations of its volume expansion, that can be modeled very 
simplistically assuming that volume expansion remains perfectly homogeneous 
throughout the lattice during its evolution.

16.1 – Cosmological behavior of a sphere of perfect solid

Let’s imagine that in an absolute referential , the GO observes a solid, of spherical 
form, of radius , made of a lattice of  nodes (fig. 16.1). Let’s assume this solid possesses 
a homogeneous volume expansion of the background with depends on time in the form

   (16.1)

In this case, the GO  will observe that the radius  of the sphere will depend on time

   (16.2)

and that this sphere will expand or contract.  This behavior will be described as a “cosmological 
behaviour”  by analogy to the theories of the cosmological expansion of the Universe.  We as-
sume that the total energy  of the solid is a constant. It is made up of the elastic energy 

 and the kinetic energy  of expansion. 

Figure 16.1 - “Cosmological” volume expansion  of an imaginary solid sphere

The total kinetic energy  of volume expansion is linked to the speed of expansion which we 
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can characterize by the velocity   of the surface of the sphere (fig. 16.1).  The kinetic 
energy  can then be obtained by integrating on all the sphere and considering the energy 
located in the lattice contained in the volume between radius  and . The velocity of ex-
pansion of the surface is

(16.3)

since the volume expansion  was supposed homogeneous. And using the fact that the density 
of sites  is given by  

(16.4)

we have for the kinetic energy

(16.5)

We deduce that the velocity of expansion  is proportional to 

(16.6)

We also deduce that 

(16.7)

and so, as a consequence, the derivative  tends towards  if  goes to zero and 
 is finite and not null. Let’s study the cosmological behavior of perfect solids and cos-

mic lattices that we have previously defined.

16.2 – Cosmological evolution of a perfect solid

Cosmological evolution of a perfect solid with   and 

To simplify the problem, hypothesize that there is no shear strains, which is perfectly plausible 
since the volume expansion is assumed to be homogeneous, so that, for a perfect solid, one 
can calculate the energy  as a function of expansion  from equation (13.1)

   (16.8)

If no phenomenon has dissipated total energy , for example as heat, energy will be a conser-
ved quantity.
If the modulus  of the perfect solid is positive, it will only be able to oscillate between a mini-
mum volume expansion  and a maximum volume expansion , as illustrated in figure 
16.2. 
If we show in the diagrams of  and , the critical value 
above which longitudinal waves exist in the perfect lattice, we notice that during it’s ‘cosmologi-
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cal evolution’, the solid will transition between a domain ( ) where there are both longi-
tudinal and transverse waves and a domain ( ) where there are only transverse waves 
but localized longitudinal vibration eigenmodes.

Figure 16.2 - “cosmological” behavior of elastic energy  of expansion
 and velocity  of expansion of a perfect imaginary solid with 

Cosmological evolution of a perfect solid with  and 

For a perfect imaginary solid where modulus  would be negative, depending on the value of 
the total energy , this solid could have many different “cosmological behaviors” as illustrated 
in figure 16.3:
- if , it can contract and expand in a oscillating fashion between   and  or ex-
pand indefinitely from a value . It should be noted that it is hard to imagine a solid which 
would evolve by contracting from , which is why we classify these behavior in a ‘grey 
zone’,
- if , it can dilate indefinitely from . In this case also, the longitudinal waves di-
sappear as soon as .
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Figure 16.3 - “cosmological” behavior of elastic energy  of expansion 

and velocity  of expansion of a perfect imaginary solid with 

On the analogy with the cosmic evolution of our Universe

The various "cosmological behaviors" deduced for a perfect solid can be compared with the 
cosmological behavior that is assigned to our real Universe. Indeed, in the case of the real uni-
verse, we have a system that does not have longitudinal waves, as in the theory of general rela-
tivity, and which follows a cosmological evolution that is in several stages: a "big bang" from a 
singularity of space-time, followed by a period of very rapid inflation, a slowdown in inflation, 
followed, according to very recent observations, by an expansion whose speed seems to in-
crease over time. This last point is one that would correspond to the present state of our Uni-
verse.
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Amongst the "cosmological behaviors" derived for the perfect solid, only the perfect solid with 
 presents some analogy with the cosmological behavior of the real Universe. Indeed, the 

perfect solid with , if  is greater than zero (fig. 16.3), goes through all the stage, the big 
bang, inflation, slowing of inflation and growing at steady velocity in the domain where there are 
no longitudinal waves. But for this solid, the stage of increasing speed expansion inevitably 
continues towards .
Also note that the elastic energy  in the solid lattice has a very interesting analogy with the 
concept of "dark energy" of astrophysicists used to explain the increase in the rate of expansion 
of the Universe, since it is this elastic energy that is responsible for the expansion of the solid by 
increasing speed through the the modulus  of the solid.

16.3 – Cosmological evolution of a cosmic lattice

The cosmological evolution of a cosmic lattice with  and 

Imagine that in the absolute framework , the GO observes a cosmic lattice of spherical 
radius , consisting of a lattice with  meshes (fig. 16.1). The elastic energy  is written, 
by using (13.7)

(16.9)

To plot the behavior of as a function of  for this lattice, we must look for the extremas of 

(16.10)

If the modulus  of the lattice is positive,  then for  and , the value of  
tends towards two minimas equal to zero, while for , the value of  goes through a 
minimum equal to . The graph of  is shown in fi-
gure 16.4a, and we can see that it is very different from the case of a lattice of usual perfect so-
lid.
There are three modes of oscillation depending on the value of , as illustrated in figure 16.4:

- if , there are two modes of oscillation possible, a first mode between 
 and  and a second mode between  and ,

- if , there is a third mode of oscillation possible, between  
and .

In the graphs of figure 16.4, we can show the limit  taken from rela-
tion (14.26). We show a value of  close to , corresponding to the case where . 
There are again domains of different behaviors of the solid: a domain where there coexists 
transverse and longitudinal waves (for ) and a domain where there are only transverse 
waves and localized vibrational eigenmodes (for ) . But unlike the perfect solid, in the 
cosmic lattice, the position of these domains is reversed along the  axis.

k1 < 0
k1 < 0 E

τ → +∞
Eél

k1 < 0

K0 = 0 K1 > 0

Oξ1ξ2ξ3
RU N Fél

 

Fél = Nf él = − NK0

n
τ

K0=0
!"# $#

+ NK1
n

τ 2 + NK2

n
( %α i

él )2
i
∑
%αiél=0

! "## $##
+ NK3

n
( %ω él )2

%ω él=0
! "# $#

= NK1
n

τ 2 = NK1
n0

τ 2 eτ

Fél τ
Fél (τ )

dFél

dτ
= NK1

n0
2 +τ( )τ eτ = 0     ⇒     τ = 0, −2 et  −∞

K1 τ = 0 τ → −∞ Fél

τ = −2 Fél

Fmax
él = 4e−2 NK1 / n0 ≅ 0,54NK1 / n0 Fél (τ )

E
E ≤ Fmax

él = 4e−2 NK1 / n0
τ → −∞ τ1 < 0 τ 2 < 0 τ 3 > 0
E ≥ Fmax

él = 4e−2 NK1 / n0 τ → −∞
τ 4 > 0

τ 0cr = −1− 2K2 / 3K1 < −1
τ 0cr −1 K1 >> K2

τ ≥ τ 0cr
τ ≤ τ 0cr

τ



chapter 16312

Figure 16.4 - “cosmological” behavior of elastic energy  of expansion 
and velocity  of expansion of an imaginary cosmic lattice with 

The cosmological evolution of a cosmic lattice with  and 

If the modulus  of the lattice is negative, the plastic energy  presents two maximas 
for  and , and a minima for . Furthermore,  for  
(fig. 16.5).  We can consider here three different cases following the value of total energy :

- if , there exists a “cosmological solution”  around the value , for which the lattice 
contacts and expands indefinitely between values  and ,  and a second solution 
for which the lattice dilates indefinitely, at constant velocity, from the value ,

- if , there exists a solution for values inferior to , and a solution for the superior 
values. The lattice can dilate from , and can afterwards, either contract towards 

 and start the cycle again, or dilate indefinitely towards ,

- if , there exists a unique solution for which the lattice dilates one time only from 
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 to . The symmetric solution which would consist in the lattice contracting 
form , where the lattice possesses a phenomenal kinetic energy of contraction, to 

 is not prohibited but it is seems strongly improbable.

In the case of this lattice, we also notice the existence of domains of different behavior: for 
 a domain where there are both transverse and longitudinal 

waves, and for  a domain where there are only transverse 
waves and localized longitudinal eigenmodes of vibration.

Figure 16.5 - “cosmological behavior” of elastic energy  of expansion 
and velocity  of expansion of an imaginary cosmic lattice with 

The cosmological evolution of a cosmic lattice with  and 

If, in the absolute referential  of the GO we consider a cosmic lattice with   and 
, the elastic energy of expansion  is written
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(16.11)

To plot the behavior of  as a function of  for this solid, we must seek the extremes of

(16.12)

If the modulus  of the solid is negative, the energy  as a function of  presents a 
minimum for  as illustrated in figure 16.6. 

     

Figure 16.6 - “cosmological behavior” of elastic energy  of expansion
 and velocity  of expansion of an imaginary cosmic lattice with 

We then deduce the “cosmological behavior” of this type of lattice and show it in figure 16.6:
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- if , the lattice oscillates indefinitely on a closed trajectory between minimum  and 
maximum , 
- if , the lattice oscillates between  and a maximum .
In this case the lattice still presents longitudinal waves as since , we also have  

.

The cosmological evolution of a cosmic lattice with  and 

If the  modulus of a cosmic lattice is positive, the energy  as a function of  presents 
a maximum for  as illustrated in figure 16.7. 

     

Figure 16.7 - “cosmological behavior”  of elastic energy  of expansion 
and velocity  of expansion of an imaginary cosmic lattice with 
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We deduce the “cosmological behavior” of this type of lattice as shown in figure 16.7: 

- if , the lattice presents two possible trajectories, one that oscillates 
indefinitely between  and a maximal value , and one which corresponds to an 
irreversible expansion, at constant velocity, from an initial value with ,

- if , the lattice presents an irreversible expansion from  to  
, with a first decreasing velocity and then increasing velocity,

- if , the evolution of the lattice only has one trajectory presenting an irreversible expan-
sion from value  to  , with an increasing velocity.

In this case, the lattice presents longitudinal waves if , but does not present 
them if .

The cosmological evolution of a cosmic lattice with  and 

The elastic free energy of this lattice is written

(16.13)

This function is represented at the top of figure 16.8. It has zeroes for 

(16.14)

as well as a maximum in the domain  and a minimum in the domain . According to 
relation (16.6), these extremas correspond respectively to the minimum and maximum of the 
velocity of expansion  of the lattice, so that we have

(16.15)

We deduce the “cosmological behavior” of this type of lattice, as shown in figure 16.8: 

- if , the lattice presents only one possible trajectory, entirely in the domain , and 
which corresponds to a contraction and an expansion that keeps on going between two extreme 
values of ,

- if , the lattice presents two possible trajectories: the first one is an expansion/
contraction that goes on indefinitely between a positive and a negative value of , and the se-
cond corresponds to an indefinite oscillation between a negative value of  and an expansion 
going to ,

- if , the lattice presents only one trajectory which is rather interesting. We oscillate 
indefinitely between a big-bang and a big crunch. The big-bang is followed by an expansion 
phase which is very fast, then a slowdown, and then again an expansion with increasing veloci-
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ty, and suddenly an inversion of the velocity of expansion, so it contracts by retracing all the 
steps followed during the expansion phase. The contraction finishes with a big crunch, which 
can only be followed by a big-bang since the lattice has accumulated a total kinetic energy  
equal to , this phenomena is called “big bounce”.

 

Figure 16.8 - «cosmological behavior» of elastic energy  of expansion
 and velocity of expansion of an imaginary cosmic lattice with  and 

In the case of this lattice, we notice too the existence of domains of volume expansion that 
present different behaviors with regards to longitudinal waves: a domain where we have trans-
verse and longitudinal waves for ,  and a domain for 

 where there are only transverse waves and localized vi-
brational eigenmodes. The domain where there are no longitudinal waves corresponds precisely 
to the domain of the big-bang, the inflation, the slowdown of inflation, finally followed by an ac-
celeration of the expansion.
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16.4 – Analogy with the cosmological evolution of our universe
           and origin of the ‘dark energy’

In figure 16.9, we show eight different behaviors that can be obtained with a cosmic lattice, de-
pending on the values that the moduli  and  can take. It is also shown in this figure the 
domains of expansion in which the longitudinal waves cannot exist.

On the analogy with the cosmology of the real universe

It is noted that there are four different "cosmological behavior", three of which have convincing 
analogies with the cosmology of the real universe:

- cosmological lattices with  which are reported in figures 16.9 (a), (c) and (d). These 
three types of lattices all have a big bang followed by high speed inflation, a slowdown in infla-
tion and ultimately an expansion at increasing velocity towards .  All the stages follow 
in perfect order. The disappearance of the longitudinal waves takes place in these networks to 
higher expansions than a critical value , which depends on the value of the shear modulus 

,

- the cosmic lattice of figure 16.9 (b), with  and  for which there are never longi-
tudinal waves provided that , making it a very simple and very interesting case to 
describe the cosmological behavior of the real universe,

- the cosmic lattice with  or  and  are shown in figures 16.9 (e), (g) and 
(h). These three types of lattice go through the four stages of the cosmology of the real uni-
verse, in the absence of longitudinal waves (a "big bang" from a singularity of space-time, follo-
wed by a period of very rapid inflation and a slowdown in inflation, followed by an expansion 
whose speed seems to increase over time), before entering an expansion phase during which 
the longitudinal waves appear, and precede a symmetrical contraction phase back to the singu-
larity state  ("big crunch"). In this case, there is a region of the diagram for which 

 where there are no longitudinal waves, and wherein the lattice is expanding with in-
creasing velocity. Note that the lattice of figure 16.9 (g) could be an excellent candidate to des-
cribe the cosmological behavior of the real universe, because all its elastic moduli are positive,

- finally, the cosmic lattice of figure 16.9 (f), with  and , does not present the 
stages corresponding to the cosmology of the real universe, and it always has longitudinal 
waves. It is clearly not suitable to describe the cosmological behavior of our universe.

The "cosmological behavior" of a cosmic lattice can be illustrated more clearly by plotting the 
velocity of volume expansion  as a function of the volume expansion , as shown in the 
cases (c) and (d) with  in figure 16.10 and for the case (g) and (h) with  in figure 
16.11. To find these behaviors, we retrieve the value  of the expression (16.4)

(16.16)

and we deduce the velocity of expansion 

(16.17)
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Figure 16.9 - all the “cosmological behaviors” that are possible for cosmic lattices, 

depending on values  and :  (a) through (d) the lattices with infinite accelerating expansion,
(e) through (h) the lattices oscillating from big-bang to big-crunch

K0 K1
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which, compared to expression (16.6) of  allows us to write

(16.18)

Figure 16.10 - «cosmological behaviors» of the velocity  of expansion
as a function of expansion  of two imaginary cosmic lattices with
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The behavior of the rate of volume expansion  as a function of  can then be deduced 
from the knowledge of , which allows us to do the plots of figures 16.10 and 16.11.

   
Figure 16.11 - «cosmological behaviors» of the velocity  of expansion 

as a function of expansion  of two imaginary cosmic lattices with 

The figures 16.10 and 16.11 are very interesting because they clearly show the existence of an 
extremely fast initial stage of inflation of the volume expansion in cosmic lattices since 
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 for  just after the big bang stage or just before the big crunch, and the 
rate of expansion or contraction of the volume is at a minimum before accelerating again, just 
after the stage of inflation or just after the stage of re-contraction.

On the limits of our model

It goes without saying that the modeling used in this chapter to describe the “cosmological be-
haviors” of imaginary lattices is extremely simple, if not simplistic. It is essentially the initial as-
sumption of a homogeneous volume expansion throughout the lattice that can be questioned, 
because with this hypothesis was evaded the two major problems that would lead in principle to 
much more complicated models: the fact that the solid is subjected to Newtonian dynamics in 
the absolute space of GO, and the fact that we should have put a condition on the validity of the 
pressure at the outer edge of the solid sphere. But despite the extreme simplifications of our 
modeling, the overall predicted behaviors in figures 16.9 to 16.11 should still remain close en-
ough to the behaviors which could have been obtained by a more realistic treatment of the pro-
blem.

On the ‘reasonable’ choice of a cosmic lattice to describe the real universe

Among the various lattices proposed in this chapter, it is clear that the cosmic lattices have more 
interesting features than the perfect solids to describe the experimental observations  of cosmo-
logists. It is obviously not possible here to choose the cosmic lattice which is close to most of 
the known cosmological evolution of the real universe. But from a philosophical point of view 
and from the point of view of common sense, the cosmic lattices (fig. 16.9 (e) to (h)) which have 
a big bang followed by a big crunch, and thus ultimately a big-bounce, are much more satisfying 
for a Cartesian mind than cosmic lattices presenting a single and infinite expansion (fig. 16.9 (a) 
to (d)). One can then emit here a conjecture of ‘philosophical nature’

Conjecture 3:  It seems more ‘reasonable’ to imagine cosmic lattices with ,
                         so as to have a finite expansion (16.19)

As for value of , nothing allows us for the moment to propose a positive, zero or negative 
value, as the cases illustrated in figure 16.11 are both very interesting.

On the origin of ‘dark energy”

It should finally be noted that the elastic energy  contained in the cosmic lattice could 
very well correspond to the ‘dark energy’ which astrophysicists introduce to explain the accele-
ration of the velocity of expansion of the universe which was recently observed experimentally, 
since it is that elastic energy which is fully responsible for an increase of the rate of volume ex-
pansion via relation (16.18).
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Chapter 17

Maxwell’s equations of evolution of the field of rotation 
of a cosmological lattice
           
In this chapter, we start by showing we can separate the field of volume expansion 
from the other fields in the Newton equation of a cosmological lattice in the case 
where the concentration of point defects are constant. Then we use these results to 
obtain the Maxwell’s equations of evolution of a lattice in the case where the vo-
lume expansion can be treated as constant.

17.1 – Separability of Newton’s equation of a cosmological lattice
           in a ‘rotational’ part and a ‘divergent’ part

Assume that the field of volume expansion in the cosmological lattice is represented by a ho-
mogenous background field   on which we superpose a field of elastic expansion 

Hypothesis 1:         (17.1)

Introduce this field in the equation of Newton (13.14). We have

   (17.2)

in which  represents the density of energy of deformation by elastic and anelastic shear 
strains and rotations, and is worth

 (17.3)

Suppose further than the atomic concentrations of vacancies and interstitials are homogeneous 
constants in the lattice such that

Hypothesis 2:   (17.4)

In this case the equation of Newton simplifies into

 (17.5)

in which the quantity of movement can be written according to (5.101) and (5.78)
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Thanks to the second hypothesis, the linearity of equations (17.6) with respect to the various 
velocities, means that it is possible to separate the equations in two different sets by separating 
the velocities ,  and  in a component indexes «rot», associated with the deformations by 
shear and rotation on one hand, and a component indexed by «div»,  associated with the de-
formations by volume expansion on the other hand.  We write

     ;          ;      (17.7)

We also have two contributions to the equation of Newton:

- a contribution which pilots the elastic fields of shear and rotation, via the vectorial field of rota-
tion . This contribution only depends on volume expansion  via the presence of the densi-
ty of sites , and it is written

 (17.8)

with    (17.9)

- a contribution which pilots the field of perturbation of volume expansion, and which depends 
on the previous solution via the density of energy  of deformation by elastic and anelastic 
shear strains and rotations, and which is written

(17.10)

with   (17.11)

The density of flexion charges was also separated in two parts: the charges of rotational flexion  
and the charges of divergent flexion,  which satisfy the following relations

   such that       and  (17.12)

They connect the Newton's equation for expansion  (17.10) to the density of charge of curva-
ture  within the lattice.
This split of Newton's equation, in the case where concentrations of interstitials and vacancies 
are homogeneous constants allows us to resolve the spatiotemporal evolution problems of the 
cosmologic lattice, separating the solving of fields of elastic shear and rotation from the solving 
of the volume expansion of the lattice. With additional simplifying assumptions, it is possible to 
solve completely these two sets of equations. This is what we will show in the next section, 
considering the particular case where the volume expansion field can be considered almost 
constant.
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17.2 – Maxwellian behavior of the rotational part

Now make the assumption that the average value of the volume expansion  in 
the cosmological lattice can be considered in first approximation as a homogeneous constant, 
so that the site density  may also be regarded on average as a constant

Hypothesis 3:     (17.13)

With these hypothesis, we can re-write the equations of Newton (17.8)  by introducing a vecto-
rial moment  conjugated to rotations , under the form

  (17.15)

By hypothesis, the anelasticity of the lattice manifests itself purely by shear and/or rotation, so 
that it can be represented here by a vector of anelastic rotation , by writing the relation 
(2.40) under the form

 (17.16)

Note that you can imagine in this case that the torsor of moments  derives from a virtual state 
equation. This results in a virtual free energy density of elastic rotation per lattice site in the form

 (17.17)

so that the volume density of virtual free energy of elastic rotation, linked to the deformations by 
shear strains and pure elastic rotations, without volume expansion can be written

(17.18)

The equations needed for the description of elastic shear and rotation of the cosmological lattice 
have yet to incorporate the topological equations for the elastic rotation vector , i.e. the 
geometro-kinetic equation and the equation of geometro-compatibility in the presence of dislo-
cation charges

      and      (17.19)

With regards to density  of inertial mass of lattice, the hypothesis 2 and 3 allow to insure it is a 
constant

(17.20)

so that the evolution equation of this density in the local referential  allow us to deduce 
that the divergence of  is null

(17.21)

This quantity  is directly deduced from (17.9) and can be written under the following form
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 (17.22)

From relations (8.22) and (10.28), we can suppose that there are no sources of charges of rota-
tion  in the lattice

Hypothesis 4:    (17.23)

so that the equation of continuity for the charges of rotation can be written

(17.24)

Finally, it is still possible to establish an energetic balance equation from the equations (17.15) 
and (17.9) 

(17.25)

The relations thus obtained for the cosmological lattice in the local coordinates  of GO, 
in translation  and in rotation in the absolute referential, are reported in table 17.1, 
where they are compared with the Maxwell’s equations of electromagnetism in an electrically 
charged environment which is conductive, magnetic and dielectric.
There is a very strong analogy between these two sets of equations, except that the evolution 
equations involve the total (material) derivative, while Maxwell’s equations involve the partial 
derivative with respect to time. However, it must be remembered that the total derivative (2.20) 
in the local frame can be replaced by the partial derivative with respect to time if the strains are 
small enough and / or slow enough close to the origin of the local frame, which we did in table 
17.1.

17.3 – Analogy with the Maxwell’s equations of Electro-Magnetism

The analogy between the cosmological equations of a lattice taken at almost constant and ho-
mogeneous volume expansion and Maxwell's equations of electromagnetism is entirely remar-
kable, because it is absolutely complete, as clearly shown in the equations given in table 12.1 
and 17.1. In fact, our equations contain an additional density of “rotational” flexion charges in 
the second pair of equations, which has no counterpart in the Maxwell's equations. By then as-
suming a cosmological lattice in which  can be neglected

Hypothesis 5:     (17.26)

the analogy between the equations of the cosmological lattice and the equations of Maxwell 
becomes absolutely exact, and deserve further comments.

On the analogy of the charges of rotation and the electrical charges

The equations of table 17.1 show a complete analogy between the density  of charges of ro-
tation and the density  of electrical charges, as well as the vectorial flow  of charges of rota-
tion and the density of electrical current . 
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On the analogy between the anelasticity of the lattice 
and the dielectric properties of matter

The phenomenon of anelasticity introduced here by the term becomes in comparison with 
Maxwell's equations of electromagnetism, analogous to the dielectric polarization in the rela-
tionship , giving the electric displacement  versus electric field  and 
polarization of matter . 
This analogy between fields  and  is very strong since the possible phenomenological 
behavior of these two quantities are entirely similar, as shown in the relaxation, resonant or hys-
teresis behaviors described in section 7.8 and figures 7.7 and 7.10. For example, in the case of 
a pure relaxation, it is possible to connect  and  by means of a complex modulus, as it is 
possible to connect  and  via a similar complex dielectric coefficient in electromagnetism 
(in fact, a deeper comparison would show that the behaviors associated with thermal activation 

Table 17.1 - “Maxwellian” formulation of the equations of evolution of a cosmological lattice
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   − ∂(2
!
ω él )
∂t

+ rot
" !" !

φ rot ≅ (2
!
J )

   div (2 !ω él ) = (2λ)

⎧
⎨
⎪

⎩⎪
                                              ⇔       

   − ∂
!
D
∂t

+ rot
" !" !

H =
!
j

   div
!
D = ρ

⎧
⎨
⎪

⎩⎪

 

   ∂(n
!prot )
∂t

≅ −rot
" !" !m

2
⎛
⎝⎜

⎞
⎠⎟ + 2K2

!
λ rot

   div(n!prot ) = 0

⎧
⎨
⎪

⎩⎪
                                        ⇔        

   ∂
!
B
∂t

= −rot
" !" !
E

   div
!
B = 0

⎧
⎨
⎪

⎩⎪

   (2 !ω él ) = 1
K2 + K3( )

!m
2

⎛
⎝⎜

⎞
⎠⎟ + (2

!
ω an )+ 2

!
ω 0 (t)( )       

   (n!prot ) = (nm)
!
φ rot + CI −CL( ) !φ rot + 1

n
!
JI
rot −
!
JL
rot( )⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧

⎨
⎪⎪

⎩
⎪
⎪

    ⇔        
   
!
D = ε0

!
E +
!
P +
!
P0 (t)

   
!
B = µ0

!
H + χ para + χ dia( ) !H +

!
M⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

   ∂(2λ)
∂t

≅ −div(2
!
J )⎧

⎨
⎩

                                                           ⇔           ∂ρ
∂t

= −div
!
j⎧

⎨
⎩

   −
!m
2

⎛
⎝⎜

⎞
⎠⎟ (2
!
J ) ≅

            
!
φ rot ∂(n

!prot )
∂t

+
!m
2

⎛
⎝⎜

⎞
⎠⎟
∂(2
!
ω él )
∂t

− div
!
φ rot ∧

!m
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

             ⇔       
   −
!
E
!
j =

        
!
H ∂
!
B
∂t

+
!
E ∂
!
D
∂t

− div
!
H ∧
!
E( )

⎧
⎨
⎪

⎩⎪

  ct =
K2 + K3

mn
                                                          

⎧
⎨
⎩

                                    ⇔           c = 1
ε0µ0

⎧
⎨
⎩⎪

 2
!
ω an

 
!
D = ε0

!
E +
!
P +
!
P0 (t)  

!
D  

!
E

 
!
P

 2
!
ω an

 
!
P

 
!
ω  

!m
 
!
D  

!
E

.



chapter 17330

also present analogies).
As for the term of homogeneous dielectric polarization  we introduced here, it is the ana-
logue of a term of global rotation of the local coordinate  in the absolute GO referential. 
This term therefore disappears in the case where the local coordinate system  is only 
in translation  relative to the absolute referential.

On the analogy between mass transport in the lattice and magnetism of matter

As represents both the average quantity of movement per unit volume of the solid and the 
average mass flow within the solid, we deduce that the mass flow within the solid is due at the 
same time to a transport of mass  with velocity  corresponding to the movement of 
the lattice, second to a mass transport  at velocity  by the driving move-
ment of the point defects by the lattice and finally to a mass transport due to the 
phenomenon of self-diffusion of vacancies and interstitials.
Each of these mass transports has an analog in Maxwell's equations of electromagnetism. The 
mass transport by the lattice is analogous to the term of the magnetic induction in 
a vacuum. The mass transport  by dragging along the point defects by the 
lattice perfectly corresponds to the term  of magnetism, wherein the magne-
tic susceptibility is composed of two parts: the positive paramagnetic susceptibility , which 
becomes the analog of the concentration  of interstitials, and the negative diamagnetic sus-
ceptibility , which is therefore analogous to the concentration of vacancies .
With regards to the phenomena of auto-diffusion by the holes and interstitials, we have in these 
equations the term  which links the last part of  to velocities  and 

 of auto-diffusion of point defects

   (17.27)

As an example we can imagine a hypothetical lattice in which the vacancies are tightly anchored 
to the lattice ( ), while the interstitials are free to move ( ). The 
equations of movement (7.61) then become, by taking into account hypothesis 2

      (17.28)

The solutions to these hypothetical equations are then simply written, by introducing a constant 
velocity vector 

  (17.29)

As a consequence, the quantity of movement  within the lattice can be written

(17.30)

Mass transport  now has a term associated with both vacancies and inter-
stitials, whose coefficient  is analogous to the magnetic susceptibility  in electro-
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magnetism, and that can take a positive or negative value depending on concentrations  and 
 of point defects. It further contains the term  associated with mass transport by 

inertial conservative interstitial movement, which is perfectly analogous to the permanent ma-
gnetization  of the ferromagnetic and antiferromagnetic materials in electromagnetism.
The presence of the constant term  in clearly corresponds to a non-Markovian 
type of process, since the value must depend on the history of this hypothetical solid lattice. 
One could imagine for instance that the movement of interstitials is controlled by a dry type of 
friction with the lattice, in which case there would be a critical force of depinning for interstitials, 
which would lead to the emergence of cycles of hysteresis of as a function of . 
This is absolutely similar to the cycles of hysteresis of magnetization  as a function of the 
magnetic field  observed in ferromagnetic or antiferromagnetic materials.

On the complete analogy with the electromagnetism theory

The complete analogy between the parameters of our approach and the Maxwell’s theory of 
electromagnetism is reported in table 17.2

On the effects of volume expansion of the lattice in the absolute frame of the GO

In this analogy, the existence of a uniform nonzero translation  of the lattice, equivalent to 
a translation of the local coordinate system  relative to the absolute referential  
of the GO would be analogous in the Maxwell equations to a homogeneous magnetic field 
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Table 17.2 - The complete analogy with the Maxwell’s theory of electromagnetism
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 in space. This last remark implies that if a solid lattice was expanding in the absolute 
referential frame of GO, there should appear a field  in the local referential frame 

. This field  should be similar to a locally homogeneous magnetic field  in 
space if the universe was expanding, and which should point in the direction of movement of the 
local coordinate of the observer relative to absolute space.

On the non-existence of magnetic monopoles in this analogy

The equation  reflects the fact that we consider a solid with a homogeneous field 
of static volume expansion. The existence of a non-null and constant value of  such 
that

(17.31)

would imply that there exists a constant and divergent field of velocity   of the sites of the 
lattice, and thus, with hypothesis , a non-zero source of sites of lattice 

(17.32)

or that we have a constant and divergent flow of auto-diffusion , and as a conse-
quence, localized and non null sources of point defects ,  and/or , which would be 
written, by taking into account the hypothesis that  and , as

(17.33)

As part of the analogy with electromagnetism, a relationship  would be 
like a  relationship. Now this last relationship shows the well-known concept of 
magnetic monopoles, particles of unipolar magnetic charges, suggested by some theories, but 
never observed experimentally, and who would therefore be localized and continuous source of 
lattice sites or of point defects in the lattice.
In fact, the existence of similarity between two theories is always a very fruitful and successful 
thing in physics by the reciprocal contribution of one theory to the other. In our case, it is clear 
that this analogy with the electromagnetic field theory will enable us subsequently to use the 
whole arsenal of theoretical tools developed for a long time in field theory, such as for example, 
the Lorentz transformation or delayed potential theory. In the other direction, the approach deve-
loped here is actually a much more complex theory that classical electromagnetism, since it 
stems from a tensorial theory, which can be reduced to a vectorial theory by contraction of ten-
sor indices. We can also choose more specific cases with less restrictive hypothesis in the solid 
lattice. Considering the tensorial aspect of solid lattice theory and by relaxing the more restric-
tive hypothesis, the analogy will become particularly interesting and fruitful, as we shall see la-
ter.

 
!
H0 (t)

 
!
φO(t)

Ox1x2x3  
!
φO(t)  

!
H0 (t)

 div(n
!prot ) = 0

 div(n
!prot )

 
div(n!prot ) = div mn 1+CI −CL( ) !φ rot⎡⎣ ⎤⎦ + div m

!
JI
rot −
!
JL
rot( )⎡⎣ ⎤⎦ ≠ 0

 
!
φ rot

τ = cste Sn

 
div
!
φ rot ≅ ∂τ / ∂t

=0
"#$ + Sn

n
= Sn
n

 
m
!
JI
rot −
!
JL
rot( )

SI −L SL
pl SI

pl

CI = cste CL = cste

n ∂CL

∂t
≅ 0 ⇒        div

!
JL
rot = SI−L + SL

pl( )−CL SL
pl − SI

pl( )

n ∂CI

∂t
 ≅ 0     ⇒        div

!
JI
rot = SI−L + SI

pl( )− CI SL
pl − SI

pl( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

 div(n
!prot ) = cste ≠ 0

 div
!
B = cste ≠ 0



Maxwell’s equations of evolution of the field of rotation of a cosmological lattice 333

Are there "vector electric charges" in this analogy?

One can legitimately ask what could be the analogy of the density of flexion charges  in the 
Maxwell’s equations. If there were a quantity  similar in the Maxwell equations, one could 
hypothetically call it a density  of "vectorial electric charges" by postulating the following ana-
logy

(17.34)

The equations of Maxwell would then be written a little differently from the known equations, 
with an extra term of charge but not in the equation  as suggested in the theories of 
magnetic monopoles, but in the equation , in the following way

     and    (17.35)

in which  is a new electric coefficient, analogous to the modulus 

 (17.36)

In the static case, if such a vectorial charge did in fact exist, the equation containing it would be 
written as

 (17.37)

so that the density  of «vectorial electric charges» would be the source of a rotational electric 
field  and a rotational electric field of displacement , just as the scalar density  of electri-
cal charges is the source of a divergent electric field of displacement 

 (17.38)

If we now compare the coefficients of both theories we obtain the following analogies

      et             (17.39)

However, experimental observations have never revealed the existence of such "vectorial elec-
tric charges". In fact, this can be explained quite simply by the fact that the topological singulari-
ties considered in the cosmological lattice will always be exclusively twist disclination loops, 
edge dislocation prismatic loops and mixed dislocation glide loops, and in the case of such 
loops, it is easy to see that the global vectorial charge  obtained by integration of the linear 
flexion load  on the contour of the loop is zero, so that the vectorial electric charge density  
obtained as the mean value of the sum of all the vectorial charges  contained per unit vo-
lume is necessarily zero, so that

 (17.40)

We can therefore introduce here a new conjecture for our approach:
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Conjecture 4:    There are no localized electrical vector charges  in the cosmological lattice,
               so that the density  of vector electric charges is necessarily equal to zero

                 in the Maxwell equations: (17.41)

Note that there could perhaps be long "strings" of edge dislocation that would cross the entire 
cosmological lattice and that would indeed have a linear density  of vector electric charge, 
which would then effectively cause a non-zero density  of vector electric charge to appear in 
Maxwell's equations. But this is a somewhat extravagant hypothesis. 
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Chapter 18

Resolution of the Newton’s equation 
in the presence of topological singularities
           
In this chapter, we show that in the presence of a topological singularity Newton's 
equation of cosmological lattice can be separated into two partial equations: a "first 
partial equation of Newton" that solves the problem of the field and elastic energy 
of  the distortions associated with the presence of the topological singularity, and a 
"second partial differential equation of Newton" that controls the expansion pertur-
bation field due to the elastic and potential energies of the topological singularity. 
Then we briefly discuss the use that will be made of the partial differential equa-
tions thus obtained through this separability of Newton's equation.

18.1 – Separability of the Newton’s equation in two equations describing
           the “elastic distortions” and the “perturbations of expansion”
           associated with a topological singularity of the lattice

Assume the existence of a localized singularity of dislocation charges, of spherical or tubular or 
membrane shape, containing charge densities ,  and/or , and suppose that one can ne-
glect the anelasticity and the self-diffusion in the lattice, by assuming that

Hypothesis:        and     (18.1)

The equation of Newton (13.14) gives us a lattice equation which is written

 (18.2)

The presence of a localized singularity of dislocation charges can be introduced into this equa-
tion, considering that the fields existing in the lattice are of three different types: the elastic fields 
due to the charges associated with the singularity, which will be indexed (ch), the fields inde-
pendent of the singularity, which are due for example to the other singularities, which will be 
indexed (ext), the background field  of the volume expansion of the lattice and finally a dis-
turbance field of the volume expansion due the distortion energy  stored in the lattice by the 
elastic field of the singularity considered

      (18.3)

Let’s introduce these fields in the equation of Newton
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 (18.4)

We develop these terms by grouping them appropriately

(18.5)

We note that this equation is composed of three coupled equations that govern the different 
fields in the lattice. We will describe them in the following paragraphs

The equation of Newton for the fields external to the singularity

The fields external to the singularity satisfy their own equation of Newton

(18.6)
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ment associated with . We will assume, to simplify the problem of treating the fields belon-
ging to the singularity, that the external field  can be considered constant, that is to say, 

 and , in which case the equation (18.6) in its static form becomes com-
pletely independent of the fields  and 

On the “first partial equation of Newton” for the elastic fields of distortion
associated with the topological singularity

The fields ,  and  associated to the singularity satisfy two partial equations of New-
ton which are tightly coupled. The first one treats the elastic distortion fields and  asso-
ciated with the charges due to the singularity, and it is written in all generality
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(18.7)

This equation is coupled to the fields  and  by the expression 
appearing in the expression for the quantity of movement associated with . In the static 
case, this coupling disappears, so that we can be deduce the static fields of elastic distortions 

 and  generated by the topological singularity totally independently of the fields and 
.

It is noted that this partial Newton equation depends on the density of flexion charges  of the 
singularity. The divergence of this equation in its static form then provides a static equation de-
pendent on the density of curvature charges  of the singularity since the divergence of the 
density of flexion charges is equal to the density of curvature charges of the singularity

(18.8)

On the “second partial equation of Newton” for the perturbation fields of expansion
associated with the  topological singularity

The last partial equation of Newton we can extract from (18.5) deals with the perturbation  
of the expansion field and the resulting elastic energy of the singularity stored in the lattice. It is 
written

(18.9)

It is clear that this equation is itself very strongly coupled to the fields , ,  and  
deduced from the other two Newton's equations. First there is a dynamical coupling via the term 

appearing in the expression of the quantity of movement associated with  
. There also appears a coupling term associated with the modulus  in the form 

. But the main terms of couplings are those due to the elastic energy of 
the singularity and the coupling energy of the singularity with external fields, which appear in 
two particular contributions and have very specific meanings:
- the density of elastic energy stored in the lattice by the elastic fields due to the singularity, that 
is, the distortion energy density of the singularity

(18.10)

- the density of coupling energy of the singularity with the external fields, that is to say the densi-
ty of potential energy of the singularity

(18.11)
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By assuming we know the two terms  and , obtained by the resolution of 
equations (18.6) and (18.7), the equation of Newton for the perturbations of expansion  due 
to the singularity can be written symbolically under the form

(18.12)

In the static case, if we have solved equations (18.6) and (18.7) taken in the static case, mea-
ning that we know the equilibrium values of fields , ,  and , the 
equation of equilibrium for the static fields of perturbation can be written

(18.13)

and the solution is an equation of second order in 

(18.14)

in which the densities of energy  and , which are given by relations (18.10) and 
(18.11), are calculated using the external fields  and the elastic fields 

 due to the singularity.
The constant  was introduced when we dealt with the gradient. But since  must be 
identically null if the energy  is null, this constant must be null.

18.2 – On the consequences of the separability of the Newton’s equation
           in the presence of a topological singularity of the lattice

On the method to find the fields associated with a topological singularity

The decomposition of the equation of Newton in three partial equations which we just went 
through shows an equation (18.6) for the external fields, an equation (18.7) for the elastic distor-
tion fields associated with the presence of a topological singularity and an equation (18.9) for 
the perturbations of the expansion field due to the energy of elastic distortions associated with 
the topological singularity.
The methodology for solving the problem of fields associated with a topological singularity is 
then as follows:

- in a first step, one must solve independently the partial differential equation of Newton (18.7), 
or equation (18.8) in a static case, in order to find the fields of distortions  and  genera-
ted by the singularity, regardless of the disturbances of the expansion due to the energies 

 and  of the singularity,

- then, from the elastic field  and previously obtained from the partial differential equa-
tion of Newton (18.7), we calculate using equation (18.12), or equation (18.14) in the static 
case, the additional perturbations of the field of expansion due to the elastic energy  
andc  of the singularity.

This process seems quite complex at first sight, but it contains a huge potential regarding the 
description and interpretation of the behavior of topological singularities in the cosmological lat-
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tice. Indeed, we will show this later in this book by dealing, in detail, with the following themes:

On the link between the “first partial equation of Newton” for the elastic distortions
and the Einstein’s Special Relativity

The partial equation of Newton (18.7) which allows us to find the elastic distortions of fields as-
sociated with topological singularities will allow us to calculate the fields and the energies asso-
ciated with screw dislocations, edge dislocations, screw disclination loops, edge dislocation 
loops and mixte dislocation loops (chapter 19). We will show that these fields are subject to a 
relativistic dynamics (chapter 20), which allow us to discuss the "role of aether"  that the cosmo-
logical lattice plays vis-a-vis the topological singularities, and the similarities and differences 
with the Special Relativity of Einstein.

On the link between the “second partial equation of Newton” for the perturbation fields 
of expansion and the General Relativity of Einstein and the Quantum Physics

The partial equation of Newton (18.9) allowing us to find the volume expansion perturbations is 
very important too.
Indeed, we will see in chapters 22-26 that this one, if applied to macroscopic clusters of 
singularities with a rather low mass density, leads to the existence of a static volume expansion 
field, which is deduced from Newton's second partial equation in its static form, and which 
allows to find the gravitational effects, and to discuss the analogies and differences of our 
approach with Newton's Gravitation, Einstein's General Relativity and the Modern Cosmology of 
the Universe. 
Then we will also see in chapters 27-29 that this partial equation, if applied to microscopic 
singularities of high mass density, cannot present static solutions and must therefore be solved 
in its dynamic form, which allows us to find Quantum Physics, and to discuss the analogies and 
differences with Schrödinger's equations, the concepts of fermions and bosons, Heisenberg's 
uncertainty and Pauli's exclusion principles, and the notions of spin and magnetic moment of 
elementary particles.
 The fact that the mass density of clusters of singularities plays a considerable role in the 
resolution of the second partial Newton equation in static or dynamic form is quite remarkable, 
as this will provide an objective criterion for quantifying the quantum decoherence phenomenon 
which is the basis for a realistic explanation of the quantum phenomenon.  

.



chapter 18340



Chapter 19

Topological singularities in a cosmological lattice
           
In this chapter, we use the first part of the equation of Newton of the cosmological 
lattice in the presence of a topological singularity to calculate the distortion fields, 
the rest energy, the classical kinetic energy and the inertial mass of screw and 
edge dislocations. Then we show that it is possible to define a perfect cosmological 
lattice satisfying certain specific conditions, which allows to find the expression of 
Einstein  without any appeal to the principle of relativity, both for screw 
dislocations and edge dislocations.
We then calculate rotational and flexion fields associated respectively with the rota-
tional charges and curvature charges of a localized macroscopic topological singu-
larity within the lattice.
Finally, we describe the various elementary topological singularities which can be 
formed with dislocation and disclination loops. We then use the overall charges of 
rotation and curvature of these elementary singularities to calculate the fields away 
from these singularities.
Finally, we discuss why these elementary singularities could be the building blocks 
for constructing the elementary particles of the Standard Model.

19.1 – Fields, energies and inertial mass of a screw dislocation

The elastic fields of shear and local rotation of a screw dislocation

In the cosmological lattice, the rotation field of a dislocation string is the same as the one found 
in the case of a perfect solid in section 12.3

 (19.1)

  (19.2)

and the behavior of the module of  as a function of distance  from the center of the 
string is the one shown in figure 12.2. The same goes for the external field of displacement by 
rotation, which is then written in cartesian coordinates and in polar coordinates

 (19.3)

By using relations (2.48) which are valid outside the dislocation string, we can easily deduce the 
shear field outside the string from this external field of displacement

 (19.4a)
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 (19.4b)

 (19.4c)

The elastic energy of distortion of an immobile screw

The total rest energy of the screw dislocation string is obtained from the elastic potential energy 
stored by unit volume outside the string. We 

have two terms of energy associated with the screw dislocation: first the term of elastic distor-
tion  of local rotation and shear due to the linear charge  of the screw dislocation

 (19.5)

and, second, the energy term  associated with the perturbation  of the volume ex-
pansion generated by the energy .  The perturbation is calculated thanks to equation 
(18.13)

 (19.6)

The term of energy of the pure elastic distortion of the screw depends primarily on the external  
deformation field as we have seen in section 12.3 

 (19.7)

in which  is the external dimension of the cosmological lattice and  is the lattice unit cell 
length of the cosmological lattice. We have .
With regards to the perturbation of expansion  generated by the energy  and the 
energy   stored by these perturbations we will come back to those later.

On the kinetic energy associated with the distortions generated by a screw dislocation
moving at low velocity

In the case where a screw dislocation moves in the direction , with velocity  that is small 
compared to the velocity of transversal waves , the velocity field associated with the field of 
elastic displacement  of the dislocation is given by relation (12.46)

 (19.8)

and the kinetic energy stored in the lattice by this velocity field, expressed in unit length of the 
screw dislocation in movement, is given by relation (12.49)

(19.9)
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the potential energy  stored in the lattice by the presence of the same string, we have the 
following relationship between the rest energy and the kinetic energy of the screw dislocation

(19.10)

This kinetic energy  is stored in the solid lattice by the dynamic deformation of the lattice 
imposed by the mobile screw dislocation. 

The inertial mass per unit length of a screw dislocation moving at small speed

With the relation (19.10), we obtain the famous Einstein expression linking the inertial mass to  
the rest energy via the speed of transversal waves for a screw dislocation in the cosmological 
lattice

 (19.11)

This relation was found here without any recourse to a relativistic dynamic of the string, since it 
is due to the fact that the rest energy  and the kinetic energy  are respectively the 
elastic potential distortion energy (of shear and local rotation) and the kinetic energy that is sto-
red within the lattice by the dynamic deformations due to the elastic distortion fields (shear and 
local rotation) of the mobile screw.

19.2 – Fields, energies and inertial mass of an edge dislocation

The equation of Newton for an edge dislocation in the cosmological lattice

In the presence of a screw or edge dislocation with linear charge  or , the fields of elastic 
distortion  and  associated with these charges satisfy the partial equation of Newton 
(18.7), namely

(19.12)

As we have seen in the previous chapter, this equation is coupled to the external fields  and 
to the perturbation of expansion  due to the energy density of the charges by the term 

 which appears in . 
However in the static case, this coupling disappears, so that equation (19.12) allows us to de-
duce the static fields  and  generated by the singularity of charges in a manner totally 
independent of the fields  and   thanks to the static equation

 (19.13)

The elastic fields of rotation and volume expansion of an edge dislocation

Let’s consider a string of edge dislocation type, which has the shape of a linear cylinder with 
infinite length and radius , as shown in figure 12.1, which contains a vectorial density  of 
flexion charges which is perpendicular to the direction of the string and points in direction . 
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To find the static fields ,  and  associated with this dislocation when it is immobile 
within the cosmological lattice, we can use the partial equation of Newton (19.13) in a slightly 
modified form, by supposing that there is no anelasticity, no vacancies and no interstitials , as

  (19.14)

in which we introduce a dimensionless module  which is worth

  (19.15)

Outside the string of edge type , we can take the solutions (12.55) which we had obtai-
ned in section 12.4. In this case, the vector of rotation  must possess only one component 
along the axis  which must depend on  in cylindrical coordinates, while the scalar of 
expansion  must depend on . Furthermore, the quantities  and  must de-
crease in  with distance  from the center of the dislocation, in the same fashion as the 
screw dislocation we just saw. Thus, the solution for equation (19.15) for  must be written 
in the following form

 (19.16)

Where  and  are integration constants. We can then calculate  and 

 (19.17)

 (19.18)

which, when introduced in the equilibrium equation (19.15), give us the relationship that exists 
between  and 

  (19.19)

Inside the string, we can integrate the equilibrium equation on the cylinder with radius  
containing charge density , with radius  and of unit length

 (19.20)

Since the integral of  on the cylinder of unit length gives us the linear charge  of the string, 
the previous relation is easily transformed in
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 (19.22)

We then have as a result of the equation of equilibrium inside the string a relationship perfectly 
independent of the radius  of the string

   (19.23)

From relations (19.19) and (19.23), we deduce the constant values of  and 

     and      (19.24)

Thanks to relations (19.16), and by using the relations of cylindrical coordinates

     and      (19.25)

and remembering that the value of the linear charge  is worth , the fields  
and  outside the dislocation string are written

(19.26)

The elastic displacement field of an edge dislocation

It is possible to find the field of displacement  outside the edge dislocation string. Indeed as 
the field  can only have components along axis  and , and  must not depend 
on , we have 

 (19.27)

so that we have the following differential equations

 (19.28)

We can then try the classic solution (12.65) for the field of displacement  

(19.29)
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 (19.30)

By comparing these relations to (19.26), we deduce three relations 

    ;       ;   (19.31)

whose solutions are

 (19.32)

With this system, the constants  and are still undetermined and there exist a infinity of pos-
sible solutions of equilibrium. Let’s solve this without making a choice for  and , by introdu-
cing an adjustable parameter  such that we can write

        and          (19.33)

The field of displacement only contains , and is written

 (19.34)

The elastic shear field of an edge dislocation

By applying relation (2.48), namely

 

(19.35)

we can also deduce the elastic shear tensor  outside the dislocation string by using relations 
(19.30) and (19.34). By calculating the shear tensor and expressing it in polar coordinates, we 
obtain
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  (19.36)

The elastic rest energy of an edge dislocation

The rest energy of an edge dislocation string is obtained from the elastic potential energy 
 stored by unit volume outside the string, in which 

the volume expansion is given by . We have two terms of energy associated 
with the edge dislocation: the pure elastic energy  and the energy term  associated 
with the perturbation  of volume expansion

(19.37)

The pure rest elastic energy of the edge dislocation is obtained by the following integration

 (19.38)

The integration on the the terms containing  gives us, thanks to (19.26)

 

 (19.39)
so that

  (19.40)

The integration on the term containing  is obtained thanks to (19.36)

 (19.41)

And finally the integration on the term containing  is obtained thanks to (19.26)

 (19.42)

The rest energy of the edge dislocation is thus worth, without taking into account the energy of 
the field of perturbation of expansion
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 (19.43)

We note that this rest energy contains a term dependent on modulus  associated with the 
deformation of shear of the media, a term dependent on modulus  associated with the de-
formations by volume expansion of the media and a term dependent on modulus  associa-
ted with the rotation of the media. This rest energy does not depend on modulus .
We will revisit later the terms of perturbation of expansion  generated by the energy  
and the energy   stored by these perturbations

The kinetic energy of an edge dislocation with low velocity

In the case where the edge dislocation is moving in the direction , with velocity  which is 
small compared to the speed of transversal waves ,  the components of the field of velocity 
are obtained by replacing  by  in the expressions (19.34) of the components of 
the field of displacement, and by computing the derivation 

 (19.44)

After derivation in the coordinate system , it is very useful to transform in the coordi-
nate system  which is moving with velocity  with the edge dislocation, and in 
which  becomes . We then have for the velocity field and by using polar coordinates 

 and   expressed in the plane of the mobile cylinder

 (19.45)

The kinetic energy of the edge dislocation is then obtained by computing the following integral

 (19.46)

It is a rather lengthy calculation which finally leads to the kinetic energy of a edge dislocation. 
This energy is given by unit length, and it depends on parameters  and module 

 (19.47)
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On the inertial mass per unit length of the edge dislocation moving at small speed

We thus have the following relations for the elastic and kinetic energies of an edge dislocation 
moving in a cosmological lattice

 (19.48)

So that the inertial mass of the edge dislocations is written

 (19.49)

The relationship between the energy of distortion and the inertial mass of an edge dislocation 
differs from the Einstein relationship by the term in brackets, which depends on the parameter  
and moduli , via the module .

19.3 – Conditions for an edge dislocation to satisfy Einstein’s relation
                 
To insure a complete analogy between the topological singularities of our approach and the par-
ticles of the real universe, we need for the edge dislocations to satisfy precisely the relation of 
Einstein. This is true if the term between brackets in (19.49) is equal to 1. 
Let’s start from the fact that the lattice under consideration is finite and that the boundary condi-
tions are ‘free’, so that the value of the parameter  is the one that minimizes the distortion 
energy of the edge dislocation. In section 12.5, we have shown that this condition implies that

Hypothesis 1:    (19.50)

With this condition, we obtain the following relations

 (19.51)

By extracting   from the first quadratic relation and equating it with the second expression, we 
obtain the condition that the wedge dislocations satisfy Einstein's relation:

 (19.52)
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To satisfy this condition independently of the value of  , it can be assumed a priori that

Conjecture 5a:    the module  should satisfy  (19.53)

With this conjecture, the previous relationship becomes simpler

   (19.54)

and in this case, in order for Einstein's relationship to be satisfied, a second conjecture has to 
be made 

Conjecture 5b:    the module  should satisfy and (19.55)

in such a way

   (19.56)

Using then conjecture 1, that is  , and conjecture 6, that is , we deduce 
that the condition of existence of transverse waves is reduced to that the modulus  is posi-
tive. Moreover, by emitting a new conjecture (which will be verified later on), namely that the 
modulus  is positive

Conjecture 6:   the module  should satisfy (19.57)

the only possible solution to the relationship (19.56) is then as follows

  (19.58)

Thus, if the elastic modules of a cosmological lattice satisfy all the relations deduced from 
conjectures 1 to 6, namely ,  and  , the screw and 
edge dislocations both satisfy true Einstein's relations which are deduced in a purely classical 
way, without resorting to a principle of special relativity.

       and       (19.59)

19.4 – The «perfect cosmological lattice»           
       
With a hint of fantasy, we will henceforth call a "perfect cosmological lattice" a cosmological 
lattice satisfying all conjectures 0 to 6, since in such a lattice the elastic distortion fields of any 
type of dislocation exactly satisfy Einstein's relationship.

On the universality of the relation of Einstein in the perfect cosmological lattice

In a perfect cosmological lattice, we can express from relations (19.48)  the values of potential 
energy and non-relativistic kinetic energy of an edge dislocation

  (19.60)
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 (19.61)

we note that the potential energy and the kinetic energy of a non-relativistic edge dislocation in 
the perfect cosmological lattice are both much smaller than the potential energy and kinetic 
energy of a non relativistic screw dislocation with the same Burgers vector , as 
we have according to conjecture 6

(19.62)

We will see later which important role we will attribute, in our analogy with the physical theories 
of the universe, to the fact that the edge dislocations follow exactly the Einstein relations and 
the fact that they also present energies which are a lot smaller than the screw dislocations.

19.5 – Spherical singularities of given charge of rotation

Let’s imagine that there exists within a perfect cosmological lattice a macroscopic cluster of to-
pological singularities with the shape of a sphere with radius  containing a uniform densi-
ty  of charges of rotation, and let’s try to calculate the elastic rotation associated with this 
charge, both inside and outside the singularity. 

The field of rotation due to a localized singularity of rotation

Let’s consider a spherical coordinate system and let’s apply the compatibility relation 
 in the form of an integration on the spherical volume of radius 

(19.63)

The divergence theorem allows us to transform this volume integral into an integral on the 
boundary surface of the volume

 (19.64)

where  is the normal vector to the spherical surface. 
Let’s introduce the global charge  given by the integration of the density  in the volume of 
the cluster, or given by the sum of the elementary charges  within the cluster

(19.65)

Outside the cluster, meaning for , this relation gives us a external field  of rota-
tion due to the cluster of charges, which is independent of the radius  of the cluster
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(19.66)

The field  inside the cluster, meaning for , depends on 

 (19.67)

So the norm of  as a function of , the distance from the center of the charge, is shown in 
figure 19.1.

Figure 19.1 - The norm of the field  both inside and outside a uniform charge of rotation 

The energy of the field of rotation of rotational singularity

To calculate the elastic energy stored in a lattice by the presence of a rotational field  of the 
singularity, namely the elastic energy of elastic distortion  of the lattice due to a charge 

 of the cluster, we should in principle calculate the energy associated with the field of rota-
tion, and add the energy of the shear fields associated with said field of rotation. But in the case 
of a perfect cosmological lattice, we have relation  between the modules of rotation 
and shear, so that we can in principle neglect the energy associated with the shear and write 
approximatively, according to expression (13.6) of the density of elastic energy of distortion that

 (19.68)

The elastic energy density stored by the presence of the cluster of singularities is thus worth 
 by unit volume, so that the energy of distortion stored outside the singularity in a 

quasi infinite volume, meaning for a media such that , is written

 (19.69)

and the elastic energy of distortion stored inside the singularity
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(19.70)

The elastic rest energy  of the spherical cluster of rotational charges  and of radius 
 can be written, in the case of a perfect cosmological lattice, under the form

 (19.71)

We note that it is finite and essentially depends on the radius  and the charge  of the 
cluster.

19.6 – Spherical singularities of given charge of curvature

A macroscopic singularity of radius  can have, besides a global charge of rotation ,  a 
global charge of curvature .  Indeed such a singularity can be composed of a cluster of ele-
mentary topological singularities of the lattice, such as prismatic loops of dislocations (fig. 9.36) 
which each possess an elementary curvature charge . If , we speak of a vacancy 
cluster since we are missing lattice sites within the cluster, and if , we speak of an inter-
stitial cluster, since we have interstitials within the cluster. 

The flexion field due to a localized singularity of curvature

A localized singularity of curvature is responsible for a non-null and divergent flexion field in it’s 
vicinity. Indeed if we know the density  of the charges of curvature within the singularity, 
we have according to (8.39)

 (19.72)

The integration of this relation on a sphere of radius larger than 

 (19.73)

allows us to write, thanks to the divergence theorem

 (19.74)

and this integral implies the appearance of a field of flexion in the exterior of the singularity of 
curvature, linked to the spatial curvature of the lattice (see figure 3.3)

 (19.75)

The vectors of this flexion field converge towards the singularity if it is of interstitial nature (ex-
cess of lattice sites in the singularity), and is divergent from the singularity if it is of vacancy type 
(lack of sites within the singularity). Furthermore, we can also notice that the flexion field due to 
the cluster of charges of curvature does not depend on radius  outside of the cluster.
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19.7 – «Electrical» charge of rotation, energies and inertial mass
           of a twist disclination loop (Twist Loop - TL)

The simplest topological singularity which can have a localized charge of rotation , amongst 
all the topological singularities found in a solid lattice in chapter 9, is the twist disclination loop 
(Twist Loop - TL) described in figure 9.40, which could also be called a screw pseudo-disloca-
tion loop (9.77). We recall that such a loop is generated by a rotation  of the upper plane of 
a circular cut of the media with angle  with respect to the inferior plane. The fact that we 
glue the two planes together, which have been displaced with respect to each other by a rota-
tion, gives rise, on the plane of the loop, to a surface charge  of rotation. According to 
(9.74) and (9.78), we have 

  (19.76)

This global charge  is in fact a global charge of rotation of the TL as seen at great distance 
from the loop. This means that such a loop can indeed behave like the source of a divergent 
field  of rotation within the solid media. We have also shown in chapter 9 that such a loop can 
be seen in a different way. Indeed the fact that we effect a rotation of the two planes with res-
pect to each other creates a curvilinear displacement  along the loop which is similar to 
that of a screw dislocation. The curvilinear Burgers vector  and the linear charge  of 
this loop of pseudo-dislocations is then worth

 (19.77)

We obtain the same value of the global charge tan that obtained by considering the surface 
charge , which allows us to consider this topological singularity either as a twist disclination 
loop or a screw pseudo-dislocation loop.

The internal and external fields of rotation of a TL

A TL can be considered as a screw pseudo-dislocation with curvilinear Burgers vector . 
Let’s consider then the field of rotation within the torus encompassing a loop situated in the 
plane  (fig. 19.2), by introducing the distance  which separates, in a perpendicular sec-
tion of the torus, a given point from the center (where the loops is). The norm of the rotational 
field near to this point   can be deduced from (19.2)

(19.78)

Let’s now consider the rotational field away from the loop, which corresponds to the divergent 
external field of a charge  of rotation, and whose norm can be deduced from (19.4)

 (19.79)

where  represents the distance that separates the point to center  of the disclination loop.
In the case of the disclination loop, we go from a divergent near field of rotation with toroid 
symmetry to a divergent far field of rotation with spherical symmetry. 
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Figure 19.2 - Twist disclination loop (TL) with radius  in the plane  

and the field of rotation  in the plane of the loop and  in the plane perpendicular to the loop

To approximatively find the distance from which the field transition from toroidal symmetry to 
spherical symmetry, we must compare the expressions (19.78) and (19.79), and suppose we go 
from one field to the other when the magnitudes of the fields becomes approximately equal, 
which means that
- in the plane of the loop, at point , we must have

 (19.80)

which is translated into relation 

 (19.81)

The search for the values of  and  for which the toroidal field is roughly equal to the 
spherical field in the plane of the loops gives the following values

 (19.82)

- in the plane perpendicular to the loop, at point , we have

  (19.83)

which is translated into relation 

(19.84)
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The search for the value  for which the toroidal field is roughly equal to the spherical field 
gives in that case the following value

(19.85)

We deduce that the transition between the internal field of toroidal symmetry and the external 
field of spherical symmetry is situated at a distance  from the center of the loop which is 
roughly . This realization will allow us to calculate the energies and inertial mass of 
the twist disclination loop.

The energies and the inertial mass of a twist disclination loop

The energy of distortion of a twist disclination loop is the energy stored by the rotation genera-
ted by the screw pseudo-dislocations with radius in a torus where the central fiber is the 
disclination loop and for which the radius of the section corresponds roughly to , to which 
we add the energy of the external field with spherical symmetry for distances larger than 

. The calculation of the exact value of this energy is rather complex, due in part to the 
fact that the field of rotation is exactly zero in the center of the loop. However, we can give an 
approximation of the distortion energy of the loop, by using the energy of a linear dislocation to 
calculate the energy of the curved dislocation. In the case where the radius  of the loop is 
much greater than the core radius  of the screw pseudo-dislocation ( ), this approxi-
mation must give the real value of the energy of distortion within the torus encompassing the 
loop and we can correct it by introducing a constant  which corrects the value of the exter-
nal radius of the torus to give us a better approximation of the actual energy.  We will thus write 
the energy of distortion of a toroidal field from the energy of a screw dislocation by unit length 
(19.7), as the energy contained in the torus encompassing the screw loop disclination and which 
is approximatively worth

  (19.86) 

where  is the core radius of the screw pseudo-dislocation, which is of the order of magnitude 
of the cosmological lattice step in the presence of a field of expansion ,  is the reach 
of the toroidal field of the loop and  is a constant which can only be obtained by the exact 
calculation of the energy of the loop, but which much be close to unity given our previous dis-
cussion.  To simplify the rest of our expose, since the ratio  roughly does not depend 
on the background expansion, we will consider it constant in first approximation, and we will 
introduce a constant  which is intrinsic to the twist disclination loop and which is worth

     with     (19.87)

So that we can write the energy of the toroidal field in the following simplified manner

 (19.88)

We can then compare this energy of the toroidal field of the loop to the energy associated with 
the spherical field of rotation in the far field of the loop, which is taken into account at distance 
greater than  to the loop, and which is due to the rotational charge , namely 
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  (19.89)

The energy of the field is directly deduced from the value (19.69)  and is consequently worth

  (19.90)

By comparing this value with the energy of the toroidal field (19.88), we obtain the ratio

 (19.91)

Let’s admit the following new conjecture

Conjecture 7:   the radius of a twist disclination loop is much greater 
                          than the cosmological lattice step:   

                              (19.92)

With this conjecture, the energy associated to the external field of rotation becomes perfectly 
negligeable vis-à-vis the toroidal energy of the loop. As a consequence the energy  of the 
twist disclination loop is essentially contained in the toroidal field of the loop

 (19.93)

The relativistic kinetic energy of the TL is the energy which is stored by the movements of the 
lattice generated by the mobile screw pseudo-dislocation. By using the relation (19.9), and ad-
mitting hypothesis (19.92), the kinetic energy of the loop contained in the previous torus is 
roughly worth

(19.94)

Again, the external kinetic energy of rotation is negligeable in comparison with this kinetic ener-
gy, so that we can consider that the kinetic energy of the loop is essentially confined to the to-
roidal field of the loop. We thus deduce that the Einstein relation is perfectly applied to the non-
relativistic kinetic energy of the twist disclination loop

 (19.95)

We deduce that the inertial mass of the twist disclination loop, expressed from the radius of the 
loop and it’s Burgers pseudo-vector

 (19.96)

We know that the existence of elastic fields of distortion induces, via their energy, a field of per-
turbation of expansion. We will return in more detail later on this perturbation of the expansion 
associated with the twist disclination loop.

!ω ext
el =

qλTL
4π

!r
r3

= 1
2
RTLΛTL

!r
r3
 = − 1

4
RTL
!
⌢BTL
!
t
!r
r3
      (r > 2RTL )

Edist ext
TL ≅ 2K3

qλTL
2

16π 2r4
4πr2 dr

2RTL

R∞

∫ ≅
K3qλTL

2

4πRTL
≅≅ πK3RTLΛTL

2 ≅ π
4
K3RTL

!
⌢BTL
2

Edist ext
TL

Edist torus
TL ≅ πK3

2 K2 + K3( )ζTL

≅ π
2 ln ATLRTL / a( )

ln ATLRTL / a( ) >>1

Edist
TL

Edist
TL ≅ Edist torus

TL ≅ 2 K2 + K3( )ζTLRTLΛTL
2 = 1

2
K2 + K3( )ζTLRTL

!
⌢BTL
2

Ekin
TL ≅ 2πRTL

mnΛTL
2 ln ATLRTL / a( )

2π
v 2

⎛
⎝⎜

⎞
⎠⎟
= mnζTLRTLΛTL

2 v 2 = 1
4
mnζTLRTL

!
⌢BTL
2 v 2

Ekin
TL = 1

2
Edist
TL

ct
2 v

2 = 1
2
M 0

TLv 2

M 0
TL = Edist

TL

ct
2 ≅ 2

ct
2 K2 + K3( )ζTLRTLΛTL

2 = 1
2ct

2 K2 + K3( )ζTLRTL
!
⌢BTL
2



chapter 19358

19.8 – «Electric» interaction between localized topological singularities

Supposed first that two twist disclination loops have charges  and  of rotation.  
There exists an interaction force between these two loops, of electrical type, and this interaction 
force can be deduced in a very generic fashion by using the force of Peach and Koehler. In-
deed, the spherical field of external rotation generated by the charge  situated in the cen-
ter of the coordinate system is given by (19.66)

  (19.97)

We deduce thanks to (17.17) the torsor of moments due to the charge 

 (19.98)

If a twist disclination loop with charge  of rotation is then found in position , the 
force acting on this charge due to the charge  is the force of Peach and Koehler 

(19.99)

Thus, the force between the two charges is repulsive if  and attractive if 
. This interaction force between the charges of rotation of the twist disclination 

loops is the perfect analog to the interaction force  between two 
electrical charges  and  in electromagnetism, and thus fits perfectly with the analogy we 
developed in section 17.3 with the Maxwell’s equations. 

Electric interaction between two macroscopic clusters of singularities

As relation (19.99) is perfectly independent of the size of the loops, it can be generalized wi-
thout issue to two macroscopic clusters of topological singularities with macroscopic charges of 
rotation  and  separated by a distance 

(19.100)

In this case of two macroscopic clusters, the force acting between them does not depend on the 
respective radius  and  of the two clusters.

19.9 – «Gravitational» charge of curvature, energies and inertial mass 
            of a prismatic edge dislocation loop (Edge Loop - EL)

The simplest microscopic structure of a localized charge of curvature , amongst all the topo-
logical singularities found in a solid lattice in chapter 9, is the prismatic edge dislocation loop 
(EL) described in figure 9.36b. 
Such loops posses a Burgers vector which is perpendicular to the plan of the loop and exhibit a 
global scalar charge  of curvature given by (9.68) to (9.70). Since ,we have
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 (19.101)

Given this last relation, we deduce that an EL of vacancy type has a product  which is 
positive, and thus a charge  which is positive, while an EL of interstitial type has a product 

 which is negative, and thus a charge  which is also negative.

The energies and the inertial mass of an EL

Let’s consider an EL with radius , the distortions induced in the lattice are those of an edge 
dislocation.  We can then calculate approximatively the elastic energy of distortion of this loop 
as the energy that is stored in the lattice by the distortions of this loop as the energy that is sto-
red in the lattice by the elastic distortions generated by the edge dislocation in a torus centered 
on the loop. Using the same arguments we used for the TL we deduce that in a perfect cosmo-
logical lattice, the elastic energy of distortion of an EL is essentially contained in the toroidal 
fields surrounding the loop

  (19.102)

where  is a constant close to 1, and which should be calculated exactly by the integration of 
energy on the fields within the torus, and where  is a constant intrinsic to 
the EL. 
Outside the EL, the fields due to the EL are reduced to a field of flexion (19.75) with spherical 
symmetry, which is then written

 (19.103)

It is clear that this field of flexion must be associated with a perturbation of the field of volume 
expansion which must posses a given energy. We will later revisit this problem, and we will 
show that the energy associated with this field of flexion is negligible vis-à-vis the energy of dis-
tortion (19.102), so that the energy of the EL is essentially contained in the toroidal fields in the 
immediate vicinity of the loop.
The non-relativistic kinetic energy of the loop is essentially the kinetic energy stored in the lat-
tice by the dynamic distortions generated by the EL in the torus centered on the loop. By using 
relations (19.60) we deduced for an EL,  we deduce that in the cosmological lattice, we have 
approximately the following kinetic energy for an EL 

  (19.104)

Again, this kinetic energy is essentially contained in the immediate vicinity of the loop, and we 
notice that the relation of Einstein is perfectly in line with the non-relativistic kinetic energy of the 
dislocation loop of the EL since

 (19.105)

We thus deduce the inertial mass of the EL in the cosmological lattice
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 (19.106)

We will revisit later the field of perturbation of expansion associated with the loop.

19.10 – «Electric» dipolar field of rotation, energies and inertial mass
             of a mixed sliding dislocation loop (Mixed Loop - ML)

The mixed dislocation loop (ML), which is of vectorial nature, was obtained by sliding (a parallel 
translation in the plane of the loop) in the direction of the Burgers vector, so that the lattice does 
not show “extra-material” in this case (fig. 9.36a). On the other hand, the presence of a screw 
component in the regions where  induces a dipolar field of rotation  in 
the vicinity of the sliding loop.

The energies and the inertial mass of a ML

if we consider a ML of radius , the distortions induced in the lattice at short distance are 
those of a screw dislocation for angles  and  , and those of an edge dislocation for 
angles  and . We can consider that we morph continuously as a function 
of angle  from a screw dislocation to an edge dislocation. The energy of distortion associated 
with the curved string is stored essentially in the torus centered on the loop. But as the two parts 
which are edge and the two parts with are loop are respectively of opposite charge, the field 
associated to the edge parts and the screw parts diminish very quickly at great distance from 
the loop. For example, the module of the field of rotation in the plane of the loop and on a dia-
meter going through the screw parts behave as

 (19.107)

in the far field.  If the radius  of the loop is largely superior to the step  of the lattice, we 
can take into account this rapid decrease of the dipolar field by imagining that the field in the 
neighborhood of the string is that of a dislocation.  We can thus calculate approximatively the 
rest energy of such a loop by integrating the energies by unit length of the string inside the torus 
for the screw and edge components as a function of angle . We have

 (19.108)

A precise calculation of the energy will lead to the value of the constant  characteristic to 
the geometry of the mixed loop and which must be close to 1, so that

 (19.109)

Since  in the perfect cosmological lattice, we have approximatively

(19.110)
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where  is a constant parameter of the ML.
We should in theory take into account the energy of distortion due to the rotation field exterior to 
the loop. However it is smaller than the energy of distortion (19.90) associated with the field of 
external rotation of a twist disclination loop, so that we can neglect this energy in comparison to 
the energy of distortion  contained in the torus. This means, again, that the energy of the 
ML is essentially contained in the immediate vicinity of the dislocation loop.
The non-relativistic kinetic energy of the ML is approximatively computed like it’s elastic energy 
of distortion

 (19.111)

so that

 (19.112)

We notice that the energies  and  are in fact those given by the screw part of the sli-
ding loop and that those are essentially contained in the immediate vicinity of the dislocation 
loop. The relation of Einstein is thus exact in the case of a ML, since

 (19.113)

We deduce the inertial mass of this loop in a perfect cosmological lattice

 (19.114)

With regards to the perturbations of the field of expansion associated with this loop, we will revi-
sit them later in more detail in chapter 24, where we will see that the energy associated with the 
field is negligible vis-à-vis the energy of distortion  contained in the torus.

19.11 – Elementary topological building blocks for the world
            of fundamental particles

In table 19.1, we have shown the complete set of results we have obtained for the 3 types of 
elementary loops that one can find in a cosmological lattice (TL, EL and ML).  In our analogy 
with the real world, the three types of disclination and dislocation loops could constitute the to-
pological building blocks of the cosmological lattice which could allow us to build more complex 
structures which would in turn be the analogs of the fundamental particles of the standard mo-
del. 

The TL, the simplest topological singularity giving us an electrical charge

At a certain distance from the center of a TL, roughly at , the external field of rotation of 
the TL behaves exactly like the external field of a spherical charge . We can 
then ask what should the radius  of the spherical charge be so that it presents an elastic 
energy of distortion equal to the energy of distortion of the TL.  
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Table 19.1 - Energies and inertial masses of elementary loops 
of dislocation and disclination in a  «perfect cosmological lattice»

The sliding mixed dislocation loop (Mixed Loop - ML)
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With the charge value of  giving us a far field similar to the TL, the energy of the spherical 
charge of radius  is worth, according to (19.71)

      (19.115)

For this global energy of the spherical charge to be equal to that of the TL with radius  and 
with linear charge , the radius  of the charge must satisfy the following relations, by re-
membering that  in the perfect cosmological lattice

             (19.116)

The radius  of the spherical charge  which would have the same elastic energy as the 
TL is then

             (19.117)

We note that the radius of a spherical charge which would have an energy of the field of rotation 
equivalent to the toroidal field of a TL should be a lot smaller than the radius of the TL.  Since 
the TL is the simplest microscopic singularity of the lattice with a non-null charge  of rota-
tion, the TL is the simplest analog of an electrical charge in our model.

The EL, the simplest topological singularity giving us a charge of spatial curvature

When we compare the elastic energy of distortion of an EL with the elastic energy of distorsion 
of a TL with the same Burgers vector, we note that, since , we have 

  (19.118)

Thus, the inertial mass of an EL is a lot smaller than the inertial mass of a TL.
Also since the EL has a non-null charge of curvature , which can be positive 
(for a vacancy loop) or negative (for an interstitial loop), it is necessarily associated with a 
flexion field  in the far field by curvature of the lattice which is given by

 (19.119)

Thus, the EL is the simplest microscopic singularity which gives us a spatial curvature of the 
lattice by the divergent flexion field associated with it, while the TL is the simplest microscopic 
singularity of the lattice which is a source of spatial torsion of the lattice via the associated di-
vergent field of rotation.
Just as we have in first approximation identified the TL with an electron in particle physics, the 
EL, which doesn’t have a charge of rotation and whose rest mass is much weaker than the TL 
could very well be identified with a neutrino, which has no electrical charge and has no mass 
when compared to the electron.
If we admit in first approximation this analogy, the neutrino would in this case be a source of 
spatial curvature by flexion of the perfect cosmological lattice, corresponding to a curvature of 
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space in general relativity, while the electron charge would be a source of spatial torsion by rota-
tion of the perfect cosmological lattice, corresponding to the electric field of electromagnetism. 
This analogy with the two leptons of particle physics is very sketchy for now, and it could be that 
more complex combinations of these elementary loops in the form of dispiration loops with more 
complex structure will be needed to explain the different particles of particle physics, as we will 
see later.

The ML, the simplest topological singularity giving rise to an electric dipolar moment

Contrary to the TL and the EL, the ML does not have any far fields such as a divergent field of 
rotation or a divergent field of flexion. However this loop presents a dipolar moment of rotation 

 in it’s vicinity, linked to the two opposed charges of rotation situated on each 
side of the loop. Thus the ML is the simplest singularity of the lattice which is at the source of a 
dipolar moment of rotation.
In our analogy with the ‘real world’ the ML could be the simplest structure giving us a dipolar 
electric moment for an elementary particle. Finding this dipole and measuring the dipolar electric 
moment in particle physics is actually an important topic of research in particle physics.

On the various physical properties carried by the loop singularities

From the previous discussion, it would seem that the TL would carry the electrical charge, the 
EL the curvature charge and the ML the electrical dipolar moment. 
We can add to these three properties another property which could have a big role. In our ana-
logy with the real world, it is difficult to imagine, in order to find an analog to the spin of a charge 
particle and the magnetic moment associated with it, that a singularity of spherical symmetry 
with a rotation charge as described in section 19.5 would rotate on itself. However if we consi-
der that the analog to an electrical charge is a TL, as treated in section 19.7, the topology of this 
singularity allows us to naively imagine that this could turn about one of its diameters. In this 
case the distribution of charges of rotation, analogous to a distribution of the electrical charge in 
the form of a ring along the perimeter of the TL, would impose the emergence of a magnetic 
moment of the loop associate with the real movement of rotation. We will revisit this topic later.
There is a fifth fundamental property of particle physics which we can address with our analogy. 
It has to do with the fact that we can calculate the elastic energies of distortion  and the 
kinetic energies of the various loops, and that we can deduce their inertial mass , 
and that they are essentially contained in the immediate vicinity of the loops. The important fact 
is that they all satisfy the Einstein relation 

 (19.120)

which is a fundamental property of the loops which was derived without any appeal to a relati-
vistic principle. 
Furthermore, the inertial mass of the loops is a property linked to the inertial mass of the cosmo-
logical lattice in the absolute referential of the outside observer GO. In an analogy with the ‘real 
world’ the inertial mass of the topological lattice would correspond to the famous Higgs field 
which had to be introduced to explain the mass of elementary particles, and the Higgs particle 
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would then be the only real particle of the ‘real world’ since it would correspond to the funda-
mental massive particle constituting the perfect cosmological lattice, while the other elementary 
particles of the Standard Model would correspond to topological singularities of the perfect cos-
mological lattice.
There is a lot of ground to be covered to find an analogy which would, via a combination of the 
different topological loops, give us the particles of the standard model and their physical proper-
ties. The main problem we will address in the following is to find analogies which could explain 
the gravitational behavior of the objects of the real world at a macroscopic scale (Newton gravi-
tation, General Relativity), as well the quantum behavior of the world at a microscopic scale 
(Quantum Physics). 
However, we will for now remember that many of the fundamental properties of elementary par-
ticles of the real world find a simple, and classical, explanation thanks to the analogies with the 
elementary loop singularities of a perfect cosmological lattice.
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Chapter 20

Relativistic dynamics of topological singularities
in the perfect cosmological lattice
           
In the two previous chapters, we calculated the kinetic energy associated with the 
movement of a dislocation or a loop of dislocation, or a loop of disclination in a per-
fect cosmological lattice, implicitly assuming that the distortion due to moving 
charge is transmitted within the lattice with a near infinite speed compared to the 
speed of the charge in the lattice. However, disturbances in a solid lattice are, in 
reality, transmitted with finite speeds  for transverse disturbances and  for 
longitudinal disturbances. To account for the effects of disturbances propagation 
with finite speeds in the solid lattice, when the speed of the charge becomes signi-
ficant in comparison to the velocities of propagation of transverse and/or longitudi-
nal waves, we will show that we have to introduce the Lorentz transformation as a 
mathematical tool allowing us to move from a stationary referential frame in the 
lattice to the mobile referential frame associated with the moving charge.
We apply here the Lorentz transformation to the singularities in motion in order to 
obtain, in the absolute frame of the lattice, the fields of dynamical distortions and 
velocities associated to screw and edge dislocations, localized rotation charges, 
twist loops and edge loops moving at relativistic speed. From these fields, their 
total energy will be calculated. The total energy is the sum of the potential energy 
stored by the dynamic distortions of the lattice created by the presence of the mo-
ving charge and the kinetic energy stored in the lattice by the movement of said 
charges. The total energy will be shown to satisfy a relativistic dynamics. Finally, 
we will show with the Lorentz transformation that a relativistic term of force is acting 
on the charges of rotation in movement, term that is perfectly analogous to the Lo-
rentz force in electromagnetism.

20.1 – Mobile charges of rotation and Lorentz transformations

When topological singularities with charge ,  or  are moving in the referential frame 
 attached to the solid lattice with speeds that are non negligible with respect to the 

speed of waves in the media (either longitudinal or transversal waves), we want to find the dy-
namical fields ,  and  that are generated by these singularities in the re-
ferential frame  . Solving the differential equations of the solid for moving singularities 
directly in the referential frame  is not easy. But using a referential  that is 
co-moving with the singularities, in which the singularities appear immobile, must allow us to 
calculate more simply the statical fields in , and then to obtain the dynamical fields 
in  using some transformation laws which have to be defined.
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Example of the case of a moving screw dislocation

Let’s consider an infinite screw dislocation along the axis  and let’s suppose that it is mo-
ving with velocity  in the direction of axis . In the reference frame  co-moving 
with the string, the field of displacement has to be the field of displacement for a statical screw 
dislocation, which we will write in  as

      (20.1)

In order to transform this statical field in  in the dynamical field associated with the 
moving dislocation in , we have to establish the laws of transformation which furnish 
the dynamical fields in . And the dynamical fields thus obtained have to satisfy the spa-
tiotemporal equations of evolution in . As there is a translation of the frame 

 with regard to the frame , the transformation law has to transform the co-
ordinate  of  to a coordinate which has naturally to depend on  in the 
frame . We can emit à priori the following hypothesis for the transformation laws

Hypothesis 1:     (20.2)

With this transformation law, the statical field of displacement  becomes a dynamical one 
in  which depends on the factor 

      (20.3)

It is possible to calculate the dynamical fields of rotation  and lattice velocity 
 associated with this moving screw dislocation in the frame 

     (20.4)

     (20.5)

But in the frame , these fields have to satisfy the following spatiotemporal equations of 
evolution
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which can be written, using the fact that  and , as

     (20.7)

It is easy to verify that the second relation is perfectly satisfied. For the first relation to be satis-
fied, by introducing  and  in it, the following relation has to be satisfied 
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between the parameters  and  introduced in the transformation laws of hypothesis (20.2)

         with      (20.8)

in which it appears the well known factor  of the Lorentz transformations.
Introducing this relation in (20.3), (20.4) and (20.5), we obtain the expressions of the fields

      (20.9)

It is remarkable that these fields, which satisfy perfectly the spatiotemporal equations of evolu-
tion in frame , do not depend on the parameter , but only on the parameter , so 
that the parameter  can be freely chosen, and here we will admit the value of 1, so that the 
spatial transformation laws become simply

 (20.10)

The contraction of the dynamical fields in the direction of the screw dislocation motion

The expressions (20.9) for the dynamical fields  ,  and  are 
effective solutions of the topological equations and the Newton equation for a screw dislocation 
moving in referential . It is interesting to have a look on the behavior of these fields as 
a function of the velocity  of the dislocation. We can take for example the projection  of the 
external vector of rotation in the direction of the dislocation movement, and report its value 

, taken at time  and for coordinate , as a function of  for dif-
ferent values of the ratio , as illustrated in figure 20.1. We observe then that the horizontal 
component of the field of rotation seems contracted along the axis . It is easy to calculate 
from (20.9) that the same value of  is observed at a distance  of the origin, 
which corresponds to

 (20.11)

so that the field of rotation of the moving dislocation is effectively contracted along the axis  
by a factor .

The spatial contraction of a moving cluster of topological singularities of rotation

Imagine now a cluster of singularities of rotation which are bonded together through rotation 
fields (remember that the rotation field corresponds to the electrical field in our analogy with the 
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GO, the rotation fields associated with this cluster as to contract along the axis  with a fac-
tor  in order to satisfy the topological equations and the Newton equation of the lattice. The 
consequence is then that the cluster itself, which is bonded by these rotation fields, will have to 
contract along the axis . If this cluster represents an “object” for the GO, this “object” will 
contract along the axis . But observed in its own frame , this “object” will re-
main exactly the same than at rest in the absolute frame , and its shape does not 
change in the frame   whatever is the velocity  of the “object” in .

Figure 20.1 - Contraction of the component  of the vector of rotation of a moving
screw dislocation in , in the direction of its movement, as a function of its velocity 

The dilation of time of a moving cluster of topological singularities of rotation
in the frame 

Imagine now that the observer measure the time  which is necessary for a transversal wave 
to travel a distance  in the absolute frame , to be reflected on a mirror, and to return 
to the point of emission.  It is clear that he measures a time equal to 

 (20.12)

Such a device based on an “object” constituted by a cluster of singularities bonded by rotation 
fields can be used by the observer GO as a time base, a clock giving the basic lapse time .
Imagine now that the same device, based on the same “object”, but moving now at a speed  
along the axis  in the reference frame , is observed by the GO. If the transversal 
wave is emitted in the moving frame  in the vertical direction inside this frame, the 
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emitted wave is seen by the GO as a non vertical wave in the frame , as illustrated in 
figure 20.2. For the observer GO, the time which is necessary for the wave to do the round-
trip through the reflection on the mirror of the moving “object” is easily calculated using the tri-
angle in the plane 

 (20.13)

This means that the basic time of the moving clock in frame , measured by the GO 
in its absolute reference frame , seems to be dilated, expanded as a function of the 
velocity  by a factor of . This means also that the clock of the moving “object” is slowing 
down in comparison with the absolute clock of the GO.

Figure 20.2 - The trajectory of the transversal wave emitted vertically by the local clock
of the moving “object” in the frame , as observed by the GO in its absolute frame 

We can still ask if the time in the frame  of the “object” remains isotropic in this 
frame, in other words if a clock based on a horizontal trajectory of the transversal wave, give the 
same time than the vertical clock. If this horizontal clock is observed by the GO in its reference 
frame , the trajectory of the wave can be illustrated as in figure 20.3.
In the trajectory diagram of figure 20.3, the trajectories of the moving mirrors are represented as 
two lines with a slope , separated by a distance  in the direction . The trajectories of 
the transversal wave rays are represented by two lines with slopes  and  respectively, 
for the directions of the waves. In this diagram of the trajectories, we have

(20.14)

This system of equations as the following solution for the lapse time which is necessary for 
the wave to do the roundtrip through the reflection on the mirror of the moving “object” 

(20.15)

But for the GO, the distance  between the two mirrors associated to the moving “object” is 
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contracted by the factor  as we have seen in the previous section (20.11), which furnishes 
the relation between the distance  and the distance  at rest separating the two mirrors

(20.16)

Figure 20.3 - The trajectory of the transversal wave emitted horizontally by the local clock 
of the moving “object” in the frame , as observed by the GO in its absolute frame 

Combining relations (20.15) and (20.16), we deduce that

(20.17)

which clearly shows, in comparison with relation (20.13), that the two moving clocks, working 
respectively with a vertical wave propagation and a horizontal wave propagation in frame 

 furnish exactly the same local time, meaning that a local time  exists and that 
this local time  remains isotropic in the mobile frame , independently of the direc-
tion of motion of the “object” inside the lattice.
In the moving frame , the length that the wave has to travel along  or  
inside the clock device is measured as the length , and the local lapse of time to do the 
roundtrip through the reflection on the mirror is measured to be  in the vertical as well as in 
the horizontal case by the local clock. This means that the wave velocity measured in the mo-
ving frame  has exactly the same value  than the one measured in the frame 

, independently of the speed  of the frame  inside the frame . 
Imagine then a transversal wave propagating along  in the frame 

(20.18)

In order to transform this wave in the frame  , we use the transformation (20.10) and 
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the following relation in which  and  are parameters to be determined
(20.19)

so that the expression of the wave (20.18) becomes, in the frame 

(20.20)

This wave propagates also with the velocity  in , so that

(20.21)

which can only be satisfied if the parameters  and  have the following values

     and     (20.22)

The transformation law for  becomes then

(20.23)

The Lorentz transformation for a moving “object”  bonded by fields of rotation

The fact that the fields of rotation, and as a consequence the moving “objects” bonded by rota-
tion fields, are really contracted in the direction of motion by a factor , that the 
isotropic time measured by the clock of the moving “object” is really dilated by a factor  
and that the velocities of transversal waves measured in  and in  have 
exactly the same value , means that the transformation laws (20.10) and (20.23) allowing to 
pass from one frame to the other is in fact the same than the well known Lorentz transformation 
of the electromagnetism

                        (20.24)

Note that this transformation has been initially used simply as a mathematical tool allowing one 
to calculate with the Maxwell’s equations the electromagnetic fields generated by a moving elec-
trical charge. Later, this transformation has been used in special relativity by postulating that the 
relation (20.18) is applicable to any frames moving relatively to one another, which corresponds 
in fact to axiomatically admit the constance of the light velocity in any frame.
Here, in the case of a solid lattice, the Lorentz transformation is obtained by a different ap-
proach based on the existence of a solid lattice in the absolute reference frame  of the 
GO, which is the support (the aether) for the transversal wave propagation. This approach al-
lows us to demonstrate the reality of the physical consequences of the Lorentz transformation,  
as the spatial contraction and the time dilation in  of moving “objects” constituted of 
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topological singularities bonded by rotation fields. And this demonstration is based on the initial 
hypothesis (20.2) that the GO can introduce a relative frame  which is associated 
with the moving “object” in its absolute frame . The use of the Lorentz transformation in 
the case of the cosmological lattice is then limited only to transform the fields between a moving 
relative frame  and the absolute frame  of the GO, which is fixed within the 
lattice. As a consequence, there is here absolutely no axiomatic hypothesis that the transforma-
tion of Lorentz is applicable to any frames moving relatively to one another.

20.2 – The two Lorentz transformations in the case of a cosmological 
           lattice with an expansion background 

Consider that the expansion background of the cosmological lattice satisfies the following hypo-
thesis

Hypothesis 2:            (20.25)

In this particular case, both transversal waves as well as longitudinal waves can propagate in-
side the lattice.
If the observer GO has now to calculate the fields associated with a moving “object” constituted 
by topological singularities which are bonded at once by fields of rotation and by fields of ex-
pansion, the problem becomes much more complex than the previous one when only rotation 
fields are concerned. By supposing that the displacement of the bonded charges in the referen-
tial  takes place with velocity  in the direction , we then define two mobile refe-
rence frameworks that are co-moving with the charges,  and , by 
attributing to each of these referential the transformation laws of Lorentz with velocities  and 

 respectively.  We define

           and                  (20.26)

For , the Lorentz transformations and its inverse become respectively

          and          (20.27)

For , the Lorentz transformations are also easy to establish

          and          (20.28)
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Thanks to these transformations, we can also establish the relationships that exist between the 
expressions of the operators of time and space, to the first and second order, for 

(20.29)

and for 

(20.30)

An example of application of the two transformations of Lorentz in the frame  

Starting from the equations of evolution of a cosmological lattice in the presence of weak per-
turbations  of the volume expansion, it is possible to find a simplified version of the equation 
of Newton (13.14) in . In the very simple case where there are no charges, nor flows, 
nor auto-diffusion, namely if

Hypothesis 3:     (20.31)

the principal equations in the presence of weak perturbations can be summed up to the three 
following sets, by replacing  by  in the vicinity of the origin of 
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(20.32b)

We easily deduce a linearized wave equation for a velocity field

(20.33)

In which the velocity of transversal waves and longitudinal waves are respectively worth

(20.34)

(20.35)

By using a vector displacement approximatively given by relation , we can again 
write the wave equation under the form

 (20.36)

Let’s revisit equation (20.27) and calculate rotational and divergence by introducing the values 
 and  defined as

          and           (20.37)

We have then the following equations

 (20.38)

Thus, in the referential  linked to the solid lattice, the quantities  and  decouple 
from each other and each satisfies an independent wave equation,  governs the transversal 
displacement field and  the field of longitudinal displacement.
By applying the Lorentz transformations (20.28) and (20.30) to the wave equations (20.38), we 
obtain the following relationships in frames  and  respectively

(20.39)

We notice that the Lorentz transforms introduced previously insure that the fields  and  
satisfy the same waves equations in both the co-moving referential and the immobile one with 
respect to the solid lattice. From which we can conclude that the transformations of Lorentz, 
leave invariant the physical laws in the mobile referential frames.
If a displacement field  is generated in a lattice by localized charges in movement with 
velocity  in the direction , we apply the transformations defined above by using the 
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frames  and  co-moving with the charges with velocity . The pro-
blem is then to resolve the static equations to describe fields  and , which are due to the 
immobile charges in the frameworks  and  respectively. Knowing the 
static solutions for  and  in the mobile referential frames  and , 
it is in principle possible to find the dynamical solution for  in the referential  lin-
ked to the solid lattice. 

20.3 – The only Lorentz transformation in the case of a cosmological
           lattice with an expansion background 

The complete resolution of the previous type of problem for a density  of mobile charges in  
 when the expansion background satisfies  can be rather complex. Notably it 

can exist expansion fields which are non-homogenous within the lattice and which can propa-
gate as longitudinal perturbations inside the lattice.
This is why we will treat for the remainder of this chapter only the particular case, which is in 
fact the interesting case for our analogy with the universe, of topological singularities that move 
in a perfect cosmological lattice presenting a constant and homogenous volume expansion 
which satisfies the following hypothesis

Hypothesis 4:   the volume expansion background of the cosmological lattice
                           is constant and homogenous, and satisfies  (20.40)

In this case, we know that longitudinal waves cannot exist, meaning that every perturbations 
of the distortion fields can only propagate with the transversal wave velocity, and that the 
problem of determining the fields of moving singularities can be solved by applying the only 
transformation of Lorentz for the frame . 
The problem of the fields of perturbation of the expansion linked to topological singularities will 
be treated later, in the chapters dealing with the “gravitational field” (the static perturbation of the 
expansion field due to topological singularities, chapter 22) on one hand and with the “quantum 
field” (the dynamical perturbations of the expansion field due to moving topological singularities 
when , chapter 27) on the other hand.
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Let’s consider now mobile charges of rotation, with charge density , that moves within the 
lattice with velocity  along the axis , the fields  generated by these charges will be dy-
namic fields which will evolve with the movement of the charges. As the transmission of informa-
tion by the mobile charges in a given point of the lattice is made with velocity  of the transver-
sal waves, we can use the Lorentz transformation of section 20.1 by associating a mobile refe-
rential  to the charges. It is interesting here to find the transformation relations 
concerning the couple of equations (20.6) that describe the dynamics inside the lattice but out-
side the charges, in the case where the volume expansion is homogeneous and constant (

). This couple of equations can be written in components for  and  in the fixed 
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the following manner

             (20.41)

By applying in the referential  the rules of transformation of Lorentz to these equations, 
we obtain, after some calculation, the set of equations in the  reference frame

(20.42)

which can be compared to the equations for the components of  and  in the reference 
frame . We deduce then the equations of transformation of the fields of quantity of 
movement  and of moment  in the reference frame  and the fields  and 

 in the reference frame 

          and          (20.43)

Thanks to the transformation relations, we will be able to calculate the fields associated with the 
movement of different types of charges of rotation within the solid lattice, as well as their total 
energy, composed of their elastic potential energy and their kinetic energy.

20.4 – Relativistic dynamics of a screw or an edge dislocation line

Let’s consider an infinite screw dislocation string and let’s suppose that it is moving with velocity 
 in the direction of axis . In the reference frame  co-moving with the string, 

we have , by definition, as well as , so that from relations (20.43), 
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          and         (20.44)

From expression (19.1) of the static field  and the transformation relations of Lorentz 
(20.27), we can deduce the dynamic fields  and  expressed in referential 

(20.45a)

(20.45b)

And we obtain exactly the solutions (20.9) which have been obtained in section 20.1 by using 
the method, which was proposed initially by Frank  in 1949, of expressing the field of displace1 -
ment (19.3) in the referential  by using the Lorentz transformations

(20.45c)

and of deducing directly the expressions (20.45) in the referential  thanks to the two 
relationships  and . 

The total relativistic energy of a moving screw dislocation

We deduce directly from relations (20.45) the density of elastic energy of distortion  and 
the density of kinetic energy  in the referential 

(20.46)

and the total energy density  by using relation 

(20.47)

The total energy  by unit length of dislocation comes via the integration in 

(20.48)

But this integration can be carried out in a simpler fashion in the reference frame  
since ,  and 

(20.49)

In the reference frame , it is clear that , so that
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(20.50)

The value of the second parenthesis is the rest energy  by unit length of the screw dislo-
cation that we had obtained by the relation (19.7), so that

(20.51a)

This expression of energy deserves a few comments:

- it is possible to transform somewhat relation (20.51a) to expressively show the inertial mass 
 at rest of the screw dislocation. We have

(20.51b)

This remarkable expression allows us to understand the true physical origins of the relativistic 
terms  and  in our approach. 
Indeed, under this form, the term  corresponds to a relativistic correction of the energy of 
elastic distortion , while the term  corresponds to a relativistic correction of the 
kinetic energy .

Figure 20.4 - The total energy compared to the rest energy as a function of , 
in the case of a screw or edge dislocation (1) or a charge of rotation (2)
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Figure 20.5 - Fractions of total energy under a potential and kinetic form as a function of  , 
in the case of a screw or edge dislocation (1) or a spherical charge of rotation (2) 

- in the case of the screw dislocation, namely when the scalar charge density is found on a infi-
nite linear string,  the behavior of total energy  is purely a relativistic behavior , which sa-
tisfies the famous relation of special relativity ,

- the total energy linked to the quantity of movement goes to an infinite value when velocity  
tends towards the transversal speed  as shown in figure 20.4. This behavior is generated by 
the presence of the term  in the expression (20.51) of the energy, a term 
which is due to the relativistic contraction of the field of rotation in the direction of movement, 
according to the Lorentz transformation,

- the total energy  associated with the charge in movement is not the energy stored in the 
singularity itself, but the movement of the singularity in the lattice which stored potential energy 

 of elastic distortion of the lattice and of the newtonian kinetic energy  of movement of 
the lattice in its vicinity,

- the fraction of total energy that is found under the form of an elastic potential energy of rotation 
and a kinetic energy of the lattice sites in movement is show in figure 20.5. We note among 
other things that the fraction of potential energy and kinetic energy are exactly equal when velo-
city  of a charge tends towards celerity of transversal waves.

- the fact that we obtain very precisely a relativistic behavior is due to the particularity that the 
kinetic term  is exactly compensated by an additional negative term in the potential energy 

 in the case of the screw dislocation. We will see later on that this compensating effect is 
not systematic and that it depends essentially on the topology of the charge considered. We 
have as a consequence a paradoxal situation, namely that the relativistic dynamic of screw dis-
locations is a consequence of the newtonian dynamic of the lattice in the absolute space of the 
GO, as it is the exact compensation of the newtonian kinetic energy  of the lattice by the 
same negative term in the potential elastic energy  which is responsible for it. 
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The relativistic energy of an edge dislocation in the perfect cosmological lattice

Let’s revisit the case of an edge dislocation treated in section 19.2, by supposing the lattice a 
perfect cosmological lattice which satisfy conjectures (19.58) and hypothesis 4 (20.40). In this 
case, we have seen via a purely classical calculation of the distortion energy and the kinetic 
energy of the edge dislocation that they satisfy a true Einstein relation (19.59), just as the screw 
dislocation

 (20.52)

Thus, the conjectures (19.58), namely that  and that  and , 
and the hypothesis 4 (20.40), namely that  and that longitudinal waves do not exist, 
imply that the edge dislocations in a perfect cosmological lattice are subjected exactly to the 
same relativistic behaviors as the screw dislocation and thus we have

(20.53)

which is easily verified since at low velocity we obtain a relation which agrees perfectly with the 
results obtained in section 19.2

(20.54)

Thus, the relation (20.51b)  is also applicable to the edge dislocations in the perfect cosmologi-
cal lattice when , so that

(20.55)

The relativistic dynamic equation of a moving screw or edge dislocation

Let’s suppose that a screw or an edge dislocation line, which is moving at velocity  in a per-
fect cosmological lattice is submitted to a Peach and Koehler force  per unit length. Due to 
the linear geometry of the dislocation, the vectors  and  can only be perpendicular to the 
dislocation line. The power transmitted to the dislocation by the force  is written , and 
this power will increase the total energy  of the dislocation, so that the dynamic relativistic 
equation of the dislocation can be written

(20.56)

By supposing that vectors  and  are parallel, the equation can be written

(20.57)

in which  is the acceleration of the dislocation.
By using the relation  (19.59), the relativistic dynamic equation can be written 
in a vectorial form
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(20.58)

By introducing the relativistic quantity of movement  by unit of length of the screw or 
edge dislocation.

(20.59)

we verify easily that the dynamic relativistic equation can be written

(20.60)

The expression (20.57) of the relativistic quantity of movement  allows us to introduce a 
relativistic mass  of the dislocation in the quantity of movement from which we can de-
duce the total energy  and the quantity of movement 

(20.61)

Relations (20.59) through (20.61) are perfectly identical to the dynamic relations obtained in 
special relativity.  We can also verify the classic relation in special relativity   

(20.62)

An interesting remark can be done here: the total relativistic energy  associated with the 
dislocation is the sum of the potential energy  of plastic deformations of the lattice and the 
newtonian kinetic energy  of movement within the lattice.  But by associating the total rela-
tivistic energy  to this moving string, and knowing that the rest energy of the string is gi-
ven by , we could also consider that the energy of the moving string is equal to its rest 
energy  and a movement energy  which corresponds to the additional energy ge-
nerated by its displacement within the lattice, by writing

(20.63)

In special relativity, this energy of movement  is often called the kinetic energy  of the 
particle. But in the case of the dislocation we consider here we know it is not really a kinetic 
energy since  is in fact the following combination of potential energy and kinetic energy of 
the particles of the lattice

(20.64)

Finally, if we calculate the total energy for weak velocities ( ) , we obtain

(20.65)
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and we find again the inertial rest mass  of the dislocation (19.59), exactly as we had 
found it from classical means in chapter 19.

20.5 – Relativistic dynamics of loop singularities

We have seen in chapter 19 that the loop topological singularities in a perfect cosmological lat-
tice all satisfy the Einstein relations

 (20.66)

which was obtained by a classical calculation of their elastic energy of distortion and their kinetic 
energy. This implies that the relativistic energy of loop singularities is deduced in the same way 
we deduce the relativistic energy of an edge dislocation. As a consequence ,we deduce the fol-
lowing relativistic energies for the loop singularities in a perfect cosmological lattice when 

, namely a twist disclination loop (TL), an edge dislocation loop (EL) and a mixed dis-
location loop (ML)

(20.67)

(20.68)

(20.69)

We also deduce that in a perfect cosmological lattice, the relativistic dynamic equation of a loop 
singularity is identical to that of a screw or edge dislocation, namely

(20.70)

in which  is the force acting globally on the loop and is the relativistic quantity of mo-
vement of the loop, given by

(20.71)

20.6 – Relativistic dynamic of a spherical charge of rotation

Let’s consider now a spherical charge of rotation, like the one described in figure 19.1, which 
moves along the axis  with velocity .  In the referential  co-moving with the 
charge, we have since the charge is immobile that .  As a consequence, 
according to (20.43), we have the relations
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          and          (20.72)

which allow to deduce, since ,  and 

          and          (20.73)

The total relativistic energy of a moving spherical charge of rotation

We deduce the potential density of energy  and of kinetic energy  in 

(20.74)

(20.75)

as well as the total density of energy  by using 

(20.76)

The total energy  of the moving spherical charge of rotation is given by the integration on 
the volume of infinite solid in the referential 

(20.77)

But this integration can also be done in a manner which is a lot simpler in the referential 
 since ,  and 

(20.78)

In referential , it is clear that , so that

(20.79)

The value of the second parenthesis is nothing else than the rest energy  of the charge 
which we had obtained via relation (19.71). We have

(20.80)

Given the term  in the denominator, we find here a behavior of total energy  of the sphe-
rical charge which is similar to a relativistic behavior since it tends towards an infinite value 
when velocity  tends towards transversal waves velocity  as shown in figure 20.4 in which 
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we show  as a function of . 
As is the case of an edge or screw dislocation, the total energy is found as an elastic potential 
energy of rotation of the lattice and as a kinetic energy of the nodes of the lattice, and the frac-
tion which each represents depends on the value of  as shown in figure 20.5.  We note 
that these fractions of energy under the potential form and kinetic form are perfectly equal when 
velocity  becomes equal to .
However expression (20.80) of the total energy  is not the same as the classical relativistic 
behavior as . This difference is due to the fact that the additional negative term 
in the potential energy does not equally compensate the kinetic energy term (the kinetic energy 
term is twice superior to the absolute value of the additional term in the potential energy).  If we 
calculate the total energy  for weak velocities ( ) by developing the term  in the 
denominator, we obtain 

(20.81)

In this case, the energy of the moving charge is equal to its rest energy and the second term is 
proportional to the square of the velocity which can be assimilated to a term of kinetic energy of 
the charge. We can therefore assign a rest inertial mass  to the spherical charge of rotation, 
given by

(20.82)

We note that the relation between the rest energy and the inertial mass for a spherical charge of 
rotation  differs from the famous Einstein equation of special relativity . 

20.7 – On the paradox of the energy of electrons

We find in relation (20.82) our version of a famous paradox of classical electromagnetism.  In-
deed the same type of calculation done in classical electromagnetism, in order to find the ener-
gy stored by the electric field of an electron in movement gives us a very similar result, namely 
that , and thus the mass associated with the electromagnetic fields 
of the electron does not satisfy the principle of special relativity. This famous result of electro-
magnetism has been widely discussed.  Several models have been proposed to account for it, 
without much success.  We can say here that it was never properly framed in classical electro-
magnetism or special relativity.  A detailed discussion on this topic can be found in the famous 
lectures of R. P. Feynman .2

This famous paradox of the electrical energy of the electron could find here a simple explana-
tion, if we suppose that the electron has in fact a ring structure  similar to a twist disclination 3

loop or a screw pseudo-dislocation loop and that the electrical field is analogous to the field of 
rotation. Indeed, the expression (20.67) of the relativistic energy of a loop of twist disclination 
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(Phil. Mag., 4, 1921, p. 113), and the proposition that an electron could be similar to a twist disclination 
loop has been proposed in 1996 by Unziker (arXiv:gr-qc/9612061v2). 
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perfectly satisfies the expression of Einstein , so that if the electron has the topo-
logical structure of a twist disclination loop in a cosmological lattice, we would have a localized 
charged  of rotation which would present, in the far field, a divergent rotational field  just 
like the electron has a divergent electrical field , and which would satisfy, at low velocity 

 the relation of special relativity since for a twist disclination loop we have

   (20.83)

20.8 – Peach and Koehler force and relativistic Lorentz force 

In section 11.2, we have deduced the force of Peach and Koehler as  which 
acts via the field  on the unit of volume of charges of rotation with a density . In this rela-
tion, the term  is analogous to the electric force  acting per unit volume on a densi-
ty of electrical charges  in the equations of Maxwell of electromagnetism, while the term 

 was introduced to take into account the forces that gave no work. For a density  of 
charges moving with velocity  along the axis , the density of forces acting on the referen-
tial  linked to the charge is thus, since the field is immobile in this framework and 
that as a consequence  in that framework

(20.84)

We can then find the force by unit volume acting on the same density of charges moving at ve-
locity  in the moving framework , and using (20.38)

(20.85)

We then have for the force  in the framework 

(20.86)

we easily transform this, first by using the vectorial product  

(20.87)

and by using the fact that 

(20.88)

In the case where ,  becomes close to unity and the force by unit of volume in the 
mobile framework  becomes equal to

(20.89)

which is the perfect analog to the electromagnetic force of Lorentz

(20.90)

The term  in the force  is the  term which we had introduced in relation 
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(11.10) to take into account the forces that do no work, so that the vector  now has a well 
known value

(20.91)

We can then apply relation (20.84)  to the various topological singularities:
- in the case of a linear dislocation, the integration of (20.84) on the unit length of the dislocation 
gives us the following force acting per unit length of dislocation

(20.92)

However, if a linear screw dislocation is moving in a solid, its velocity  is necessarily perpen-
dicular to the dislocation line, and the force  will do work only if it is perpendicular to the 
line, so that only the component of  along the string is capable of acting upon the dislocation 
through a force  .
- in the case of a spherical charge of rotation , the relation (20.89) can be integrated on the 
volume of the charge, and we obtain the total force acting on the charge of rotation

(20.93)

This relation corresponds directly to the expression of the electromagnetic force acting on an 
electrical charge , namely  .
- in the case of a twist disclination loop with charge , we can apply 
relation (20.92) or relation (20.93) to the loop, which allows us to write

(20.94)
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Chapter 21

On the role of «crystalline ether» played by the cosmo-
logical lattice for a mobile cluster of singularities
           
In a perfect cosmological lattice satisfying , we have shown that all micro-
scopical topological singularities like dislocation lines and dislocations/disclination 
loops satisfy Lorentz transformations based on the transversal wave velocity. As a 
consequence, a localized cluster of topological singularities which interact with 
each other via their rotation fields is also submitted globally to the Lorentz trans-
formations.
On this base, we discuss the analogies which exist between our approach of the 
perfect cosmological lattice and the Special Relativity.  We discuss among others 
the role of «crystalline ether» that the lattice plays vis-a-vis a cluster of singularities 
in movement interacting via their rotation fields.  We show that this notion of 
«ether»  gives us a completely new perspective on the theory of Special Relativity, 
as well as a very elegant explanation to the famous paradox of the twins in Special 
Relativity.

21.1 – The Lorentz transformation applied to a cluster of moving 
           topological singularities that interact via their rotation fields

In chapter 20, we have seen that the displacement of a topological singularity in frame  
of a perfect cosmological lattice satisfying , with velocity  in the direction of axis 

, can be described in a frame  co-moving with the singularity thanks to the Lo-
rentz transformation based on the transversal wave velocity.  At constant volume expansion, a 
cluster of singularities which are moving in the lattice, formed with localized singularities such as 
dislocation and disclination loops which interact via their fields of rotation, is also subject to the 
same Lorentz transformation (20.24), with all its properties as time dilation and length contrac-
tion, because the fields of rotation which give the interactions between the singularities satisfy 
this transformation.

On the strong mathematical analogy of the Lorentz transformations
applied to the cosmological lattice and to the Special Relativity

There exists a strong mathematical analogy between the transformation of Lorentz used here 
for the transmission of information and interaction of the singularities via transversal waves wi-
thin the cosmological lattice and the Lorentz transformation of the theory of Special Relativity to 
describe the relativistic dynamic of mobile objects in the universe in relation with the speed of 
light. But there exists also a serious difference of physical interpretation between these two 
theories, linked to the presence of an ‘ether’ for the topological singularities, which is the lattice 
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itself and that confers a privileged status to the fixed singularities compared to those in move-
ment, while in the theory of Special Relativity, all objects have the same status, hence the fa-
mous name of ‘relativity’. This essential difference allows us to bring a new light on the pheno-
mena of relativity. We will discuss those in the following.

On the primordial physical differences with Special Relativity: 
role of “ether” played by the lattice and existence of an absolute reference frame

The dynamic of the singularities within a cosmological lattice is different from special relativity 
via the existence of an absolute frame of reference for the movement of singularities, and an 
‘ether’  for the propagation of transversal waves (longitudinal waves do not exist if ).
Contrary to special relativity, the lattice can be described from the outside by an observer GO 
(imaginary Grand Observer) which has a universal clock and universal rulers in the absolute 
frame . This external observer of the lattice is not subject to any constraint of speed of 
propagation of information, so that it is the only one who can observe qualitatively and measure 
quantitatively and precisely the notion of instantaneity of events within the lattice.

The local observers HS (Homo Sapiens)

We could imagine now very different observers, the local observers HS (Homo Sapiens), which 
are embedded in the lattice and made of the topological singularities of the lattice. These parti-
cular observers then have a very different status from the observer GO since they are integral 
parts of the lattice and they are free to move about the lattice. But these observers are constrai-
ned by the fact that they transmit information from one point to another via the finite velocity of 
transversal waves or longitudinal waves. An HS observer has no access to an absolute defini-
tion of simultaneity of events such as that of the GO, but only possesses a relativistic definition 
of the simultaneity, which depends on velocity  of displacement vis-a-vis the lattice and the 
local value of volume expansion of the lattice. 
For simplicity reasons, the GO can choose as universal rulers and universal clocks the rulers 
and clocks of any HS  immobile with respect to the lattice, and which would be found at a point 
of the lattice which is immobile and with null expansion ( ).
Each HS is equipped with a local framework which has rulers and a clock which appear immu-
table for this HS, while the length of it’s rulers and the speed at which time is counted depend in 
reality, in the absolute referential of the GO, on the volume expansion of the lattice at the point 
where HS is found and on it’s velocity  with respect to the lattice.  As a consequence, the HS  
does not have direct access to the value of the volume expansion or to it’s proper value of dis-
placement velocity   with respect to the lattice. Only the GO has access to this type of infor-
mation. 
The Lorentz transformations we have identified are actually GO tools, which can be used wi-
thout problems in determining the rulers and local clocks of all HS attached to the lattice, or 
simply to calculate the various fields associated with topological singularities moving within the 
lattice.  And the GO can apply these transformations anywhere on the lattice where it is possible 
to find a state of homogeneous and constant expansion, which may well be different from the 
zero expansion since the Lorentz transformations is based on the transmission velocity of trans-

τ 0 < τ 0cr

Qξ1ξ2ξ3

 
!
v

τ = 0

 
!
v

 
!
v



on the role of «ether» played by the cosmological lattice for a mobile cluster of singularities 391

verse waves, which is perfectly determined regardless of the network expansion status
. From this point of view, our interpretation of the Lorentz transformations is 

quite far from the interpretation of special relativity, for which these transformations are tools 
that can use any HS observer to switch to another Galilean framework in movement relative to 
the first, and for which the speed of light is an absolute constant. The main consequences of 
these essential differences will be analyzed in detail in the following sections.

21.2 – Contraction of length and dilation of time for an HS observer

On the real contraction of the length of an HS observer in movement inside the lattice

The transformations of Lorentz (20.24) imply that, for singularities moving at velocity  in the 
direction , the ruler in direction  shortens by a factor . Indeed, let’s consider a vector 

 in the direction  at the instant  in the framework  immobile with res-
pect to the lattice. This vector can also be described in the mobile lattice  by wri-
ting

(21.1)

By using the direct transformation laws of Lorentz (20.27), taken at instant , we obtain

(21.2)

We can also use the reverse Lorentz transformation (20.27), taken at instant , and we ob-
viously obtain the same result

(21.3)

These calculations show that, for the GO, the ruler  in the mobile framework  is 
effectively shortened by a factor  compared to ruler  in the mobile framework  in 
which the singularities move with velocity 

(21.4)

To interpret this shortening of rulers in the direction of movement, one has to imagine the archi-
tecture of the cluster as a set of topological singularities, linked by the interactions of their res-
pective rotational fields (figure 21.1). These lattice singularities move with respect to the lattice 
with velocity  in direction , and the finite nature of velocity  and their interactions via the 
rotational field imposes that the complete architecture of the cluster of singularities contract in 
direction . But this contraction does not affect the lattice, which conserves its state of origi-
nal volume expansion, which we have represented in figure 21.1 for the case where two identi-
cal clusters move with velocities  and , measured with respect to the observer GO. 
Thus the relativistic effects on the rulers of observer HS, associated to the collective movement 
of the singularities vis-à-vis the lattice, have nothing to do with the effects of volume expansion 
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of the lattice, for which the modifications of the lengths of the rulers of HS will be associated with 
real variation of the length of the unit cell of the cosmological lattice as we will see later in chap-
ter 24.  We should also note that these two effects are cumulative, namely that the rulers of an 
HS observer can be contracted or expanded by variation of the volume expansion and again 
contract by the movement of the singularity cluster with respect to the lattice. In this fashion, the 
contraction-expansion of the rulers and clocks of an HS observer depend both on the local ex-
pansion and the velocity  of the HS with respect to the lattice. Furthermore, in the Lorentz 
transformation applied by the GO observer, the value of  depends not only 
on the velocity  of the HS with respect to the lattice, but also on the local velocity  of trans-
versal waves, which depends on the volume expansion  of the cosmological lattice since

 (21.5)

Figure 21.1 - the mobile Lorentz frameworks of observers HS’  and HS’ ‘ 
in movement inside the lattice, as observed by the observer GO

On the real dilation of time of an HS observer in movement inside the lattice

The phenomenon of slowing down of the clock of the observer HS which is moving with respect 
to the lattice has already been explained in chapter 20 with the figures 20.2 and 20.3. Imagine 
that it is an observer HS  who builds now its own clocks in his framework , by 
fixing two mirror face to face and at a distance  one from the other, mirrors that have the pro-
perty of reflecting transversal waves. By sending a transversal wave between the 2 mirrors, HS 
can perfectly use, as basis for time measurement, the time lapse  that flows bet-
ween a back and forth of the wave between the two mirrors, because the distance  and velo-
city  of the transversal waves are for him constants. If the observer HS is initially at rest with 
respect to the lattice, the GO  can consider the time laps  as the basis for its pro-
per time in .

 
!
v

γ t = (1−v
2 / ct

2 )1/2

 
!
v ct

τ

ct τ ≠0
= ct0 τ=0

eτ /2

O 'x '1 x '2 x '3
d0

T0 = 2d0 / ct
d0

ct
T0 = 2d0 / ct

Ox1x2x3



on the role of «ether» played by the cosmological lattice for a mobile cluster of singularities 393

Let’s imagine now that the HS observer is moving with respect to the lattice with velocity  in 
the direction , and that he places two clocks in ‘quadrature’, meaning that a first clock has 2 
mirrors in one direction  and the second clock has 2 mirrors along  (or ). In 
principle, in its framework , the time lapse  measure by the HS with 
its two clocks is the same.
Let’s take now the point of view of the GO. In section 20.1, we have shown that the basic time 
of the moving clock of the HS observer in frame , measured by the GO in its abso-
lute reference frame , seems to be dilated, expanded as a function of the velocity  by 
a factor of , identically for the two clocks in ‘quadrature’

(21.8)

This means that a local time  exists really for an HS observer, that this local time flows slower 
for an HS observer in movement with respect to the lattice, and that this local time  remains 
isotropic in the mobile frame , independently of the direction of motion of the HS 
observer inside the lattice.
Concerning the dilation or contraction of time, there can also be a coupling between the relati-
vistic effects and the effects of volume expansion.  We will see later (chapter 24) that, in the 
case of a cosmological lattice, an observer HS’ which would be placed in a zone with strong 
contraction ( ) would have a proper clock strongly slowed down with respect to the pro-
per time of the GO.  Furthermore, if it moved with a velocity  close to  with respect to the 
lattice, it’s proper time would also be strongly slowed down with respect to the proper time of the 
GO, not only by the direct effect of volume contraction on the clock, but also by the effect of vo-
lume expansion on  since

(21.9)

21.3 – The Michelson-Morley experiment and the Doppler-Fizeau effect
           inside the crystalline ether

It is clear that the lattice plays, vis-a-vis the singularities and the propagation of waves, the 
same role as the famous “ether” which was supposed to propagate the luminous waves and 
was discussed in the early 20th century. The experience of Michelson-Morley, which consisted 
on measuring, thanks to an interferometer, a difference in the velocity of propagation of lumi-
nous waves in the direction of displacement and transversely to the direction of said displace-
ment, gave a negative result. It was concluded at the time that the ether did not exist. But in the 
two examples above, the calculation proposed in the solid lattice with two local clocks in quadra-
ture shows that the result is identical to that obtained by the experiment of Michelson-Morley, 
namely that there is no difference in the time it takes for the signal to go through both perpendi-
cular arms, which the HS interprets as the fact the velocity propagation does not depend on the 
direction in which it is measured.  But in the case we have treated here, there exists an ether 
made of the cosmological lattice within which the singularities are moving and which are perfect-
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ly known by the GO. 
We deduce that, in the case of the solid cosmological lattice which acts as an ether, the singula-
rities are moving with velocity  and have a proper clock which slows down as the GO mea-
sures a flight time  with the HS clock immobile with respect to the lattice, but a time 

 with an HS clock that would be moving with velocity  with respect to the lattice. 
Furthermore, it is clear that if the HS measures the velocity  of a transversal wave in its mo-
ving framework , with its own clocks and rulers, it will find exactly the same value 
as that measured by the GO in the lattice, since

    in the direction (21.10)

The point of view of the HS observers in movement with respect to the lattice

To illustrate the point of view of the HS observers, and notably the fact that observers linked to 
the lattice do not have an absolute notion of simultaneity, like the GO does, we can imagine the 
following experiment.
In the first experience, we consider two simultaneous events observed by the GO in the referen-
tial  at instant  and at coordinates  and , so separated by a 
distance . These two simultaneous events are then observed by an HS in its framework 

 moving with velocity  in direction  with the following space-time coordi-
nates, obtained from relations (20.27)

    (21.11)

We observe that the two events are not measured as simultaneous by the HS, but separated by 
a non-null time interval , and the distance measured by the HS between the two 
events is equal to  which is superior to the distance  measured by 
the GO, and is a consequence of the contraction of ruler  of the HS  in the direction .
In a second experiment, let’s consider an event taking place at the origin of the referential 

 of the GO and which lasts from and , so on a time lapse . This event 
is then observed by an HS  in its framework  moving with velocity  in the direc-
tion  with the following spatiotemporal coordinates, obtained from relations (20.27)

    (21.12)

We notice that the event seems to be moving in the HS framework over a distance 
, longer than the absolute displacement  of the framework 

 in the lattice, due to the ruler contraction  used by the HS, and that the time 
lapse of the event for HS is worth , and thus seems longer for the HS  than 
for the GO, which is at first rather strange since the HS clock moves slower than that of the GO. 
This phenomenon is due to the flight time of the transversal waves to reach the moving HS  with 
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respect to the lattice. This last experience shows that the time intervals measured by the HS  
are relative intervals since they depend on the finite propagation velocity of information within 
the lattice.

Relations between two HS observers in movement with respect to the lattice

In figure 21.1 we show two frameworks in translation along the axis  at speeds  and  
as measured by the GO observer. One wonders what form the relativity of speeds will take as 
measured by the HS , including what is the relative speed  which is measured by the obser-
ver HS’  in its framework  for the movement of framework  of the 
observer HS’’. For GO, the point  of the framework of HS’’  is moving in  from  
to  in a lapse of time which goes from  to ,  so that

 (21.13)

If HS’ observes the same displacement, it will find a relative velocity   thanks to transforma-
tions (20.22) as

 (21.14)

Some transformations of this relation allow to write it under the form

 (21.15)

The relative velocity of framework  measured by HS’  corresponds to the classic 
relativistic composition of velocities. By symmetry, the relative velocity of framework 

 measured by HS’’  will be given by exactly the same expression with a changed 
sign.
Let’s consider now two simultaneous events in the mobile framework , with co-
ordinates  and  happening at instant . In the immobile referential 

, the coordinates of these two events become two distinct events in time

     (21.16)

In the framework  of HS’, the coordinates of these two events are written

 (21.17)
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which we can write under the form of a spatial distance  and a time interval 
 between these two events

(21.18)

The two original simultaneous events separated by  in the framework  of 
HS’’  become two non-simultaneous events in the framework  of HS’. 
Let’s consider now two successive events in the mobile framework , happening 
at the same place with coordinates  and happening at instants  and 

. In the immobile referential , the coordinates of the two events become two 
separate events in space

     (21.19)

In the framework  of HS’, the coordinates of the two events are then written

(21.20)

which we can write explicitly in the form of a spatial distance  and a time interval 
 between the two events

(21.21)

The two events happening at the origin of the framework  of HS’’ become then 
two separate events in the space of the framework  of HS’. 

Doppler-Fizeau effect between singularities in motion with respect to the crystalline ether

In figure 21.2, we show several experiments of exchange of signals at a given frequency bet-
ween singularities in movement within the lattice via the transversal waves. By taking the point 
of view of the GO, it is possible to easily describe these experiences that give rise to the Dop-
pler-Fizeau effect. We suppose that all these experiences take place in a lattice which has a 
homogenous and constant value for the volume expansion, without which the description of the 
experiments would become a lot more complex.

First experiment: an observer HS’ in the framework  in movement with velocity 
 in the direction  with respect to the lattice emits a wave with frequency , measured 

with its proper clock, towards an HS  observer in a referential  immobile with respect to 
the lattice (figure 21.2a). The transversal wave emitted in the framework  is written

 (21.22)
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In the referential , the same wave can be obtained by replacing the coordinates  and 
 of HS’  by coordinates  and  of HS, by using the Lorentz transformations

 (21.23)

Figure 21.2 - different configurations of measure of the Doppler-Fizeau effect

We find as a consequence the relations giving  and  from the values of  and  in the 
framework 

 (21.24)

As  and , we deduce the relation existing between the frequency  of 
the signal emitted by HS’ and the frequency  measured by HS on the signal received with its 
proper clock
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which is inferior to the frequency  of the emitted signal, and one talks about a “redshift of the 
signal”.
It is interesting to rewrite relation (21.25) under the following form

 (21.26)

as, in this form, the relationship shows the term  of the purely classic Doppler ef-
fect, but which is applied to an emitted frequency , which is nothing else than the fre-
quency of the signal emitted by the HS’, but measured by the HS with its proper clock, or by GO 
with a universal clock.

2nd experiment: an HS observer in the framework  at rest with respect to the lattice 
sends a signal with frequency , measured with its proper clock, towards an observer HS’’ 
which moves with velocity  in direction  with respect to the lattice (figure 21.2b). With the 
same type of calculation that in the first case, it is easy to verify that the frequency  of the 
signal received by HS’’  and measured by him with its proper clock has the value

(21.27)

For , meaning when HS’’ is moving away from HS, the frequency  of the signal re-
ceived by HS’’ is lower than the frequency  of the signal emitted by HS. It is again a Doppler-
Fizeau effect. In the second form presented in (21.27), the expression of  shows a term in 

 due to the classic Doppler effect, but which is applied to a frequency , 
which is nothing more than the frequency of the signal emitted by HS, but such as it is measu-
red by the clock of the HS’’.

3rd experiment: an HS’  observer in the framework  moving with velocity  in 
the direction  with respect to the lattice emits a wave at frequency , measured with its 
own clock, towards an observer HS’’  which is moving with velocity  in the direction  with 
respect to the lattice (figure 21.2a-b). The frequency  of the signal received by the HS’’ and 
measured by him with his proper clock is easily obtained by combining relations (21.25) and 
(21.27). We obtain

(21.28)

Under the second form presented in (21.28), the expression of  explicitly shows in paren-
thesis the classic Doppler effect due to the movement of two observers with respect to the lat-
tice as well as the frequency  which is nothing more than the frequency of the signal 
emitted by HS’, but measured by the clock of the HS’’.

4th experiment:  an observer HS’  in the framework  moving with velocity  in 
the direction  with respect to the lattice emits a wave with a frequency  measured by its 
proper clock, which is reflected by a mirror associated to the framework  immobile with 
respect to the lattice, and receives the echo of the wave of which he measures the frequency 
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tions (21.25) and (21.27) in which we introduce the frequency  received and re-emitted by the 
mirror in the framework of HS, namely

   and    (21.29)

The combination of these two relations shows us that, in this case, the effect measured by HS’ 
is purely a classic Doppler effect, which is logical since we use the proper clock of HS’ to mea-
sure  and 

   (21.30)

5th experiment: an HS observer in the framework  immobile with respect to the lattice 
emits a wave at frequency , measured with its proper clock, which bounces on a mirror asso-
ciated with a framework  moving with velocity  in the direction  with res-
pect to the static lattice, and receives the echo of these waves with frequency , measured 
with its proper clock (figure 21.2d). It is easy to find the value of  by using relations (21.25) 
and (21.27) in which we introduce the frequency  received and re-emitted by the mirror in 
the framework of the HS’’.  The combination of these two relations shows us that, in this case, 
the effect measured by the HS  is also a purely classic Doppler effect, since HS uses its own 
clock to measure  and 

    (21.31)

6th experiment: an observer HS’  in the framework  moving with velocity  in 
the direction  with respect to the lattice emits a wave with frequency , measured with its 
own clock, which bounces of a mirror associated with framework  moving in di-
rection  in the direction  with respect to the lattice, and receives the echo of said wave 
for which it measures frequency , always with its own clock (figure 21.2c-d). It is easy to find 
the value of  by using twice the relation (21.28). We again find that in this case, the effect 
measured by the HS’ is purely a classic Doppler effect, since it uses its proper clock to measure 

 and 

    (21.32)

21.4 – On the explanation of the famous twins paradox of special relativity

The existence of a lattice, and thus of a «crystalline ether», allows us to give a very simple and 
elegant explanation of the famous paradox of the twins in special relativity.

On the impossibility for an HS observer to measure its own velocity with respect to the 
lattice

We have already seen that a local observer HS’’  in its framework  mobile with 
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velocity   with respect to the lattice in the direction  is in principle not capable of measu-
ring that velocity  since its clock and its proper rulers do not change, which has as a conse-
quence that experiments of the Michelson-Morley type do not bring any useful information. We 
can however ask ourselves if experiments of the type Doppler-Fizeau with another observer HS’ 
mobile with velocity  with respect to the lattice in direction  could bring more information. 
In relation with observer HS’, the observer HS’’  can perform three types of measurements:
- it can measure the relative velocity  of HS’  with respect to it, given by (21.15)

(21.33)

- it can measure the ratio of frequencies  of a given known event which happens in his 
framework and in the framework of the HS’, given by (21.28)

 (21.34)

- it can measure the ratio of frequencies  of a given known signal which he sent itself 
and which is reflected by a mirror in the framework of HS’, given by (21.32)

    (21.35)

We can show that these three experimental measurements do not allow to the HS’’  to deter-
mine univocally  and . Indeed, the two relations (21.34) and (21.35)  are absolutely equi-
valent and thus do not allow us to solve the problem. As for relations (21.33) and (21.34), it is 
easy to show that

  (21.36)

and thus this system is also not determined, so that the HS’’  has no way of finding its relative 
velocity  with respect to the lattice by using experiments of the type Doppler-Fizeau.

On the paradox of the twins which is only a paradox in the mind of the observers HS. 

The relation (21.36) is very interesting, as it shows that HS’’ can deduce the relative velocity  
of HS’ with respect to itself by measuring the frequency ratio  of a given known event in 
its framework and in the framework of HS’. For itself, in its framework , this ratio 
of frequencies is of relativistic type. But the observer HS’, in its framework , could 
in theory perform the same measurement, and it would obtain exactly the same result. Thus, for 
an HS observer which does not have access to absolute velocities with respect to the lattice 
(and thus to the ether), their relativistic principles are exactly the same principles as those of 
“Special Relativity”. Notably, by applying the Lorentz transformations, HS’’ will have the impres-
sion that HS’ ages less than it, while HS’ will also have the impression that HS’’  is aging slower 
than it. This strange situation is called the twin paradox in special relativity. 
But this paradoxical conclusion of the twins HS’ and HS’’ is only a paradox in the mind of the 
observers HS’ and HS’’. Indeed, for the GO which can read the relativistic velocities of the HS 
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with respect to the lattice, it is perfectly clear that it is the HS which is moving with respect to the 
lattice which is aging slower than the HS which remains immobile within the lattice. Thus, if a 
couple of HS twins perform the famous experiment of the Langevin twins, namely that one of 
the twins leaves earth on a rocket with subliminal speeds and comes back towards its twin who 
stayed at the point of origin, the GO will be able to say without error that it was the HS, who tra-
velled with respect to the lattice with a great speed, who will be the youngest when they meet 
after the trip. And the GO knows perfectly that this effect is an effect that happened all along the 
trip, even during the periods where the velocity of the traveling twin will have been constant with 
respect to the lattice. 
This new interpretation of the twin paradox based on the existence of the cosmological lattice 
(the “ether”) gives a very logical and elegant answer to numerous questions and interpretations 
of the twin paradox suggested by Special Relativity and General Relativity .1

 See for example:1

http://fr.wikipedia.org/wiki/Paradoxe_des_jumeaux
http://en.wikipedia.org/wiki/Twin_paradox

http://fr.wikipedia.org/wiki/Paradoxe_des_jumeaux
http://en.wikipedia.org/wiki/Twin_paradox
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Chapter 22

“Gravitational” perturbations of expansion
 by localized topological singularities
           
This chapter uses the second partial equation of Newton of section 18.1 to address 
the problem of external perturbation of the field of expansion due to a spherical 
topological singularity at rest, containing an energy  associated with 
the complex internal structure of a spherical singularity (for example, dislocation  
and/or disclination loops), or containing an overall rotation charge  and/or an 
overall curvature charge . 
It is shown that the expansion field disturbances of the crystalline ether associated 
with a localized topological singularity are in fact an expression of the existence of 
a static external "gravitational field" at a long distance from this singularity, as long 
as the singularity has an energy density or rotation charge density below a certain 
critical value. 
In the case where this energy density or rotation charge density becomes greater 
than this critical value, the expansion field associated with this localized topological 
singularity becomes a dynamic disturbance of the expansion, which will reveal the 
quantum behaviors of this singularity, which we will discuss in chapter 28. The criti-
cal value of the energy density or rotation charge density then becomes an extre-
mely important quantity since it actually corresponds to a quantitative value that 
defines the famous quantum decoherence limit, i.e. the limit of passage between a 
classical and a quantum behaviour of the topological singularity.
We then show that the collapse of clusters of lacunar or interstitial-type singularities 
leads to rather singular macroscopic topological singularities: a sort of macroscopic 
hole in the network, in the case of vacancies, or a piece of additional lattice, a kind 
of macroscopic interstitial within the lattice, in the case of the collapse of intersti-
tials.  The description of the “gravitational" fields of these two complementary types 
of singularities shows that the macroscopic singularity of vacancy type can behave 
like a real black hole, while the macroscopic singularity of interstitials does not 
have this property. By analogy, we can compare the macroscopic vacancies to the 
black holes of General Relativity, while the macroscopic interstitials would be com-
parable to pulsars (neutron stars).

22.1 – Localized singularity with a given energy of distortion

Let’s consider a localized singularity at rest, with volume , made up of a loop or a cluster 
of loops of dislocation and disclination, and assume that we know, because we can calculate 
them with relations (18.10) and (18.11), the densities of energy of distortion  and the 
potential energy  within that singularity. The equilibrium of the field of perturbation 
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 of expansion within this singularity is given by the second degree equation (18.14), for 
which the solution is, inside the singularity

 (22.1)

We cannot make here an exact calculation of  since that would necessitate to treat a 
concrete case of a singularity to know exactly the distribution of density of energy of distortion 

 and potential energy  within the singularity. However, we can treat this 
problem in an approximated fashion with average values for the various fields under considera-
tion.  This is what we will do in the rest of the chapter.
In the case of a singularity with a given energy density, we can calculate the global rest energy 

 of it, with the relation

 (22.2)

which allows us to introduce average values of densities within them

(22.3)

Assuming again that one can neglect  with respect to  , one can de-
duce a mean value  of the internal expansion disturbance field such as

(22.4)

It is clear that the average field is purely virtual, in other words, it does not really exist, but it re-
presents a form of the average value of all the accidents of the field of perturbation  wi-
thin the singularity, accidents which are pronounced in the event that we are dealing with a clus-
ter of several topological singularities.

The condition of existence of an average virtual field of static perturbation of expansion

For such a virtual static solution  to exist, one must have a positive quantity under the root 
in equation (22.4), this implies that a condition of existence of the average density within the 
singularity be

Hypothesis 1:   (22.5)

This condition depends expressly on the volume expansion of the background . It can never 
be satisfied in a domain of volume expansion  centered on , and covering the follo-
wing domain

 (22.6)
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We calculate the critical value of expansion , by using the relations (19.58) from the conjec-
tures 0-6 of the perfect cosmological lattice and the relation (15.4)

 (22.7)

In this domain centered on  , there can then only be a dynamic solution of Newton's 
equation (18.12) for the expansion perturbation, a dynamic solution which allows to pass from 
the static solution in the domain  to the static solution in the domain  and vice 
versa. This dynamic solution is in fact related to the quantum behaviour of the singularity, which 
we will discuss in Chapter 28. The critical value of the energy density which appears in (22.5) 
then becomes an extremely important quantity since it corresponds in fact to a quantitative va-
lue which defines the famous quantum decoherence limit, i.e. the limit of passage between a 
classical behaviour and a quantum behaviour of the topological singularity.

The condition for a field of perturbation with a null average value

In areas where there is a static solution of non-zero virtual value  of the disturbance of ex-
pansion field within the singularity, the volume expansion outside the singularity must also be 
affected by static disturbance field  which is spherical symmetric and which must com-
pensate the expansion or contraction of the local network due to the singularity. In fact, the va-
lue of the average field of the entire network must be equal to , so that the average expan-
sion of disturbances due to the presence of singularity must be zero. In the absence of an ove-
rall bending charge of the singularity , the external adjustment field  must satisfy 
the balance equation (18.8) with , so

 (22.8)

With the spherical symmetry of the problem, this Laplacian has only one solution which tends 
towards a null value for 

(22.9)

To determine the constant , one must make sure that the introduction of the singularity in the 
lattice did no modify the average value  of expansion of the lattice. This condition is written

(22.10)
The calculation of this expression gives us the following value for the constant

(22.11)

We directly deduce the perturbation field  of expansion generated by the singularity and 
which depends directly on the virtual average field 

 (22.12)
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The simplest cases of static fields of perturbation of expansion

If the existence condition (22.5) is satisfied, the function of the mean value  of the internal 
expansion disturbance field shows the pattern shown in figure 22.0.

Figure 22.0 - the function  in the static solution domain for energy density values
 of the singularity below the critical value , and domain of the quantum behaviour

 for values above the critical value 

A new hypothesis concerning the value of the internal energy density of the singularity, but 
stronger than the condition of existence (22.5), can be made in the form of

Hypothesis 2:    (22.13)

which makes it possible to expand the root in expression (22.4) for low values of the energy 
density by first-order expansion (valid over 20% of the range) or second-order expansion (valid 
over 50% of the range) so that the static solution for the mean internal field can be written ap-
proximately like

 (22.14)
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By combining the expression (22.13) with that value of , we obtain that  must, with hy-
pothesis 2, satisfy the following relation

 (22.15)

The condition associated with hypothesis 2 is explicitly dependent on the background volume 
expansion  of the lattice, so it can only be satisfied if the background expansion satisfies ei-
ther of these two conditions 

     or      (22.16)

Expressions (22.12) and (22.14) make it possible to deduce a simplified approximate value of 
the static field  of external expansion perturbations of the singularity

 (22.17)

It is remarkable to note here that this external disturbance field depends at first order only on the 
total energy  of the cluster and does not depend on its volume or radius, whe-
reas at higher orders it depends in addition on the volume  of the cluster.

The energy of the field of perturbations of the expansion (at the first order)

The total energy of the expansion field can be calculated fairly easily by considering only the 
first-order term of 

 (22.18)

By using relation (22.10), we immediately deduce that the terms in  have a contribution 
equal to  to the energy, and thus do not depend on the perturbations of the singularity.  
As , the relation (22.10) corresponds in fact to minimize the energy , which justi-
fies à posteriori our choice of the condition of a perturbation field with a null average value used 
to determine the value of the constant . It is thus the terms in  which give a contribution to 
the energy of the field of perturbation due to the singularity. If we subtract the energy terms 
which only depend on , we obtain the increase in energy  associated exclusively with 
the «gravitational» nature of the singularity and which is worth

(22.19)
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We notice that this energy is positive, that it is proportional to the product of the volume of the 
singularity by the square of the internal field of perturbation of the singularity, and that it only 
depends on the module of elasticity  which, as we remind ourselves here, is much smaller 
than  and  in the perfect cosmological lattice.
It is interesting to compare the gravitational energy of the singularity with its elastic energy of 
distortion by calculating the ratio of the two energies. One obtains

(22.20)

The ratio  is extremely small, so that the gravitational energy of the singularity is surely 
much smaller than its elastic energy of distortion in the area . This point will be trea-
ted in the following.
As the gravitational energy depends on the square of  and of the volume of the singularity, 
we deduce that the calculation of the real gravitational energy in a cluster of  singularities, 
must be done from the sum of the energies of gravitation of each of the singularities in the clus-
ter, and, if there exists an average static field of expansion within the singularities, a sum of the 
products of the volumes and the squares of the real expansion of each singularity

(22.21)

in which  is the volume occupied by the singularity  and  is the internal volume 
expansion of the  singularity due to its energy.

The effects of expansion due to a cluster of topological singularities of given energy

We notice that the external field of perturbation taken on the surface of the singularity, has an 
absolute value which is  which is largely greater to that of the 
average internal field  since  contains  in the denominator. This implies that 
the average virtual densities of mass of the lattice are very different inside and outside the sin-
gularities

       and     (22.22)

With the conjectures 0 to 6 of the perfect cosmological lattice (19.58), if you are in the area of 
expansion in which there are no longitudinal waves , the average virtual internal field 
of the singularity is positive. As for the actual external field of the singularity , it is negative 
and thus fully satisfies conjecture 2 deducted from the curvature of the wave rays near the sin-
gularity (fig. 22.1a ) .
However, if you are in the area of expansion where  there are longitudinal waves, the 
fields given in figure 22.1b are reversed with respect to the fields of figure 22.1a : the average 
virtual internal field of the singularity becomes negative and the real external field becomes po-
sitive, so that it no longer meets the conjecture 2 deduced from the curvature of the wave ray in 
the vicinity of the singularity .
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Figure 22.1a - The field of expansion inside and outside the singularity with a given density of energy
 in the domain 

Figure 22.1b - The field of expansion inside and outside the singularity with a given energy density
 in the domain 
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The domains of solutions of the perturbations of expansion of a cluster
of singularities with a given energy as a function of the background lattice expansion

We have seen in this section that a cluster of given energy singularities can generate expansion 
perturbations with static solutions, in the form of a long-distance gravitational field, or dynamic 
solutions, in the form of quantum perturbations, and that the background expansion domains of 
the lattice in which these solutions occur are given by the conditions (22.6). 

Figure 22.2 - The domains of the solutions of perturbation of expansion of a singularity of a given density 
of energy given as a function of the background expansion 

We also looked for simple solutions (22.17) for static perturbation fields, where , the expan-
sion of the background, obeys conditions (22.16). The domains of the solutions of perturbation 
of expansion associated with a cluster of singularities of energy are reported in a synoptic fa-
shion in figure 22.2.
One can also ask whether a given energy singularity could be a black hole. For this to happen, it 
is necessary that disruption of the external expansion field be "negative", which can only occur 
in the field of satisfactory expansion , and furthermore we need conditions (15.3) to be  
satisfied. 
By then assuming a cluster with a strong value of  , the expression (22.17) can be used for 
the outfield . The first condition (15.3) involves a critical radius of the cluster such that

  (22.23)

and the second condition (15.3) implies that

 (22.24)

But it is also necessary that this condition be satisfied below the domain of dynamic solutions 
(22.6). We can then show that these only appear if the energy of the singularity satisfies the 
following, stronger, inequality

 (22.25)
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Final discussion

We just calculated the fields of perturbations of the expansion due to the overall energy 
 of a topological singularity, or a cluster of topological singularities, by basing 

ourselves on a strong approximation of assuming a constant and homogenous average 
 energy densities inside the singularity. This procedure actually provides only a 

virtual value  of a mean internal disturbance field. On the other hand, it provides a correct 
value of the external disturbance field  (22.17), which does not depend at first order on 
the size of the singularity, even if the distribution of energies  was not at all 
homogeneous within the singularity. 

22.2 – Localized singularity with a given curvature charge

A localized singularity with a radius  possesses a given rest energy. It can also have an 
overall charge of curvature . Indeed, such a singularity may consist of a mass of discrete 
topological singularities, such as prismatic dislocation loops (fig. 9.36) which each have an ele-
mentary curvature charge  . If , we speak of a singularity of vacancy nature as it 
represents holes of the lattice within the cluster, and if  we speak of a singularity of inter-
stitial nature because it represents extra lattice sites in the cluster.
A curvature singularity is responsible for a nonzero bending field and divergent in its neighbo-
rhood as we have shown in section 19.2.

The expansion fields due to a curvature singularity

The equilibrium condition (18.8) of the field of expansion of such a singularity requires for us to 
know the density  of charges of curvature inside the singularity. The equilibrium equa-
tion (18.8) is equivalent to rewriting the Laplacian of  inside the singularity

 (22.26)

Without knowing the density  which is proper to a given singularity, we will use the 
approximation of an average homogenous density of curvature within the singularity, so that

 (22.27)

We then obtain the following simplified condition of equilibrium for the virtual field

 (22.28)

And we verify that the solution to this equation has a spherical symmetry, and is written

 (22.29)

Furthermore, outside the singularity, we have the equilibrium condition
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tends towards a null value for , namely

 (22.31)

The condition for a null average field of perturbation

As before, the constant of integration  must be such that the value of the average field inside 
the lattice be equal to the background expansion  of the lattice so that

 (22.32)

The solution to this equation gives us

(22.33)

And the fields of perturbation of expansion due to the charges of curvature are thus

(22.32a)

The particular case of the edge dislocation loop

We try now to find the external field of expansion perturbations in the case of an edge disloca-
tion loop, by introducing the value (19.101) of  and the real volume of the loop, 
meaning the volume  of the torus containing the essential part of the elastic ener-
gy of the loop. The external field of perturbations of the expansion due to the edge loop be-
comes

(22.35)

We find that the term  is the effective volume of the edge loop, which is directly 
related to the number  of lattice sites to be removed or added to the lattice in order to form 
an edge dislocation edge loop, as

(22.36)
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(22.37)

In this one, because of condition (22.33), the terms in  give the value  and do not 
depend on the singularity. As , the relation (22.32) corresponds in fact to minimize the 
energy , which justifies à posteriori our choice of the condition of a perturbation field with a 
null average value used to determine the value of the constant . It is therefore the terms in 

 which give us a contribution to the energy of the field of perturbation of expansion of the 
singularity. If we subtract the terms of energy which only depend on , we obtain the increase 
in energy  associated with the gravitational field of the singularity of curvature

(22.38)

which can be simplified if the charge is spherical with a radius 

(22.39)

The effects of expansion due to a singularity with a given curvature charge

The fields  and  at the surface of the singularity have very different 
values, which is due to the term in  in the expression of the external field
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The fields of expansion do not match at the interface of the singularity (fig. 22.3, a and b), this 
implies that the mass densities of the lattice are different inside and outside the cluster
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Figure 22.3a - The field of expansion inside and outside of a charge of curvature 
(of interstitial type) if  or a curvature charge (of vacancy type) if 

Figure 22.3b - The field of expansion inside and outside the curvature charge
(of vacancy type) if  or a curvature charge (interstitial type) if 
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- if , meaning if , only the singularities of intersti-
tial nature, with , satisfy conjecture 2 concerning the curvature by attraction of wave rays 
in the vicinity of the singularity, while the singularities of vacancy type, with , push the 
wave rays away. 

Figure 22.4 - The domains of solutions of perturbation of expansion of a curvature singularity 
as a function of 

The dependency of a curvature singularity on the background expansion of the lattice

The domains of solutions of perturbation of expansion associated with a curvature singularity 
are reported synoptically in figure 22.4.
We ask whether a pure singularity of curvature can behave as a black hole.  For this, it is nee-
ded that the first condition (15.3) be satisfied, and thus, by using relation (22.33), that

 (22.42)

With regards to the second condition (15.3), it implies that

(22.43)

And thus implies that the module of the charge of curvature be sufficiently large. However the 
numerator of the right part of the inequality goes through zero in the vicinity of the singularity 

, so that a curvature singularity goes through a ‘black hole’ stage for  in the 
case of vacancy singularities and  in the case of interstitial singularities.

Final discussion

We have calculated the fields of disturbance of expansion due to an overall charge of curvature 
 of a topological singularity, or a cluster of topological singularities. We based our calculation 

on a strong approximation of expressing an average density of charges of curvature  ho-
mogeneous in medium within the singularity. This approximation provides an approximate value 
of virtual expansion  inside the singularity, that would be correct if the curvature of 
charge density is effectively homogeneous within the singularity. However, it does give a correct 
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value of the external disturbance field  (22.34), a singularity with global charge  , 
even if the charge distribution was not homogeneous within that singularity. This is 
proved by the value of the external field obtained for an edge dislocation loop, which depends 
exactly of the effective volume  of the edge dislocation loop.

22.3 – Localized singularity with a given rotation charge

Let’s imagine now that there exists within the perfect lattice a localized singularity of volume 
 and of global charge of rotation , composed from a cluster of elementary charges of 

rotation  or containing a density  of charges of rotation. 
Such a singularity has an external field of perturbations of the expansion related to the internal 
elastic energy of rotation of the singularity, which can be expressed from (22.17)

 (22.44)

And this field does not depend on the volume  or the radius  of the singularity of 
rotation.
But an other field has to be added due to the distorsion energy associated to the external rota-
tion field  generated by the singularity. The external rotation field generated by the singula-
rity is given by relation (19.66), and it does not depend on the radius or the volume of the singu-
larity

 (22.45)

This external perturbation  of the expansion can be deducted from equation (18.14), in 
which the elastic energy density is due to the rotaion field of the singularity, and in which  
and  are null

 (22.46)

The condition of existence of a static field of perturbation of expansion

The solution  to this second degree equation is the following

(22.47)

As a matter of fact this static solution only exists if the argument under the square root is posi-
tive, which gives us a condition of existence on the value of charge , if we take  at its 
maximum, meaning in 

Hypothesis 1:   (22.48)

With conjectures 0 to 6 of the perfect cosmological lattice, this condition can never be satisfied 
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in a domain of volume expansion  centered on , and covering the following domain

  (22.49)

In this domain, there can only be dynamical solutions to the equation of Newton (18.12) for the 
perturbation of expansion associated with the singularity of rotation, which allows us to pass 
from the static solution in domain  to the other static solution in the domain  
and vice-versa. 
In the case where the rotation charge density becomes greater than this critical value, the ex-
pansion field associated with this localized topological singularity becomes a dynamic perturba-
tion of the expansion, which will reveal the quantum behaviors of this singularity, which we will 
discuss in chapter 28. The critical value of the rotation charge density then becomes an extre-
mely important quantity since it actually corresponds to a quantitative value which defines the 
famous quantum decoherence limit, i.e. the limit of passage between a classical and a quantum 
behaviour of the topological singularity.

The simpler case of the static first-order expansion field

Rather than look for an exact solution of the field of perturbation deduced from equation (22.43) 
in the case where the condition of existence (22.44) is satisfied, we can emit a stronger condi-
tion than hypothesis 1, namely

Hypothesis 2: :   (22.50)

This condition is similar to condition (22.15) and we have seen that it then allows the root in ex-
pression (22.47) to develop to the first order, so that the static field approximately satisfies the 
following relation

 (22.51)

By introducing the value (22.45) of the elastic field of rotation outside the singularity we obtain 
the field  of expansion perturbations due to the external rotation field of the singularity 

(22.52)

Condition for a nul average field of the perturbations of expansion
due to the external field of rotation of the singularity

However, as the average value of disturbance field must be zero for the background field to be 
equal to , the external field  should also include an additional field correction 

 ensuring that conservation of the number of lattice sites, which must satisfy the Lapla-
cian  , so a spherically symmetric field tending towards zero value as  , 
and therefore written . The disturbance field of volumetric expansion due to the 
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(22.53)

The constant of integration  is determined by the same condition as before

(22.54)

Which leads to the following condition for constant 

 (22.55)

The external field of expansion perturbations, due to the external field of rotation of the charge 
 is thus written

 (22.56)

The global external field of perturbations of expansion of a singularity of rotation

The global external field of expansion perturbations due to a singularity of rotation  can be 
written, under the condition (22.50)

(22.57)
From this expression, the global external field  has to change its sign at a definite criti-
cal distance  of the singularity

 (22.58)

which cannot be higher than the radius  of the singularity. 
One finds that the global external field of expansion perturbations of a rotation singularity pre-
sents a long range component depending on  , which is associated with the internal elastic 
rotation energy of the singularity, and a short range component depending on , which is 
due to the elastic energy of the external rotation field of the singularity. The superposition of 
these two fields is schematically reported in figures 22.6a and 22.6b, in the csases  
and  respectively.

The particular case of a spherical singularity with a rotation charge 

In the case of a spherical rotation singularity, as described in section 19.5, the energy  
can be deduced from (19.70), and one obtains

(22.59)
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The global external field of expansion perturbations depends in fact on the total distortion ener-
gy   (19.71) of the rotation cluster, so that

(22.60)

and that the critical radius where this field is canceling is given by

(22.61)

The particular case of the twist disclination loop

In the case of the twist disclination loop described at section 19.7, the energy  be-
comes the energy  found by the relation (19.88) and, on the other hand, the rotation 
charge becomes  , found by the relation (19.77). One obtains

(22.62)

The global external field of expansion perturbations depends in fact on the distortion energy 
 situated in the torus around the loop (19.71), so that

(22.63)

and that the critical radius where this field is canceling is given by

(22.64)

In the two cases (spherical singularity of rotation or twist disclination loop), one finds that this 
critical distance is clearly higher than the radius of the singularity, so that there is always a criti-
cal radius where the field of expansion perturbations changes its sign.
As a consequence, the perturbations of the expansion field at the interface of the singularity are 
positive in the expansion  (fig. 22.6a) and negative in the expansion area  (fig. 
22.6b).
On the other hand, as the distortion energies  and  are always positive, there is 
no dissymmetry of the expansion field between charges and anti-charges of rotation. But it ap-
pears an inversion of these fields between the area  and .

The internal field of expansion perturbations

Inside the singularity, there is an average internal virtual field of expansion  given by the 
relations (22.4) or (22.14) 

 (22.65)
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Figure 22.6a - the field of expansion inside and outside a charge of rotation 
in the case where 

Figure 22.6b - The field of expansion inside and outside the charge of rotation 
in the case where 

Qλ

τ 0 < τ 0cr

Qλ

τ 0 > τ 0cr
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which is due to the elastic energy  of internal rotation of the singularity, and which is 
compensated by the external field  of expansion perturbations given by (22.44).
Concerning the external field  depending on  (22.48), it is compensated by an 
external field depending on , which is included in the field  given by (22.56).

The particular case of a homogenous spherical rotation charge

In the particular case of a homogenous spherical rotation charge, the condition (22.50) allows 
us to deduce the exact statical internal field  by the following relation

 (22.66)

Using expression (19.67) of the internal rotation field

(22.67)

one obtains the following internal field of expansion perturbations

 (22.68)

It is this internal field of expansion perturbations inside a spherical rotation charge which is re-
ported in figures 22.6a and 22.6b. At the interface of the singularity, this internal field

and the global external field  have almost the same value since

(22.69)

The energy of the field of expansion perturbations of a singularity of rotation 

The energy of the field of expansion perturbations associated to the internal elastic rotation 
energy of a singularity is deduced from (22.14) and (22.19) 

(22.70)

The energy of the field of expansion perturbations associated to the external elastic rotation 
energy of a singularity can be obtained in the following way

(22.71)
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(22.72)

The global gravitational energy associated to a rotation singularity becomes then

(22.73)

The particular case of the gravitational energy of a spherical singularity of rotation

In the particular case of a spherical singularity of rotation, the energy  is given by 
(19.70), so that its global gravitational energy can be written

(22.74)

One can compare this gravitational energy with the global elastic energy of distortion of the 
spherical singularity, given by(19.71), and one obtains

(22.75)

As the ratio  is extremely small, the gravitational energy of the rotation singularity is 
surely much smaller than the elastic energy of distortion of the singularity in the area 

.

The dependency of a singularity of rotation on the background expansion of the lattice

Figure 22.7 - the domains of solutions of perturbation of expansion of a rotational singularity
as a function of 
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rotation field of the singularity can only be dynamic in the small quantum domain (22.49) cente-
red around  , and that it is possible to find simple static solutions in the domains given by 
(22.50). We can therefore report schematically these behaviours of the expansion 

 of a rotation singularity as we have done in figure 22.7.
As for the field of expansion perturbations  due to the internal rotation energy 
of the singularity, it can only be dynamic in the small quantum domain already shown in Figure 
22.2.
As the expansion field associated with the immediate vicinity of such a singularity can be nega-
tive only if  , the existence of a black hole effect can only appear in this area. To deter-
mine the conditions for the appearance of such a black hole, apply the conditions (15.3) in the 
field  given by (22.53). The first condition applies mainly on the  com-
ponent of the field

 (22.76)

and it allows us to obtain the following critical radius for the black hole

 (22.77)

The second condition implies that

 (22.78)

But it is necessary that this condition be satisfied beyond the domain of the dynamic solutions, 
which is true only if the following condition is satisfied

 (22.79)

Final discussion

We have calculated the expansion of disturbance field due to an overall rotation charge  of a 
topological singularity, or a cluster of topological singularities, or a twist disclination loop. One 
finds that there exists two external fields of expansion perturbations (22.53) due to such a 
charge, the field  associated to the internal elastic energy of rotation of the charge, 
and the field  due to the external rotation field of the charge. And these two fields are 
absolutely independent of the volume or the radius of the topological singularity of charge .

22.4 – Macroscopic vacancies within the lattice

Imagine a cluster of vacancies, that is to say, singularities carrying positive bending charges, 
such as prismatic dislocation loops of vacancy type for example, that collapses on itself (under 
the "gravitational attractive forces " to be described later). If the initial cluster is neutral vis-à-vis 
the rotational charges, the individual peculiarities of the cluster are summed, losing their own 
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identity (dislocation or disclination loops) to form a single macroscopic hole within the network, 
as a kind of macroscopic gap formed by individual vacancies (fig. 22.8, a, b and c). This means 
that there appears a macroscopic vacancy of  lattice sites. The radius of this macroscopic 
gap, assumed to be spherical, is then worth, in the imaginary case where the lattice showed a 
homogeneous expansion with 

 (22.80)

The condition of equilibrium for the expansion field of a macroscopic vacancy

In the actual lattice, the presence of this gap will generate a macroscopic field of spherical vo-
lume expansion  to be determined. On the surface of the singularity , the expansion field 
is equal to the sum of the field generated by the singularity , and the background ex-
pansion of  of the lattice and an external field of expansion due to other singularities located 
in the vicinity of the macroscopic gap. On the surface of the singularity, the total field has to be 
adjusted so that the pressure at the interface of the hole is zero (fig. 22.8, a, b and c). The zero 
pressure condition at the interface is written then using the equation of state (13.8)

(22.81)

This second degree equation has two roots for 

 (22.82)

with conjecture 5 of the perfect cosmological lattice, namely that , we then obtain

(22.83)

The second solution, namely , does not make physical sense since it represents a 
gigantic hole in the lattice.  However, the first solutions makes a lot of sense as it can be recove-
red directly from expression (22.81)  and admitting the conjecture 5. Indeed

 (22.84)

The field of expansion of macroscopic vacancy must satisfy , so

 (22.85)

With the equilibrium condition of the surface pressure at the interface, we obtain the external 
field
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 (22.87)

and we note that the real radius  of the macroscopic vacancy is a number which must only 
depend on the number  of sites of lattice vacancies.
We can then calculate the average field of expansion in the presence of a macroscopic singula-
rity

(22.88)

and we do find an average field equal to the expansion of the background  of the lattice.

The energy of a macroscopic vacancy

The total energy of the field of expansion is written

 (22.89)

If we subtract the energy due exclusively to the field , we obtain the gravitational energy of 
the perturbation of the field of expansion associated with the presence of the macroscopic va-
cancy

 (22.90)

By carrying the integrations with value (22.86) of , we obtain

 (22.91)

which becomes, by keeping the dominant term

  (22.92) 

We notice that the energy of formation of a microscopic vacancy does not depend on the back-
ground expansion  of the lattice and is null for two values namely

(22.93)

Between these two values, namely in the interval , the 
energy of formation of a macroscopic vacancy is positive, while it becomes negative outside that 
interval.
Furthermore, inside the interval , the energy of formation of 
two macroscopic vacancies of  sites is higher than the formation of a single macroscopic 
vacancy of  sites since
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(22.94)

Two macroscopic vacancies have an energetic advantage to fuse together when the field of ex-
pansion is within the interval .

When a macroscopic lattice becomes a real black hole.

In the presence of a macroscopic lattice, the first condition (15.3) for the appearance of a black 
hole implies that

  (22.95)

Figure 22.8a - The null field of expansion  of a macroscopic vacancy

Figure 22.8b - The field of expansion of the same macroscopic vacancy with 10’000 sites of lattice when 
, represented on the same scale as figure 22.8a
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Figure 22.8c - The field of expansion of the same macroscopic vacancy with 10’000 sites of lattice when 
, represented on the same scale as figure 22.8a 

and a second condition (15.3) that

 (22.96)

From which we deduce that a macroscopic vacancy, whatever it’s size and energy, necessarily 
becomes a ‘black hole’ as soon as the volume of background expansion  exceeds the value 

. This conclusion is very interesting since this stable macroscopic vacancy is the 
real analogous of a black hole in general relativity (fig. 22.8c). This topological singularity of va-
cancy type behaves like a white hole which pushes away the wave rays when condition 

 is satisfied (fig. 22.8b).

22.5 – Macroscopic interstitials within the lattice

Now imagine a mass of interstitial singularities, that is to say, singularities with negative curva-
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ture charges, such as prismatic dislocation loops of the interstitial type for example, which col-
lapses onto itself under the effect of attractive “gravitational” forces as described in the previous 
chapter. If the initial cluster is neutral vis-à-vis the rotational charges, the individual peculiarities 
of the cluster are combined, losing their own identity (dislocation or disclination loops) to form a 
single piece of macroscopic local lattice, and formed of  sites (fig. 22.9 ) .
This means there is locally an excess of  lattice sites forming a macroscopic interstitial. The 
radius of this macroscopic embedding, supposed spherical, is then, in the imaginary case where 

 (22.97)

we can obviously consider that this macroscopic interstitial with  sites of lattice corresponds 
to the anti-singularity of the macroscopic vacancy of  sites, in the sense that the com-
bination of the two leaves the lattice unchanged globally since the  sites are matched by the 

 sites.

The condition of equilibrium of the field of expansion of a macroscopic interstitial

In the presence of this cluster within the lattice there is no coherence of the two lattices and the 
condition of equilibrium means that the pressure at the interface must be equal on both sides so

 (22.98)

Figure 22.9 - The expansion field of a macroscopic interstitial
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The external field  satisfies the equation , and is thus written

 (22.99)

to find the constant value of , one must assure that the number of lattice meshes is equal to 
that after the introduction of the singularity, so that

  (22.100)

If we assume a priori that , the solution with field (22.99) roughly gives us

 (22.101)

which does not contradict a fortiori the hypothesis . We then have for external field

  (22.102)

and for the internal field, homogenous within the macroscopic interstitial of the lattice

 (22.103)

The two fields of expansion, associated with the macroscopic singularity are presented in figure 
22.9. By supposing that there exists in the vicinity of the macroscopic interstitial a field of ex-
pansion  due to the other singularities situated in its vicinity, the real radius of the 
macroscopic interstitial will depend on the background expansion , of it’s own internal expan-
sion field  and of the external field  via the relation

 (22.104)

This expression of  can be used to express  differently the field of external perturbations 
(22.102), under the form

(22.105)

which shows that the external field of expansion perturbations is simply proportional to the num-
ber of additional lattice sites associated to the macroscopic interstitial. 

The energy of a macroscopic interstitial

The energy of the total field of expansion is then written, taking into account both internal and 
external fields

 (22.106)
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The ‘gravitational’ energy of the field of expansion associated with this macroscopic interstitial 
then becomes, if we subtract the energy due exclusively to the background field , a value 
which depends on the energy density as shown in brackets in this equation

 (22.107)

and which simplifies, using (22.104), under the form

  (22.108)

Whereas the macroscopic interstitial is the anti-singularity of the vacancy one, it’s formation 
energy is always positive while , and infinitely smaller than the energy of formation 
of a macroscopic hole, which introduces a huge dissymmetry between the two singularities.

Can a macroscopic interstitial be a black hole?

In the presence of a macroscopic interstitial of the lattice, the first condition (15.3) for the appea-
rance of a black hole implies that

   (22.109)

and the second condition (15.3) that

  (22.110)

From which we deduce that a macroscopic interstitial, whatever its size and its energy, can ne-
ver behave as a black hole. This conclusion is very interesting, as we have here a topological 
object which presents a great dissymmetry from its anti-singularity, the macroscopic vacancy, 
which becomes a black hole as son as .

22.6 – Analogies with the ‘electric’ and ‘gravitational’ fields

In the analogy between our approach and the great theories of physics, the field of rotational 
expansion is typically a field of ‘electric’ nature, while the fields of flexion and of volume expan-
sion are of “gravitational” nature. 
In table 22.1, we have reported the “electric” fields and the “gravitational” fields generated at 
long distance by a topological singularity of global energy , of global rotational 
charge  and/or global curvature charge . 
In table 22.2, we have shown the «gravitational» long-range fields and the energies of the va-
cancies and interstitials with macroscopic radius  and , corresponding respectively to 

 holes of lattice sites or  interstitials sites.

On the existence of many fields of ‘gravitational’ nature

Regarding the nature of the “gravitational" field, it is very encouraging to see that there is here a 

τ 0

Egrav
( I ) = 4

3
πRI

3 K0 − 2K1τ 0( ) + 6K1τ 0 − K0( ) RI
2

3R∞
2 + K1

4RI
3

3R∞
3 − K1

8RI
4

9R∞
4

⎡

⎣
⎢

⎤

⎦
⎥

Egrav
( I ) ≅ 4

3
πRI

3 K0 − 2K1τ 0( ) ≅ K0 − 2K1τ 0( )NI

n0
eτ 0+τ

external (RI )

τ 0 < K0 / 2K1

∂τ ext
( I )(r)
∂r rcr

= 2
rcr

⇒ rcr =
RI
3

3R∞
2

rcr > RI ⇒ RI > 3R∞

τ 0 >1

Edist
ch +Vpot

ch

Qλ Qθ

RL RI

NL NI



«gravitational» perturbations of expansion by localized topological singularities 433

first expansion field directly associated with the energy of the cluster of topologi-
cal singularities similar to the gravitational field of General Relativity of Einstein. It is also due to 
the energy-momentum tensor of matter.

But there are in our approach two other "gravitational" fields of expansion associated respecti-
vely to the overall charge of curvature  and to the overall rotation charge  of the cluster of 
topological singularities. These fields do not have equivalents in the General Relativity of Ein-
stein.
The existence of the second “gravitational" field of expansion, due to the curvature charge , 
is subject to the condition that the shear modulus  of the perfect lattice is not zero.  So there 
is still an opportunity to discuss the existence or not of this field according to the value to be as-
signed to the module  in our analogy with the real world, knowing that this module should 
anyway be very small vis-à-vis module , as was already specified in conjecture 4 of the per-
fect cosmological lattice. The third "gravitational" field of expansion is associated with the rota-
tional charge  of the cluster of topological singularities considered. As part of our analogy, 
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this third field of expansion must exist if the cluster has a non-zero  charge, since the  
module must exist to meet the analogy with Maxwell's equations. But this field has no direct 
analog in the theory of General Relativity of Einstein and Particle Physics .

Note also that the three “gravitational" fields have nonzero gravitational energy given by the re-
lations (22.19), (22.39) and (22.73) respectively

Qλ K3

Table 22.2 - The long-range fields and energies 
of vacancy and interstitial singularities
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  (22.111)

As these energies depend on the coefficient , which must be very small in the 
perfect cosmological lattice, the gravitational energy of the singularities is surely negligible vis-à-
vis the elastic energy of distortion of the topological singularities.
The fact that it appears two " gravity " fields of volume expansion which apparently have no ana-
logues in the theory of General Relativity of Einstein and Particle Physics is very interesting to 
test our approach. We will return in the following chapters on possible roles of the three fields of 
volume expansion associated respectively with the energy , with the charge of 
curvature  and with the charge of rotation  of a singularity or of a localized cluster of sin-
gularities.

On the dynamic field of perturbations of expansion due to singularities with a large
density of energy or a large charge of rotation in the vicinity of the critical expansion

If the background field of expansion of the lattice increases or decreases so as to go through 
the critical value , there appears a range where we cannot have static solutions to the 
equation of Newton (18.12), which means that it must necessarily appear a dynamic solution 
that transforms the static field from one range  to the other , and vice versa. 
The non-existence of a static solution to the differential equation (18.12) when the energy densi-
ty and/or rotational charges of singularity become too important is mathematically quite similar 
to the fact that we have already seen in section 12.9 in the case of the Frank-Read sources, 
when there were no more static solutions to the deformation of a dislocation string anchored 
when the stress exceeded a certain critical limit, and we will see in the following parts that the 
appearance of pure dynamic solutions for the expansion of disturbance field actually have a 
very close relationship with quantum physics.

On the possibility for a localized singularity to behave like a statical black hole
in the vicinity of the critical expansion

A singularity possessing a large value of the energy, of the curvature charge or of the rotational 
charge, can behave like a statical black hole in the vicinity of the critical value of expansion 

, and the existence of such a behavior is subjected to the following conditions:
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- in the case of a singularity or a cluster of charges of curvature 

  (22.113)

- in the case of a singularity or cluster of charges of rotation 

  (22.114)

On the possible analogy between the vacancy singularities and the black holes
and between the interstitial singularities and the neutron stars

The macroscopic interstitial is the perfect anti-singularity of the macroscopic gap if 
since the combination of the two singularities completely restores the perfect lattice. But there is 
a huge difference between these two singularities, since their formation energies are very dif-
ferent and the macroscopic gap becomes a black hole as soon as  in the cosmological 
system, whereas the macroscopic interstitial can never become a black hole .
Considering that these two topological objects may form by gravitational collapse of clusters of 
singularities, we find, by analogy, the formation of black holes and neutron stars by gravitational 
collapse. But if we have sufficient initial mass of the cluster, a condition to achieve a gravitatio-
nal collapse, in our approach it would not be the initial mass of the cluster which determines the 
evolution of a black hole or a neutron star but the very nature of the initial cluster .
If we admit the following conjecture:

Conjecture 8:   the singularities of vacancy type correspond by analogy to anti-matter
                          and the singularities of interstitial type to matter (22.115)

black holes would then be residues of collapsed clusters of antimatter while neutron stars of 
collapsed clusters of matter.
In this analogy, the black holes by their constitution of "vacancy holes", can retain no memory of 
the initial mass of singularities from which they come, apart from the number of gaps, ie the 
number of missing lattice sites in the initial singularities, that remains invariant. On the other 
hand, neutron stars, by their very constitution of "interstitials" of non-coherent pieces of lattice 
could retain, not only the amount of interstitials, that is to say the number of excess lattice sites 
in the initial interstitial singularities, but also the memory of the rotational angular momentum of 
the initial cluster of interstitial singularities from which they come, in the form of a very fast rota-
tion of the cluster, which correspond well with huge rotation speeds observed in the case of 
neutron stars, also called pulsars because they emit electromagnetic pulses at a fixed frequency 
due to their fast rotation.
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“Gravitational” properties of topological loops
in the cosmological lattice
           
In this chapter , we use the results obtained in previous chapters to address in de-
tail the "gravitational" properties of elementary loop singularities: the loops of twist 
disclination (TL), the prismatic edge dislocation loops (EL) and the mixed disloca-
tion loops by sliding (ML). We will search for external disturbances of the expan-
sion field and deduce several extremely interesting consequences, including the 
existence, in the case of the edge dislocation loop, of an equivalent gravitational 
curvature mass that is higher than the inertial mass, which may even be negative in 
the case of interstitial loops, a result which is very surprising and promising.

23.1 – The twist disclination loop (TL)

The twist disclination loop (TL) has already been described in detail in section 19.7. Regarding 
its “gravitational” properties, ie its long-range external field of perturbation of expansion, one can 
directly deduce them from (22.63)

(23.1)

As these fields are perturbations of the volume expansion, they correspond in our analogy to 
the real world to gravitational fields, acting at short range (SR) and at range (LR).  As a matter of 
fact, it is very interesting here to replace in these expressions the energy of distortion  by 
the mass of inertia  of the loop, by using the expression  of the relation of 
Einstein (19.96)

(23.2)

In this form, the field of long-range expansion disturbances (LR) only depends on the inertial 
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analogy between this field of perturbation of expansion and a natural gravitational field. 
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On the “gravitational” energy due to the perturbations of expansion of the twist loop

The fields of perturbation of expansion that we just found possess an energy which we should 
compare to the elastic energy  of the loop. The global energy of the field of perturbation of 
expansion due to the elastic energy of the loop is deduced thanks to relations (22.73)

(23.3)

By introducing here the values of  and of  obtained respectively from (19.88) and 
(19.77), one has

(23.4)

As , one obtains the approximation

(23.5)

We compare this energy with the elastic energy, by calculating the ratio and introducing the va-
lue  taken from (19.88)

(23.6)

By applying the conditions (19.58) of the perfect cosmological lattice, one obtains approximati-
vely

(23.7)

because .
We deduce consequently that the “gravitational” energy  of the twist disclination loop due 
to its charge of rotation  is perfectly negligible vis-à-vis it’s energy in the perfect cosmologi-
cal lattice.

The essential properties of the twist disclination loop

In table 23.1, we have presented the important properties that we have deduced so far for a 
twist disclination loop in a perfect cosmological lattice, namely it’s charge, it’s inertial mass, it’s 
fields of rotation and perturbation of expansion at short distance, it’s kinetic and elastic energies 
and finally its relativistic behavior. We note that the inertial mass of the loop  not only 
controls the dynamic properties of the loop, such as its kinetic energy , but that it is also 
responsible for the gravitational fields  and  of external perturbations of ex-
pansion.
The ‘gravitational’ energy  of the fields of perturbations of expansion due to the elastic 
energies associated to the rotational charge  of the TL is perfectly negligible vis-à-vis the 
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elastic energy  of the loop. This “gravitational” energy does not figure in the table of essen-
tial properties.
With regards to the field of perturbation of expansion within the torus encompassing the loop, 
and the energy which is associated with this internal field, we will revisit it later, when we look at 
the problem of spin and magnetic moment of the twist disclination loop (TL).

23.2 – The prismatic edge dislocation loop (EL)

The prismatic edge dislocation loop (EL) which we have described in section 19.9 possesses a 
curvature charge  given by relation (19.101), which makes it a fundamental brick of charge 
of curvature of the lattice in our analogy with the real world. This charge is responsible for an 
external divergent flexion field, analogous to a field of geometrical curvature, described by rela-
tion (19.103)
Knowing the elastic energy (19.102) of the EL, we can use relation (22.17) to calculate the ex-
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ternal field  of perturbations of expansion associated with the elastic energy  of the 
edge dislocation, if we neglect here its potential energy 

(23.8)

We can also use relation (22.34) to calculate the external field  of perturbations of ex-
pansion associated with the rotational charge   of the loop

 (23.9)

The total field of perturbations of expansion can then be written as

(23.10)

By using conjecture 4 (17.41), we can emit here the plausible hypothesis that

Hypothesis 1:       and     (23.11)

which allows us to say that the first term within the brackets in (23.10) is most likely largely 
smaller than the second term. Thus, in the case of the EL, the field of perturbations of expan-
sion due to the charge of curvature is larger than the field of perturbation of expansion due to 
the elastic energy of distortion of the loop, contrary to the EL.
By introducing the inertial mass  of the edge loop (19.106)

(23.12)

as well as an equivalent curvature mass  which is worth

(23.13)

and which can be positive or negative

(23.14)

We can write the field of gravitation as

(23.15)

According to hypothesis (23.11), the equivalent mass of curvature in this expression of the field 
of gravitation obeys the following relation

(23.16)

Furthermore the equivalent mass of curvature can be positive or negative. These two facts will 
have very remarkable implications as we will see.
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On the gravitational energy due to the perturbation of expansion of the edge loop

The field of perturbation of expansion that we just found have an energy which we will want to 
compare to the elastic energy  of the EL. The energy of the field of perturbation of expan-
sion due to the elastic energy of the loop is deduced thanks to relations (22.19) and (22.14)

(23.17)

Comparing this energy with the elastic energy and taking the ratio and introducing the value  
 taken from (19.102) and conditions (19.58) of the perfect lattice

(23.18)

as . 
We deduce that the gravitational energy  of the EL due to an elastic energy  is per-
fectly negligible vis-a-vis the elastic energy of the defect in the perfect lattice.
Let’s calculate the energy associated to the field of perturbation of expansion due to the charge 
of curvature of the EL. By using relation (22.39), we obtain the energy of the field of gravitation 
associated with the curvature charge

(23.19)

Let’s compare this energy with elastic energy, by taking the ratio and introducing the value of 
 taken from (19.102) and the value of  taken from (19.101)

(23.20)

since . We deduce again that the gravitational energy  of the edge dislocation 
loop due to the curvature charge  is negligible compared to the elastic energy  in the 
perfect lattice.

The essential properties of the edge dislocation loop

In table 23.2 , we show all the important properties we deduced to date for an EL in a perfect 
cosmological lattice, namely its bending charge, its mass-inertia, its gravitational mass equiva-
lent, its bending fields and disruptions to long-range expansion, its elastic and kinetic energy, 
and ultimately his relativistic behavior. It shows among other things that it is its elastic energy 

 and inertial mass  that controls its dynamic properties, such as its kinetic energy 
, but that it is its equivalent gravitational mass  of curvature which essentially 

controls its external gravitational field disturbances in the far field.
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As the gravitational energies  and  of the fields of perturbation of expansion due to 
the elastic energies  and the curvature charge  of the EL are negligible compared to 
the elastic energy  of the loop, these gravitational energies do not feature in the table of 
essential properties.

Also, the equivalent gravitational mass of curvature  is not only much larger than the 
inertial mass , but it can even be negative in the case where the edge loops are intersti-
tials.  This is a striking result as it corresponds to the existence of a possible negative gravitatio-
nal field, and is a new result compared to the General Relativity of Einstein. The possible 
consequences of this striking result will be explored in more detail in the rest of the book.
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23.3 – The mixed sliding dislocation loop (ML)

The mixed dislocation loop (ML) which we described in section 19.10 does not possess a 
charge of rotation nor a charge of curvature but instead a dipolar moment  of the 
field of rotation, analogous to a dipolar electric moment.  Knowing the elastic energy of distortion 
(19.110) of the ML in the perfect lattice, we can use relation (22.17) to calculate the external 
field  of perturbations associated with the elastic energy , by neglecting here the 
potential energy . Also, it becomes interesting to replace in the expression of  the 
energy of distortion  by the inertial mass  of the loop by using the relation 

 (19.114)

(23.21)

On the gravitational energy due to the perturbations of expansion of the mixed loop

The fields of perturbation of expansion that we just found possess an energy which we want to 
compare to the elastic energy  of the loop. The energy of the field of perturbation of expan-
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sion due to the elastic energy of the loop is deduced thanks to relations (22.19) and (22.14)

(23.22)

Let’s compare this energy with the elastic energy, by taking the ratio and introducing the value 
of  taken from (19.110)

(23.23)

since . 
We thus deduce that the gravitational energy  of the ML due to its elastic energy  is 
perfectly negligible compared to the elastic energy of the perfect lattice.

The essential properties of the mixed dislocation loop

In table 23.3, we show the properties of the ML in the perfect lattice. While this loop does not 
possess neither charge of rotation nor charge of curvature generating an external field of rota-
tion or of flexion in the far field, it is equipped with a dipolar external field  in the 
near field, which is analogous to a dipolar electric field. The external field of perturbation of ex-
pansion is due to the elastic energy of distortion of the loop and depends on the inertial mass 

.
Also as the gravitational energy  of the perturbation field of expansion due to the elastic 
energy  of the ML is negligible compared to the elastic energy  of the loop, this gravi-
tational energy does not figure in the table of the essential properties.

23.4 – The various properties of the elementary topological loops

On the negligible energy of the field of perturbation of expansion linked to the loops

We have shown in this chapter the bulk of the essential properties of three elementary loops 
that we can find in the perfect lattice and we have established the expressions for the field of 
external expansion which corresponds to gravitational fields and will play an important role in 
the rest of the book. 
We have also shown that  of the gravitational fields associated with the 
elastic energies, the charge of rotation and the charge of curvature of elementary loops are ne-
gligible compared to the elastic energies associated with the loops, and thus we can ignore 
them in our calculations.
We thus have addressed the questions we asked in chapter 19 concerning the field of perturba-
tion of expansion of the elementary loops.

Can the elementary topological loops be black holes?

We can ask ourselves whether the elementary topological loops can become black holes. For 
that, we apply conditions (15.3) to the fields of expansion ,  and  res-
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pectively.
By applying the conditions to the twist disclination loop in the case , we obtain the 
following condition for this loop to become a black hole

(23.24)

which would imply that the pseudo-vector of Burgers of the loop be on the order of the radius of 
the lattice, which of course, is non-sensical.
The same holds for the mixed dislocation loop  since the condition for it to be a black hole be-
comes

(23.30)

In the case of the edge dislocation loop, the condition is expressed differently since the gravita-
tional mass of gravitation becomes . Since , we obtain

(23.31)

But since the module  must be smaller than  according to conjecture 4, this condition can 
never be satisfied.
As a consequence, it is clear that the three elementary loops cannot be black holes in the do-
main . 

On the remarkable properties of the elementary topological loops

In the analogy between our approach and the great theories of physics, the three types of ele-
mentary we have discussed in the previous chapter have remarkable properties we will enume-
rate here:

- they are respectively the elementary building block of the electrical charge, of the curvature 
charge and the electrical dipolar moment, from which it should be possible to form dispirations, 
by combining several of these loops in order to find topological singularities which are analo-
gous to the elementary particles of the ‘real world’,

- their rest energy and their kinetic energy are essentially confined in the toroidal field around 
the  loops,
- as the energies associated with the gravitational fields of perturbation of expansion are per-
fectly negligible, they satisfy the relation of Einstein , which is obtained in our 
approach as a purely classical property of the topological singularities within a lattice, without 
any recourse to a ‘relativistic principle’,

- they perfectly satisfy special relativity, with an original explanation of relativistic energy 
 as the sum of a relativistic energy of elastic dis-

tortion and a term of relativistic kinetic energy,

- they satisfy a relativistic dynamic equation given by relations (20.50) and (20.51) ,

- the twist disclination loop (TL), carries a rotational charge equivalent to the electrical charge, 
which satisfy the Maxwell’s equations (table 17.1) and the Lorentz force (20.74),
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- the three types of loops exhibit a field of disturbance of volume expansion in the far field, which 
is analogous to a gravitational field which decreases in , and which only depends on the 
gravitational mass  of the loops. The gravitational mass is then composed on 
the inertial mass and the equivalent curvature mass of the loops, without depending directly on 
the size of the loops ,

- the gravitational masses of the loops of twist disclination and mixed dislocation are strictly 
equal to their inertial masses while the gravitational mass of the prismatic edge is composed of 
the inertial mass and the curvature mass of the loop, with the curvature mass a lot larger than 
the inertial mass, and which can even be negative in the case of interstitial loops,

- the gravitational mass of the edge dislocation loop (EL) contains two terms. The first term 
which dominates is the curvature mass  , and is positive or negative depending on 
whether the loop is of vacancy or interstitial nature. The second term, the mass of inertia  
is always positive. This means that the global gravitational mass  is not sym-
metric between a loop of vacancy type and a loop of interstitial type. There is here a weak 
asymmetry on the absolute value of the gravitation mass between the loop of interstitial type 
and its anti-loop of vacancy type, which is expressed by the fact that

(23.27)

- all these properties are perfectly analogous to the fundamental properties of elementary par-
ticles of the real world, except for the gravitational mass  of the prismatic edge 
dislocation loops, which have a strong analogy with the neutrinos. This very special property of 
the loops of prismatic edge dislocation will be discussed in the following chapters, in which we 
will look at the gravitational interaction of the loops.
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“Gravitational” interactions of singularities composed 
of twist disclination loops
           
In this chapter, we study in detail the gravitational interactions of twist disclination 
loops (TL), which will yield a strong analogy with Newtonian gravitation in the far-
field but that will exhibit differences in the near-field.  We will also exhibit a depen-
dence of the constant of gravitation on the volume expansion of the lattice.
Next, we focus on the Maxwell formulation of the equations of evolution presented 
in chapter 17, which corresponded to the expression of the local laws of physics, 
such as electromagnetism, as seen by an imaginary Grand Observer (GO). In this 
chapter we focus on a hypothetical local observer we call the Homo Sapiens ob-
server (HS) which would be linked to a local framework, and himself composed of 
clustered singularities of the lattice. This HS observer only knows of local mea-
sures with local rods and local clocks constituting his local reference frame. It will 
be shown that this makes for him the Maxwell equations to become invariant with 
respect to volume expansion. There then appears a relativistic notion of time for 
the local HS observers, which will present a strong analogy with the time in the 
theory of General relativity of Einstein. We will discuss in detail the analogies, and 
the differences and advantages when compared to General Relativity.

24.1 – Long range «gravitational» interaction of a cluster
           of twist disclination loops (TL)

On the dependance of inertial mass and curvature charge on local expansion

In the previous chapter, we have shown that the inertial mass of twist loops is much greater than 
the inertial mass of edge loop and mixed loops, so that the perturbations of the field of expan-
sion will be mostly due to the twist disclination loops. We will then first analyze the field of per-
turbation of expansion at long range due to those.
For an TL, the inertial mass depends on the square of the charge  of rotation

(24.1)

If such a loop is in a field of expansion  which is variable, then the quantities depend on it.  
We can assume a priori that the radius of the loop is linked to the lattice step, so that 

, and that the angle of rotation  must correspond to an angle satisfying the 
symmetry of the lattice, which means a multiple of  for a cubic lattice, or a multiple of  
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for a hexagonal lattice.  It follows that  should not depend on background expansion. 
However, we do not know the exact nature of the cosmological lattice, so that, in all generality, 
we will need to suppose dependencies of  and  as if the loop could have an extension 
of its radius and a torsion depending on the volume expansion of the lattice

Hypothesis 1:    (24.2)

with this hypothesis, the charge and the inertial mass of the TL read

(24.3)

The far-field perturbations of a cluster of twist loops

As for the long-range expansion field of the loop, using the second-order relation (22.17) 

(24.4)

Since this long-range field does not depend on the radius of the loop for the first-order term, as 
does the rotational field for that matter, one can generalize the mass and rotational load of a 
cluster of loops

(24.5)

so that by introducing the volume  of the cluster of loops 

(24.6)

The gravitational force of interaction between two clusters of twist loops 

Two clusters of loops that are at a distance  from each other will interact with each other via 
their "gravitational" fields of long-range expansion perturbations. Indeed, we can calculate the 
energies of clusters (1) and (2) from their inertial mass

(24.7)
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The two distant clusters are respectively immersed in the expansion disturbance field of the 
other cluster. Since we know that the elastic energy of a loop is essentially in the close vicinity of 
the loop, we can be sure that the elastic energy of the cluster is essentially in the core of the 
cluster, so that their respective energies are influenced by the presence of the other cluster in 
the following way

(24.8)

There appears as a result an increase  of the energy of two interacting clusters, which is 
written

(24.9)

The total force of interaction between the two clusters is given by the derivative with respect to
 of the variation of energy  of two clusters, namely

(24.10)
The derivatives in this expression are deduced from (24.6), so that, after some transformations, 
one obtains

(24.11)
As for the exponentials in this expression, they can be developed, taking into account only the 
first term of (24.6) in the form of

(24.12)

24.2 – Analogies and differences from newtonian gravity
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ween the two clusters in the simplified form

(24.14)
In this expression, several terms appear, but the additional terms in the bracket are the results 
of first-order developments, so they are certainly smaller than 1. For relatively low mass densi-
ties of clusters and large distances  between clusters, the second order terms in the bracket 
can be neglected, so that we find a perfect analogy with the Newtonian gravitational interaction 
of the real world, andt  becomes the "gravitational constant", which must be very small 
since it occurs  at the denominator

(24.15)

Let us then try to understand what the second-order terms in the expression (24.14) actually 
represent. The term dependent on cluster mass densities  is a correction to the 
"gravitational constant"  independent of the distance  between clusters, which actually 
comes from the non-linear behaviour of the function  shown in figure 22.0 when the 
cluster mass density exceeds a certain critical value.

with     (24.16)

As for the term dependent on  , it provides a correction to the interaction force when the dis-
tance between clusters becomes small, in the form of

(24.17)

With the "gravitational constant"  , one can also rewrite the gravitational field (24.6) of a 
cluster in the following form if one retains only the first-order term, i.e. one considers only low 
mass density clusters

(24.18)

On the variable nature of the ‘constant’ of gravitation

What is clear in looking at the constant of gravitation is that it is not a ‘constant’ since it depends 
on the average expansion of the lattice  via the values of  and , as well as the factor in 
front of module , which renders  positive if  and negative if 

(24.19)

This strong dependence of  in the expansion of the background lattice should play a pri-
mordial role in the evolution of the universe during cosmological expansion, as shown later.
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On the differences with Newton gravity at short distances

At short distances , we have a corrective term to Newton’s law which takes the form of a mul-
tiplier containing exponentials as shown in relation (24.14).
This second order term involves the gravitational mass of two clusters and will only be noti-
ceable when the clusters are close to each other.
The second order term in expression (24.16) of the law of gravity will modify the interactions 
between the two clusters if they are close.  However, contrary to the results obtained in General 
Relativity thanks to the Schwarzschild metric, which predicts a small increase in the attractive 
force in  at very short distances , the corrective term in second order of our approach 
leads to a  dependency of the correction of the attractive force at short distance . 
For example, in the case of Mercury which is rather close to the Sun, the corrective term in 
(24.16) has the following value

 with 

which gives us for the revolution of Mercury an increase of 2,128 seconds on the period of 88 
days (  seconds) as calculated with the Newton Gravity.

24.3 – On the local rods and clocks of an HS observer

Let’s consider a local framework  defined by the GO observer (the Grand Observer) 
with respect to his absolute referential . This local framework  is in fact a 
convenience used by the GO  to solve the problems of local evolution of the solid lattice, notably 
in the regions of the solid presenting a non-null volume expansion, but which can be considered 
constant and homogenous in the vicinity of the origin of the framework , for example by 
using the maxwellian formulation described in chapter 17. 
But let’s imagine now that there exists another category of local observer we will call the HS  
observer (Homo Sapiens) which is truly in the local framework  as it is composed of 
singularities of the lattice, most notably twist disclination loops, that interact via their field of rota-
tion generated by their rotation charge.  In his local framework, the HS does not have access to 
the ’global’ view of the lattice in the absolute referential, as it only knows about the local frame. 
The HS  observer will only be able to define its own rods  in his frame , by defining 
them from the dimension of objects contained in the lattice in which it lives. This is illustrated in 
figure 24.1 for two observers HS and HS’  living in tow different parts of the lattice, where the 
respective expansions of the background  and  are different.

The rods and clocks of an HS observer

If the lattice has a certain volume expansion , the rods of HS should satisfy the following

Hypothesis 2:   (24.20)

where the  constant is unknown and should be determined.
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Figure 24.1 - the local rods and clocks in the frame of the local observers HS and HS’ 

This implies that the rods of HS will be of different length than that of the GO if the lattice is lo-
cally in contraction ( ) or expansion ( ). If a given point in space is marked by vector 

, is observed simultaneously by the GO and by HS, the vector will read in  and in 
 under the form

(24.21)

so that the coordinates of a point in space transform as

(24.22)

The time measured in  with  must also be different from the time measured when 
, so the proper clock of  HS in it’s frame  will indicate a time  different from the 

absolute time of the GO, but linked to it by a relation

Hypothesis 3:    (24.23)

On the clock of the observer HS based on the speed of transversal waves

The clock of the HS has to be locally built as he doesn’t have access to the absolute time of the 
GO. He can build a simplistic clock by using local rods and the speed of transversal waves 
which he can measure in his own frame. Consider a rod of length  measured by GO in a lat-
tice with null volume expansion.  The length of the same rods placed in the HS frame becomes, 
as measured by the GO

(24.24)

To cover this distance, the transversal waves uses a lapse of time  measured by the GO, 
and given by 
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(24.25)

In the framework , which may have a non-null background expansion , the initial 
length  of the rods becomes  and the time taken to cover it by transversal waves is

 , so that the velocity of transversal waves in the presence of expansion  is

(24.26)

This implies that time flows differently for the HS  in  depending on whether the lattice 
is in contraction or expansion. We then have the following relation between the values of  and 

 due to how the HS clock works

(24.27)

Invariance of the Maxwell equations for the HS observer in his local frame

From relations (24.20) and (24.23), we deduce the expression linking the partial derivatives in 
both frames

(24.28)

and the temporal derivative in both frames

(24.29)

By applying these relations to Maxwell’s equation in table 17.1, and by replacing  by , 
we obtain the following equations 

(24.30)

Δt = Δt0 e
−bτ

Ox1x2x3 τ
d0 d0 e

aτ

Δt0 e
−bτ τ

ct =
d
Δt

= d0 e
aτ

Δt0 e
−bτ = d0

Δt0
e a+b( )τ = ct0 e

a+b( )τ = ct0 e
τ /2

Oy1y2y3
a

b
a + b = 1/ 2

∂
∂xi

= ∂
∂yi

∂yi
∂xi

= e−aτ ∂
∂yi
     ⇒     

   grad
! "!!!

A = e−aτ grad
! "!!!

y A

   rot
! "! "

A = e−aτ rot
! "!

y
"
A

   div
"
A = e−aτ divy

!
A

⎧

⎨
⎪⎪

⎩
⎪
⎪

d
dt

= d
dty

∂ty
∂t

= ebτ d
dty

n n0 e
−τ

			− d(2
!ω el )

dt y
+ rot
" !""

y e− a+b( )τ !φ rot( )= (2e−bτ !J )
			div y 	(2

!ω el )= (2eaτ λ)

⎧

⎨
⎪

⎩
⎪
⎪

	

			
d n0 e

a+b−1( )τ !prot( )
dt y

= −rot
" !""

y

!m
2

⎛
⎝⎜

⎞
⎠⎟
+2K2(eaτ

!
λ rot )

			div y n0 e
a+b−1( )τ !prot( )=0

⎧

⎨
⎪
⎪

⎩
⎪
⎪

			(2 !ω el )= 1
K2 +K3( )

!m
2

⎛
⎝⎜

⎞
⎠⎟
+(2 !ω an)							

			 n0 e
a+b−1( )τ !prot( )= (n0m)

e a+b−1( )τ !φ rot + CI −CL( )e a+b−1( )τ !φ rot

+ 1
n0

e a+b( )τ !JI
rot −e a+b( )τ !JL

rot( )⎛

⎝⎜
⎞

⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

			d(2e
aτ λ)

dt y
= −div y(2e−bτ

!
J )

⎧
⎨
⎪

⎩⎪
				

.



chapter 24454

and 

(24.31)

To insure the coherence and invariance of these equations, it is necessary that the coefficients 
of   be the same everywhere, and thus , and we find again the relation (24.27) 
linked to the clock of the observer, which allows to write the Maxwell equations in the following 
form

(24.32a)

(24.32b)

Let’s introduce the following local values in frame  of the HS:
- the fields of rotation, of torque, of velocity and of linear momentum 

(24.33)

- the values associated with densities and flows of charges of rotation

			−
!m
2

⎛
⎝⎜

⎞
⎠⎟
(2e−bτ !J )=

												 e− a+b( )τ !φ rot( )d(n0 e
a+b−1( )τ !prot )
dt y

+
!m
2

⎛
⎝⎜

⎞
⎠⎟
d(2 !ω él )
dt y

−div y e− a+b( )τ !φ rot( )∧
!m
2

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

⎧

⎨

⎪
⎪

⎩

⎪
⎪

		ct0 =
K2 +K3
mn0

																																																										
⎧
⎨
⎪

⎩⎪

 
!
φ rot a + b = 1/ 2

   − d(2
!ω el )

dty
+ rot
! "!

y e−τ /2
!
φ rot( ) = (2e−bτ !J )

   divy  (2
!ω el ) = (2eaτ λ)

⎧

⎨
⎪⎪

⎩
⎪
⎪

   

   d (n0 e
−τ /2 !prot )
dty

= −rot
" !"

y

!m
2

⎛
⎝⎜

⎞
⎠⎟ + 2K2 (e

aτ
!
λ rot )

   divy (n0 e
−τ /2 !prot ) = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

   (2 !ω el ) = 1
K2 + K3( )

!m
2

⎛
⎝⎜

⎞
⎠⎟ + (2

!ω an )       

   (n0 e
−τ /2 !prot ) = (n0m)

e−τ /2
!
φ rot + CI −CL( )e−τ /2 !φ rot

+ 1
n0
eτ /2
!
JI
rot − eτ /2

!
JL
rot( )⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

   d(2e
aτ λ)

dty
= −divy(2e

−bτ !J )
⎧
⎨
⎪

⎩⎪

   −
!m
2

⎛
⎝⎜

⎞
⎠⎟ (2e

−bτ !J ) =

             e−τ /2
!
φ rot( ) d(n0 e

−τ /2 !prot )
dty

+
!m
2

⎛
⎝⎜

⎞
⎠⎟
d(2 !ω el )
dty

− divy e−τ /2
!
φ rot( )∧

!m
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨
⎪⎪

⎩
⎪
⎪

  ct0 =
K2 + K3

mn0
                                                          

⎧
⎨
⎩⎪

Oy1y2y3ty

   !ω (y)
el =
!ω el

   !m(y) =
!m

⎧
⎨
⎪

⎩⎪

  
!
φ(y)
rot = e−τ /2

!
φ rot

   !p(y)
rot = e−τ /2 !prot

⎧
⎨
⎪

⎩⎪



«gravitational» interactions of singularities composed of  twist disclination loops 455

(24.34)

- the quantities associated with the concentration of vacancies and interstitials and the flows 
associated with those defects

(24.35)
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- and finally the following quantities

(24.36)

In these expressions, we have logically asserted  and , since these quanti-
ties are associated with angles of rotation.  Also we have asserted that   and

, since they are associated with velocities. By this change of variable, we obtain 
a set of Maxwell equations which are invariant in frame  of the HS observer (table 
24.1), by which we mean that they do not depend on the value of the local expansion . We 
notice also that the speed of transversal waves becomes an invariant constant for the observer 
HS, no matter what the state of expansion of the lattice in which it lives is.
We also notice that only the quantities associated with the densities and flows of charges of ro-
tation transform depending on the value of , while all the other quantities transform in a logical 
and predictable way.
The fact that Maxwell equations for the HS observers are invariant (do not depend on the local 
expansion ) implies that the local HS observers cannot measure the local state of expansion 
of the lattice in which it lives based solely on electromagnetic (EM) measurements, which them-
selves are described by Maxwell equations. Notably, the measure of speed of transversal waves 
by the HS observers always gives us an invariant quantity, whatever the state of expansion of 
the lattice. Thus, the local observers HS are submitted essentially to the laws of physics descri-
bed by EM, and are only aware of the gravitational effects associated with the field of expan-
sions and only via indirect observations of their effects such as the movement of planets or the 
slowing down of clocks in the field of gravitation. This is why the HS  will seek to explain phe-
nomenas linked to gravitation with ad-hoc theories (Newton Gravitation, Einstein General Rela-
tivity) which at first glance seem independent of the laws of electromagnetism, but which he will 
seek to unify.

24.4 – HS observer in the gravitational field of a cluster

Figure 24.1 illustrated the existence of a strong analogy between our approach and the Einstein 
theory of General Relativity. Indeed, the rods and clocks of an HS living in a given point of the 
lattice depend on the local volume expansion , in an analog fashion to what is stipulated in 
General Relativity for the rods and clocks of an observer embedded in a given gravitation field. 
In the case of a lattice as illustrated in figure 24.1, we see that the lattice plays the role of an 
‘aether’ which imposes the size of rods of the HS observer, while it is the speed of transversal 
waves within the lattice (which represents information transport) which imposes how the clocks 
of the HS behave. 
Furthermore, the existence of three degrees of freedom in the parameters , ,  and  
is quite surprising, as it implies that there exist another possible choice at that level, which can-
not be determined on the basis of our current understanding of the cosmic lattice. As a matter of 
fact, an arbitrary choice of ,  and  should not entail any incoherence in the system 
and the cosmological lattice thus obtained could be entirely viable. As a consequence, we must 
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consider that parameters ,  and  are truly intrinsic properties of the cosmic lattice, just 
as the elastic modules  or the inertial mass  by site of the lattice. The determination of 
these constants involves experimentation and the measure of said properties of the cosmic lat-
tice. 

On the laws of transformation in the gravitational field of a cluster

By combining relations (24.18), (24.20) and (24.22), we can write the transformations to go from 
one local frame  of an HS situated at distance  in the field of gravity of a cluster of 
mass , as a function of the unknown parameters ,  and 

(24.37)

The equations of transformation (24.40) can, at a certain distance of the cluster of mass , 
be described approximatively by developing the exponentials

(24.38)

In General relativity, the dependance of the radial rods and the clock of an observer submitted 
to a field of gravitation from a mass  are deduced from the Schwarzschild metric.  This 
metric is obtained in the case of a massive object with spherical symmetry by postulating an 
invariant metric vis-a-vis the rotations, which is written

(24.39)

We observe that the rods and clocks of an observer depend symmetrically on distance  with 
expressions similar to (24.41), but with a  coefficient 1 in front of 

  (24.40)
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The time dilatation in a gravity field, represented by the second relation in (24.40), was verified 
with great experimental precision , on distance differences as small as 1 meter of the surface of 1

the earth, and we take into account this effect in the navigational systems like GPS.  This effect, 
which is experimentally verified can be used to determine parameters  ,  and , by re-
quiring that the last relation of (24.38) correspond to the second relation (24.40), and thus that

(24.41)

On the curvature of rays of transversal waves near massive cluster

We can also test our analogies with the theory of General Relativity of Einstein, by example by 
calculating the curvature of rays of transversal waves next to a massive cluster (fig. 24.2), since 
the measure of the effect at the beginning of the 20th century was the first experimental verifica-
tion of the General Relativity of Einstein.
In the vicinity of a massive cluster, the speed of the transversal waves  depends on the 
distance to the center of the cluster. This implies that the direction associated with two parallel 
rays impinging on the center of the cluster at distances  et  of the cluster will present an 
infinitesimal angle  such that

Figure 24.2 - curvature of transversal rays in the vicinity of a cluster. 
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 see for example: C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland : “Optical Clocks and 1

Relativity”, Science, vol. 329, 5999, pp. 1630-1633
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(24.42)

We use the dependency of speed  in the gravitational field , by writing

(24.43)

Since , by using expression (24.40) of , we have

(24.44)

As the wave will travel the path represented in figure 24.2, the tangents at infinity of the incident 
wave and the waves which is deviated have a total angle  which depends on the mini-
mum distance  of the wave ray to the center of the cluster. Half of the total angle  can 
then be deduced approximatively by integrating  for distances  to the center of the 
cluster going from  to , so that

(24.45)

General Relativity predicts a curvature worth , and the calculation of 
this value for a luminous ray grazing the Sun gives us a deviation of 1,75’’ arc degrees. 
The experimental values of the deviation of light by the Sun, measured by Eddington at the be-
ginning of the 20th century (may 1919) during a solar eclipse, have given us 1,98 0,12’’ (at 
Sobral in Brazil) and 1,61 0,31’’ of arc degrees (at Sao Tomé-et-Principe in the Golf of 
Guinea ), which corresponds quite nicely to the value calculated theoretically by General Relati-
vity, in spite of the numerous difficulties in achieving this experimental measure. 
Starting from this experimental result, our calculation must match that of General Relativity 
which gives us a relation on parameters  and 

(24.46)

Finally, combining relations (24.27), (24.41) and (24.46) allows to define the following relations 
for the parameters  , ,  and  if we are to satisfy the experimental observations

(24.47)

On the symmetry of the transformations of space-time

During the Lorentz transformation described in chapter 20, the rules of transformation are sym-
metrical with respect to time and space, just like the transformation in General Relativity in the 
case of the Schwarzschild metric (24.40). Amidst all of the possible results for parameters   , 

,  and , on the results (24.47) obtained from the dilation of time and curvature of the 
wave rays in a field of gravity conveniently give us symmetric laws of transformation as , 
and also that
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Table 24.2 - The laws of transformation linked to the expansion and the gravitational 
behavior of a cluster of twist disclination loops

Dependency of the twist disclination loops on expansion

with       

Dependency of the mass and the energy of the twist loops on expansion

Gravitational behavior of the twist loops

Transformation laws between frames  et 

RTL = RTL0 e
αTLτ

Ω TL = Ω TL0 e
βTLτ

⎧
⎨
⎪

⎩⎪
⇒

qλTL= qλTL0 e
2αTL+βTL( )τ

Qλ
cluster= qλTL(i )

i
∑ = Qλ0

cluster e 2αTL+βTL( )τ

⎧

⎨
⎪

⎩
⎪

3αTL + 2βTL = 1/ 8

M 0
TL = M 00

TL e 3αTL+2βTL−1( )τ = M 00
TL e−7τ /8

M 0
cluster = M 0(i )

TL

i
∑ = M 00

cluster e−7τ /8

⎧

⎨
⎪

⎩
⎪

ETL = M 0
TLct

2 = M 00
TLct0

2 e 3αTL+2βTL( )τ = M 00
TLct0

2 eτ /8

Ecluster (τ ) = M 0(i )
TL

i
∑ ct

2 = M 00
clusterct0

2 eτ /8

⎧

⎨
⎪

⎩
⎪

Ggrav =
ct
4

8π K0 − 4K2 / 3− 2K1(1+τ 0 )( )R∞
2

τ ext LR
cluster (r) ≅ −

4GgravM 0
cluster

ct
2r

Fgrav(d) = Ggrav

M 0(1)
clusterM 0(2)

cluster

d 2
1−Ggrav

M 0(1)
cluster +M 0(2)

cluster

4ct
2d

+ ...
⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

Ox1x2x3 Oy1y2y3

!eyi = e
τ /4 !ei = e

−
GgravM0

cluster

ct
2r !ei ≅ 1−

GgravM 0
cluster

ct
2r

+ ...
⎛

⎝⎜
⎞

⎠⎟
!ei

yi = e
−τ /4 xi = e

GgravM0
cluster

ct
2r xi ≅ 1+

GgravM 0
cluster

ct
2r

+ ...
⎛

⎝⎜
⎞

⎠⎟
xi

ty = eτ /4 t = e
−
GgravM0

cluster

ct
2r t ≅ 1−

GgravM 0
cluster

ct
2r

+ ...
⎛

⎝⎜
⎞

⎠⎟
t

⎧

⎨

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪



«gravitational» interactions of singularities composed of  twist disclination loops 461

0 (24.48)

We can consequently emit the following conjecture which contains at the same time the effects 
of time dilatation and of wave rays curvature in weak gravity:

Conjecture 9:  the metric of our approach in a weak gravitational field must be the same than
                         the Schwarzschild metric in General Relativity (24.49)

On the choice of the values   and 

On the choice of the values   and 

It remains one degree of liberty for the choice of the values of the parameters  and , 
which have to satisfy the expression . However, knowing exactly the values 
of  and  is not important concerning the gravitational properties of the twist loop, as the 
relation  involves that the inertial mass  and the distortion energy 
of a loop, as well as the values ,  and , do not depend explicitly on  
and , as shown by the relations of table 24.2.
The exact choice of the parameters  and depend obviously on the deep nature of the 
cosmic lattice. But the simplest solution we can imagine is that  be null, because in this 
case the torsion  of the twist disclination becomes a constant independent of the lattice ex-
pansion, for example a multiple of  for a cubic lattice, or a multiple of  for a hexagonal 
lattice, which seems evidently the most logical solution. 
But a null value of  implies also that  becomes equal to 1/24, and than that the loop ra-
dius  depends much less of the lattice expansion than the lattice parameter

 or the length  of the local rods of the observer HS.
As a choice of explicit values for the parameters   and  cannot be simply obtained, we 
leave open this problem, reminiscing that this degree of freedom on the values  and  
exists, with the constraint that .

24.5 – Analogies and differences with the General Relativity of Einstein

On the Schwarzschild sphere of a black hole

Assume a twist disclination loop with inertial mass  located at one end of the lattice and a 
cluster of singularities with inertial mass  in the center of the lattice. The gravi-
tational force acting on the loop is approximatively written
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(24.50)

With this force, the twist loop will undergo an acceleration in the direction of the cluster of singu-
larities, and the gravitational potential energy of the loop will transform progressively into a kine-
tic energy of the loop which will be worth as a function of its distance  to the cluster

(24.51)

However the kinetic energy of the loop is also written in the non-relativistic case as

(24.52)

so that the velocity of the loop as a function of distance  that separates it from the cluster de-
pends on the gravitational constant and the inertial mass of the cluster

(24.53)

As the inertial mass of the loop does not figure in this relation, this relation remains valid for re-
lativistic velocities of the loop. However, we know that the relativistic energy of the loop  
tends towards infinity when  tends towards the velocity of transversal waves  (see figure 
20.1), so that the following condition holds before we reach the limit velocity

(24.54)

This condition implies the existence of a critical distance  for which the energy of the loop 
becomes infinite

(24.55)

This critical distance  only depends on the mass  of the cluster, and only exists if the 
radius of the cluster is smaller than . It is called the Schwarzschild radius of the cluster and 
corresponds to the limit beyond which the loop cannot escape the cluster as it would need an 
infinite energy to do so. Thus, the cluster of mass  for which the radius  satisfies

(24.56)

would actually be a black hole which would absorb all singularities which would come close to it 
within a distance .
This Schwarzschild radius   is obtained by the same consideration in Relativity so 2

that it is identical in our approach and General Relativity.

On the sphere of perturbations of a black hole 

In our approach, we have already touched upon the notion of a black hole by defining conditions 
(15.3) so that a singularity of the gravitational field behaves like a black hole vis-à-vis transver-
sal waves, by defining a radius  of the sphere of perturbations around the singularity, namely 
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the sphere beyond which any transversal wave are captured by the singularity. By applying 
conditions (15.3)  to the cluster of mass  generating the gravitational field (24.43)

(24.57)

we obtain the following expression of radius  of the sphere of perturbations of the cluster

(24.58)

With values (24.50) of parameters , ,  and , we then obtain the radius of the 
sphere of perturbation , which is to say the same value as the 
Schwarzschild sphere. In General Relativity, one defines the sphere of photons, meaning the 
limit in the vicinity of the black hole from which no photon can escape and whose radius is 

, or 3/2 of the Schwarzschild radius. We will come back on this troubling 
difference.

On the limit radius for infinite dilation of time of an observer falling in a black hole

In our approach, the proper time of an HS is exactly written as an exponential with a term pro-
portional to 

(24.59)

With this new exponential expression, we note that the proper time of the HS observer which 
gets close to a cluster dilates infinitely when  tends to zero.
In General Relativity, we say that the proper time of the HS seems to dilate infinitely when the 
HS gets closer than a critical limit  calculated on the basis of the Schwarzschild metric, 
thanks to relation (24.40)

(24.60)

This limit distance is smaller than the Schwarzschild sphere, the point of no-return of a black 
hole. However it seems rather hard to imagine a time that freezes when the HS reaches a criti-
cal distance, and it is surprising that this critical distance be the half of the radius of Schwarz-
schild, and not the Schwarzschild radius itself, or the null radius as in our approach. 

On the differences of the characteristic radii of blacks holes

In General relativity, the simplest black holes are characterized by 3 critical radii: the photon 
sphere which is worth ,the radius of the horizon or the point of no-re-
turn, called the Schwarzschild radius, which is worth  and the radius for 
which the time dilation of the observer goes to infinity which is approximately 

. The fact that there exist 3 different radii for black holes in General Re-
lativity is rather intriguing, as is the existence of infinite time dilation at a given, non-null, radius. 
It is also mainly for this reason that we cannot describe the dynamics of things falling into black 
holes using General Relativity beyond the Schwarzschild radius.
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In our approach, the radius of the sphere of perturbations and the point of no-return are both 
similar to the Schwarzschild radius ( ), what is very satisfying for the spirit as there is 
only one limit representing the horizon of a black hole. Also, there isn’t anywhere in our ap-
proach a non-null radius where time dilation would be infinite, so that our approach is not limited 
for the description of a black hole beyond the Schwarzschild field.  However our approach is 
equivalent to general relativity as long as the field of gravitation is weak and satisfies the condi-
tion . The reason is that it is the two experimentally verified facts, namely time dila-
tation and curvature of light rays in weak fields, which we have chosen to render our approach 
identical to that of General Relativity in weak fields.  However, our approach is different for the 
strong gravitational fields, as is obvious in expressions (24.37) compared to (24.40), which ex-
plains the differences that we just described as far as characteristic radii of black holes are 
concerned.

On the formal analogy of spatial 3D flexion of the cosmological lattice 
and the 4D Einstein field equations in General Relativity

The spatial curvature of the local cosmological lattice, such as measured by the observer GO, is 
characterized by a flexion vector, given by relation (8.35), namely

(24.61)

It is remarkable to notice that this field of flexion can be directly obtained via the Newton equa-
tion (13.14) of the cosmological lattice. We thus obtain the value of a field of flexion in the cos-
mological lattice under the form

 (24.62)

We conclude that the existence of a local topological curvature of the lattice seen by the GO via 
the vector of flexion depends on 3 terms:
- the gradient of expansion of the volume, which is nothing more than the gradient of the field of 
gravitation  within the lattice,
- the temporal variations of the local quantity of movement of the lattice and the gradient of den-
sity of elastic energy  stored in the lattice, term we could call the «vector of “energy-momen-
tum” due to the singularities present within the lattice,
- the density  of charges of flexion within the lattice, which reflects the presence of topological 
singularities within the lattice, such as dislocations and/or disclinations.
On the other hand, for a local observer HS, both its reference rods and its clock depend on local 
volume expansion, so that an equation similar to equation (24.62) should necessarily become a 
4-dimensional equation of curvature of space-time,  which we will not strive to establish here.
The equation (8.39), namely

 (24.63)

permits rewriting (24.62)  under the following form
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(24.64)

This relation shows that the divergence of the vector of flexion is equal to the density of charges 
of curvature due to topological singularities in the lattice, which is null if there are no charges of 
curvature. Furthermore, in the case where there are no charges of curvature, the divergence of 
the flexion vector is the equation of Newton of the lattice.
Relation (24.62) which gives us the spatial curvature from the Newton equation of the lattice is 
the 3D analog of the 4D equation of the Einstein Field in General Relativity , which is written3

 (24.65)

in which  is the Einstein curvature tensor (Einstein tensor), which is expressed in terms of the 
Ricci curvature tensor, corresponding to a certain part of the tensor of Riemann which describes 
the curvatures of space-time

 (24.66)

As far as tensor  is concerned, it is a «geometrical objet» called the tensor of energy-momen-
tum (stress-energy tensor) which characterizes the matter contained in the space.
This equation of the field of Einstein shows how the tensor of energy-momentum of matter ge-
nerates an average curvature of space-time in its vicinity. It allows us to calculate the static cur-
vature of a massive object, or the dynamic generation of gravitational waves by a massive ob-
ject. Also it contains the equations of movement («Newton’s equations») for the matter which 
generates the curvature of space-time.
In the case of the equations of field of Einstein, we should also note that the tensor of energy-
momentum is a tensor with null divergence

 (24.67)

which translates the conservation of energy and momentum. This equation (24.67) represents 
the equation of movement in General Relativity.
There is a strong analogy between the field of Einstein (24.65) and the equation of the field of 
flexion (24.62) in the case of the cosmological lattice, because they also link a “geometrical vec-
tor” of spatial curvature to a sort of energy-momentum vector within the solid, which contains 
both the temporal variations of the local quantity of movement, the gradient of volume expan-
sion, and the gradient of elastic energy  stored in the lattice, quantities which are all influen-
ced by the presence of torsion charges or of curvature charges within the lattice. Furthermore, 
this equation (24.62) derives directly from the equation of Newton of the lattice. However, 
contrary to the field equations of Einstein, this equation is deduced by the GO who is lucky to 
posses a global clock, so that there is no ‘curvature of time’ for him, and that, as a conse-
quence, it’s curvature equation is purely spatial.
Additionally, in the case of the field equations of Einstein, equation (24.67) of the divergence of 
the energy-momentum tensor, represents the equation of movement of matter in General Rela-
tivity, just as the equation of divergence of curvature (24.66) represents the divergence of the 
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equation of movement of Newton of the lattice in the absence of charges of curvature.
On the other hand, in the equations of field of Einstein, the notion of charges of curvature asso-
ciated with topological singularities does not exist, which is explicit in the fact that the diver-
gence of the energy-momentum tensor is always null, so that there is no equivalent to (24.64) in 
General Relativity.
It is tempting at this stage to say that the notion of charges of curvature, and the pure geometric 
equation  responds to the question that Einstein asked when he was refer-
ring to the left term in field equation (24.65), the one with the Ricci curvature tensor, as made of 
fine marble while that on the right, the “energy-momentum tensor”, as made of bad quality 
wood.  What he meant is that the right term is only a phenomenological description of the matter 
parachuted in the field equations and that it is not derived from first principles, while the term on 
the left (curvature) was. In our approach the right term of (24.62) is also ‘derived’ and of “fine 
marble”, since it derives from the first principle of the Newton’s equation of the cosmological 
lattice.

 div
!
χ = div

!
λ = θ



Chapter 25

Long-range “gravitational” interactions 
between topological singularities of the lattice
           
Clusters of twist disclination loops (TL) satisfy Newton’s gravity, and most of the 
results of General Relativity. We will now study how the other types of loops, such 
as dislocation loops, mixed loops, and macroscopic interstitials/holes, interact with 
gravity. We will deduce here the full set of long-range interactions of the different 
kinds of singularity and their behavior.

25.1 – On the dependency of topological singularities
           on the background expansion

The twist disclination loop (TL) as the source of electrical charge

In the case of a twist disclination loop (TL), we have seen in the previous chapter (table 24.2) 
that the dependencies on the volume expansion of the radius of the loop, of its torsion angle, of 
its charge of rotation and of its inertial mass are written

           and          (25.1)

This permits us to deduce the energy of distortion of the loop on the expansion

(25.2)

In the presence of an external field  generated by other singularities, and a background 
expansion  of the cosmic lattice, we can then write 

(25.3)

We deduce the 3 important relations in the presence of an external field 

(25.4)

The Prismatic Edge Dislocation Loop (EL) as the source of curvature charge

In the case of an edge dislocation loop (EL), we do not know a-priori the dependencies of the 
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various quantities, radius of the loop, Burgers vector and curvature charge.  We thus introduce 
the expansion constants  and  such that

(25.5)

These constants of expansion  and  are unknown. The dependency of the radius of the 
loop should be similar to that of the TL, so , but it could also be equal to the depen-
dency of the lattice step, meaning . As regards the dependency of the Burgers vec-
tor, which must be a vector in the lattice, it should in principle take the value . But for 
now, we will not fix these values and we will keep  and , as the exact values of these 
parameters are not called to play a crucial role in the rest of the theory.  The expressions (25.5) 
allow us to write

(25.6)

In the presence of an external field  generated by other singularities, and a background 
expansion  of the cosmic lattice, we can write 

(25.7)

From which we deduce 4 important relations for an edge dislocation loop (EL) in the presence 
of an external field 

(25.8)

recalling that the curvature charge and the gravitational mass associated with the curvature 
charge can be either negative or positive depending on the interstitial nature of the charge

(25.9)

The Mixed Dislocation Loop (ML) as the source of dipolar electric moment

In the case of a mixed dislocation loop (ML), we also do not know a priori the dependencies on 
volume expansion of the radius of the loop and its Burgers vector. We introduce the following 
constants of expansion   and  so as to write
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(25.10)

They allow us to deduce the dependency of the energy of distortion of the loop of expansion

(25.11)

In the presence of an external field  generated by other singularities, and a background 
expansion  of the cosmic lattice, we can write 

(25.12)

We deduce the four following relations for a ML in the presence of an external field 

(25.13)

The macroscopic vacancy (macroscopic lattice hole), the analog of a black hole

The expansion field (22.86) associated with a macroscopic lattice can be written by using the 
gravitational “constant’ in the following form 

(25.14)

where  represents the expansion field due to the other singularities that are in the vicinity 
of the macroscopic vacancy. If this field is weak ( ), we can introduce a gravitational 
mass  of the macroscopic vacancy by writing
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in which
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(25.18)

By using the fact that  , we obtain the following relations for a macrosco-
pic hole placed in a external field , written with the gravitational mass of the hole 

(25.19)

We note that the gravitational mass of the hole has the property of changing signs for two dif-
ferent values of the volume expansion of the lattice

(25.20)

Let’s recall that the macroscopic vacancy is the only singularity which will necessarily become a 
black hole when the volume expansion of the lattice satisfies relation (22.100), namely

(25.21)

The macroscopic interstitial, the analog of a neutron star

The expansion field (22.105) associated with the macroscopic interstitial can be written by using 
the gravitational constant under the following form 
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in which we introduce a gravitational mass  of the interstitial
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Recalling that  and  in the perfect lattice, we deduce the following relation

(25.24)

which allows us to write the energy (22.108) of the macroscopic interstitial under the form

(25.25)

By using the fact that  , we obtain the following relations for a macrosco-
pic interstitial placed in an external field , expressed by using the gravitational mass

 of the interstitial

(25.26)

We notice that the gravitational mass of the interstitial has the property of changing sign as a 
function of the volume expansion of the background

(25.27)

25.2 – Gravitational interactions between the different topological
           singularities of the cosmic lattice

On the interactions between two twist loops (TL-TL)

If a twist disclination loop (1) interact with another twist disclination loop (2), the elastic energy of 
distortion of the loop (1) is written

(25.28)

The increase in energy of the loop (1) due to the presence of the loop (2)  is worth

(25.29)

The increase in energy of the two loops corresponds to the interaction energy of the loops, na-
mely gravitational energy

(25.30)
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and the derivative of this energy with respect to distance corresponds to the force of gravitation 
between the two loops

(25.31)

On the interaction between two edge loops (EL-EL)

In the case of two edge dislocation loops, the energy of loop (1) is written

(25.32)

and the increase in energy of loop (1) due to loop (2) is worth

(25.33)

The gravitational energy of the two loops becomes

(25.34)

which leads us to a gravitational force

(25.35)

On the interaction between two mixed loops (ML-ML)

In the case of two mixed dislocation loops interacting we have the following energies

(25.36)

which lead to the following gravitational interaction

(25.37)

we deduce the gravitational interaction force between the two loops

(25.38)
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On the interaction between a twist loop and an edge loop (TL-EL)

In the case of the interaction between a twist loop and an edge loop (TL-EL), the energy of the 
twist disclination loop (TL) becomes

(25.39a)

And that of the edge dislocation loop (EL)

(25.39b)

which gives us a total energy

(25.40)

and hence the following gravitational force between the two loops

(25.41)

On the interaction between a twist loop and a mixed loop (TL-ML)

In the case of a twist loop-mixed loop (TL-ML) interaction, the energy of the TL reads

(25.42a)

That of the ML

(25.42b)

Edist
TL ≅ M 0

TL eτ ext LR
EL (d )/8( )ct2 ≅ M 0

TLct
2 e

−
Ggrav
2ct

2
Mcourbure

EL +M0
EL

d

≅ M 0
TLct

2 1−
Ggrav

2ct
2
Mcourbure

EL +M 0
EL

d
⎛
⎝⎜

⎞
⎠⎟

⇒ ΔEdist
TL ≅ −

Ggrav

2
M 0

TL Mcourbure
EL +M 0

EL( )
d

Edist
EL ≅ M 0

EL e αEL+2βEL( )τ ext LDTL (d )( )ct2 ≅ M 0
ELct

2 e
−
4 αEL+2βEL( )Ggrav

ct
2

M0
TL

d

≅ M 0
ELct

2 1−
4 αEL + 2βEL( )Ggrav

ct
2

M 0
TL

d
⎛
⎝⎜

⎞
⎠⎟

⇒ ΔEdist
EL ≅ −4 αEL + 2βEL( )Ggrav

M 0
TLM 0

EL

d

ΔEgrav
TL−EL ≅ −

Ggrav

2
M 0

TLMcourbure
EL

d
− 1
2
+ 4 αEL + 2βEL( )⎛

⎝⎜
⎞
⎠⎟Ggrav

M 0
TLM 0

EL

d

Fgrav
TL−EL ≅ 1

2
Ggrav

Mcourbure
EL M 0

TL

d 2
+ 1
2
+ 4 αEL + 2βEL( )⎛

⎝⎜
⎞
⎠⎟Ggrav

M 0
TLM 0

EL

d 2

Edist
TL ≅ M 0

TL eτ ext LR
ML (d )/8( )ct2 ≅ M 0

TLct
2 e

−
Ggrav
2ct

2
M0

ML

d ≅ M 0
TLct

2 1−
Ggrav

2ct
2
M 0

ML

d
⎛
⎝⎜

⎞
⎠⎟

⇒ ΔEdist
TL ≅ −

Ggrav

2
M 0

TLM 0
ML

d

Edist
ML ≅ M 0

ML e αML+2βML( )τ ext LDTL (d )( )ct2 ≅ M 0
MLct

2 e
−
4 αML+2βML( )Ggrav

ct
2

M0
TL

d

≅ M 0
MLct

2 1−
4 αML + 2βML( )Ggrav

ct
2

M 0
TL

d
⎛
⎝⎜

⎞
⎠⎟

⇒ ΔEdist
ML ≅ −4 αML + 2βML( )Ggrav

M 0
TLM 0

ML

d
.



chapter 25474

for a total energy

(25.43)

which gives us the force 

(25.44)

On the interaction between an edge loop and a mixed loop (EL-ML)

In the case of an edge loop-mixed loop (EL-ML) interaction, the energy of the EL reads

(25.45a)

that of the ML

(25.45b)

which gives us the gravitational energy

(25.46)

from which we compute the force

(25.47)
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(25.48a2)

and the energy of the vacancy reads

(25.48b)

for a total gravitational energy

(25.49)

from which we deduce the force

(25.50)

which is presented under a simpler form by using values  and  

(25.51)
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In the case of an interaction between an edge loop (EL) and a macroscopic vacancy (L), the 
energy of EL and the energy of L read
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On the interaction between a mixed loop and a macroscopic vacancy (ML-L)

In the case of an interaction between a mixed loop and a macroscopic vacancy (ML-L), the 
energy of the ML reads

(25.56a)

and for the vacancy (L)

(25.56b)

One obtains for the total energy

(25.57)

and for the gravitational force

(25.58)

which we rewrite by introducing the values of  and  

(25.59)

On the interaction between a twist loop and a macroscopic interstitial (TL-I)

In the case of an interaction between a twist loop and a macroscopic interstitial (TL-I), the ener-
gies become
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(25.60b)
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For the total energy, one has

(25.61)

and for the gravitational force

(25.62)

which we write by using the values of  and , as 

(25.63)

On the interaction between an edge loop and a macroscopic interstitial (EL-I)

The energy of the edge loop (EL) interacting with a macroscopic interstitial (I) reads
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On the interaction between a mixed loop and a macroscopic interstitial (ML-I)

For an interaction between a mixed loop and a macroscopic interstitial (ML-I), we have 

ΔEgrav
TL−I ≅ −4Ggrav

M 0
TLMgrav

( I )

d
−
Ggrav

2
M 0

TLMgrav
( I )

d
≅ − 9

2
Ggrav

M 0
TLMgrav

( I )

d

Fgrav
TL−I ≅ 9

2
Ggrav

M 0
TLMgrav

( I )

d 2

Ggrav Mgrav
( I )

Fgrav
TL−I ≅ 3ct

2

4R∞
2
M 0

TLRI
3

d 2

Edist
EL ≅ M 0

EL e αEL+2βEL( )τ ext( I ) (d )( )ct2 ≅ M 0
ELct

2 e
−
4 αEL+2βEL( )Ggrav

ct
2

Mgrav
( I )

d

≅ M 0
ELct

2 1−
4 αEL + 2βEL( )Ggrav

ct
2

Mgrav
( I )

d
⎛

⎝⎜
⎞

⎠⎟

⇒ ΔEdist
EL ≅ −4 αEL + 2βEL( )Ggrav

M 0
ELMgrav

( I )

d

Egrav
( I ) ≅ Mgrav

( I ) eτ ext LR
EL (d )( )ct2 ≅ Mgrav

( I ) ct
2 e

−
4Ggrav
ct
2

Mcurvature
EL +M0

EL

d

≅ Mgrav
( I ) ct

2 1−
4Ggrav

ct
2

Mcurvature
EL +M 0

EL

d
⎛
⎝⎜

⎞
⎠⎟

⇒ ΔEgrav
( I ) ≅ −4Ggrav

Mgrav
( I ) Mcurvature

EL +M 0
EL( )

d

ΔEgrav
EL−I ≅ −4Ggrav

Mcurvature
EL Mgrav

( I )

d
− 4Ggrav 1+αEL + 2βEL( )M 0

ELMgrav
( I )

d

Fgrav
EL−I ≅ 4Ggrav

Mcurvature
EL Mgrav

( I )

d 2
+ 4Ggrav 1+αEL + 2βEL( )M 0

ELMgrav
( I )

d 2

Ggrav Mgrav
( I )

Fgrav
EL−I ≅ 2ct

2

3R∞
2
Mcurvature

EL RI
3

d 2
+ 2ct

2

3R∞
2 1+αEL + 2βEL( )M 0

ELRI
3

d 2

.



chapter 25478

(25.68a)

(25.68b)

which gives us a gravitational energy

(25.69)

and a gravitational force

(25.70)

Which we rewrite with the values of  and 

(25.71)

On the interaction between two macroscopic vacancies (L-L)

In the case of an interaction between two macroscopic vacancies (L-L), the energies become
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which leads to the following gravitational energy
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and the interaction force
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which can also be written, with the values of  and , under the form
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On the interaction between to macroscopic interstitials (I-I)

In the case of an interaction between to macroscopic interstitials (I-I), the energies are

(25.76)

The gravitational energy becomes

(25.77)

and the gravitational force

(25.78)

which we rewrite, with the values of  and , under the form
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In the case of an L-I interaction, the energies read
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On the diverse gravitational forces between the different topological singularities

We can now draw the complete table for the expressions of gravitational interactions between 
the various topological singularities within the perfect cosmic lattice (table 25.1).

Table 25.1 -  The gravitational forces 
between the different topological singularities

Fgrav
TL−TL ≅ Ggrav

M 0(1)
TL M 0(2)

TL

d 2

Fgrav
EL−EL ≅ αEL + 2βEL( )Ggrav

Mcurvature(1)
EL M 0(2)

EL +Mcurvature(2)
EL M 0(1)

EL

d 2
+ 2 αEL + 2βEL( )Ggrav

M 0(1)
EL M 0(2)

EL

d 2

Fgrav
ML−ML ≅ 2 αML + 2βML( )Ggrav

M 0(1)
MLM 0(2)

ML

d 2

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Fgrav
TL−EL ≅ 1

2
Ggrav

Mcurvature
EL M 0

TL

d 2
+ 1
2
+ 4(αEL + 2βEL )

⎛
⎝⎜

⎞
⎠⎟Ggrav

M 0
TLM 0

EL

d 2

Fgrav
TL−ML ≅ 1

2
+ 4(αML + 2βML )

⎛
⎝⎜

⎞
⎠⎟Ggrav

M 0
TLM 0

ML

d 2

Fgrav
EL−ML ≅ 4 αML + 2βML( )Ggrav

Mcurvature
EL M 0

ML

d 2
+ 4 αEL + 2βEL +αML + 2βML( )Ggrav

M 0
ELM 0

ML

d 2

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

Fgrav
TL−L ≅ 1

2
Ggrav

9 +τ 0
1+τ 0

M 0
TLMgrav

(L )

d 2
≅ ct

2

8
9 +τ 0( )M 0

TLRL

d 2

Fgrav
EL−L ≅ 4Ggrav

1
1+τ 0

Mcurvature
EL Mgrav

(L )

d 2
+ 4Ggrav

1+ αEL + 2βEL( ) 1+τ 0( )
1+τ 0

M 0
ELMgrav

(L )

d 2

≅ ct
2 Mcurvature

EL RL

d 2
+ ct

2 1+ αEL + 2βEL( ) 1+τ 0( )⎡⎣ ⎤⎦
M 0

ELRL

d 2

Fgrav
ML−L ≅ 4Ggrav

1+ αML + 2βML( ) 1+τ 0( )
1+τ 0

M 0
MLMgrav

(L )

d 2
≅ ct

2 1+ αML + 2βML( ) 1+τ 0( )⎡⎣ ⎤⎦
M 0

MLRL

d 2

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

Fgrav
TL−I ≅ 9

2
Ggrav

M 0
TLMgrav

( I )

d 2
≅ 3ct

2

4R∞
2
M 0

TLRI
3

d 2

Fgrav
EL−I ≅ 4Ggrav

Mcurvature
EL Mgrav

( I )

d 2
+ 4Ggrav 1+αEL + 2βEL( )M 0

ELMgrav
( I )

d 2

≅ 2ct
2

3R∞
2
Mcurvature

EL RI
3

d 2
+ 2ct

2

3R∞
2 1+αEL + 2βEL( )M 0

ELRI
3

d 2

Fgrav
ML−I ≅ 4Ggrav 1+αML + 2βML( )M 0

MLMgrav
( I )

d 2
≅ 2ct

2

3R∞
2 1+αML + 2βML( )M 0

MLRI
3

d 2

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

Fgrav
L−L ≅

8Ggrav

1+τ 0( )
Mgrav(1)

(L ) Mgrav(2)
(L )

d 2
≅
ct
4 1+τ 0( )
2Ggrav

RL(1)RL(2)

d 2

Fgrav
I−I ≅ 2Ggrav

Mgrav(1)
( I ) Mgrav(2)

( I )

d 2
≅ ct

4

18GgravR∞
4

RI (1)
3 RI (2)

3

d 2

Fgrav
L−I ≅ 4Ggrav

2 +τ 0
1+τ 0

Mgrav
(L )Mgrav

( I )

d 2
≅ ct

4

6R∞
2
2 +τ 0
Ggrav

RLRI
3

d 2

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪



Long-range “gravitational” interactions between topological singularities of the lattice 481

In that table, we notice two important things:

- only the interaction between the twist disclination loops which carry an electrical charge of ro-
tation, satisfy exactly the Newton law of gravitation. It should be noted that these loops have a 
much higher energy than the other types of loops and that they dominate the interactions bet-
ween loops,

- all the other interactions have a slightly modified form of gravitational interaction. Amongst the 
various loops, all interactions depends on the ‘constant of gravitation’ , but with different 
numerical factors, which can contain the unknown parameters ,

- in the case where an edge dislocation loop intervenes, there are always two terms of interac-
tion, one depending on the curvature mass  of the edge loop, and the other depends 
on the inertial mass  of the edge loop. As the mass of curvature of the edge loop has a 
greater value than it’s inertial mass, the term containing the curvature mass largely dominates in 
the expression of the force. Also this term can be attractive or repulsive since the curvature 
mass of the loop is positive if the loop is of vacancy type and negative if the loop is interstitial,

- in the case where a macroscopic vacancy or a macroscopic interstitial are involved, there are 
two possible formulations of the gravitational force of interaction: the formulation which features 
the gravitational masses  et  and which resemble the formulation of Newton’s law, 
but which presents the disadvantage that the masses  and  depend strongly on the 
background expansion of the lattice, to the point of changing signs in certain domains of expan-
sion. This is why we will use the second formulation which features radius  and  of the 
macroscopic singularities, and that has the advantage of being a lot simpler to analyze when it 
comes to the sign of the interaction (attractive or negative),

- on the basis of these expressions the ‘gravitational’ forces of interaction between singularities, 
we can deduce the attractive or repulsive nature of the interactions in table 25.1 as a function of 
background expansion  (fig. 25.1),

In figure 25.1, we did not respect the scale on the axis of expansion , specifically  is 
much larger ( ) since  in the case of a cosmic lattice. 
In this figure, we note that the interactions evolved under the effect of the background expan-
sion of the lattice. Gravitational forces go from an attractive to a repulsive mode, or vice-versa 
for certain values of expansion. The changes in sign correspond either to a through-zero for the 
force of interaction, or to the emergence of a singularity of the attractive force.
It is evident in figure 25.1 that all of this has important implications for the cosmological behavior 
of singularities within the lattice, meaning on the evolution of singularities during the cosmologi-
cal expansion of the lattice. We will revisit this important topic in the next chapter. 

In figure 25.1, we also have reported certain phenomenas associated with the expansion of the 
background:

- first off, for , the transition from the domain without transversal waves, which is domi-
nated by localized longitudinal modes (which we will talk about later), to the domain of expan-
sion where there is a real propagation of longitudinal waves and where quantum mechanics 
disappears as we will see later,

- domains of expansion where macroscopic vacancies are or are not black holes, with a transi-
tion for the expansion value ,
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Figure 25.1 - Attractive or repulsive behaviors of the gravitational interactions forces
between singularities as the function of the background expansion  of the cosmic latticeτ 0



Long-range “gravitational” interactions between topological singularities of the lattice 483

- the expansion value  for which the evolution of the cosmic lattice (figure 16.8) pre-
sents a transition from the domain of end of inflation with reduction of expansion velocity to the 
domain of expansion with accelerating velocity of expansion,
- one has not shown in figure 25.1 the steps of cosmic evolution that follow , namely 
the end of acceleration of expansion, the transition through a null velocity of expansion and fi-
nally a return to the contraction of the cosmic lattice (see figure 16.8).

On the consequences of values  

We have deduced in chapter 24, starting from the dilation of time and the curvature of rays in a 
weak gravitational field, that the values of the parameters  and  associated with the 
twist disclination can take any values, but satisfying the condition . For the 
edge and mixed dislocation loops, there are no well known experimental facts that would allow 
us to deduce the values for parameters . However, nothing prevents us 
from trying to guess what these values are and what the consequences would be. As EL and ML 
are topological defects due to translations in the lattice, we can for example assume that these 
parameters directly follow expansions of the lattice and we therefore have the values

Example I:     (25.84)

This case is simple, and the principal consequences would be that the diverse properties of 
these loops follow the following rules of expansion in the cosmic lattice

  (25.85a)

(25.85b)

and thus that the inertial mass and the curvature of these loops would be invariant in the expan-
sion and that the charge of curvature of the EL and the dipolar moment of the ML would both 
depend on the lattice expansion.
However we can also consider a second possibility based on the fact that the dispiration which 
is analogous to an electron is in fact composed of the association of a TL and an EL. In this 
case, in order to maintain the analogy between the dispiration TL-EL and an electron, we need 
that the radius of the EL presents the same dependency than that of the TL, meaning that  

. And by extension, also that the mixed loop satisfied . Furthermore, as 
the Burgers vectors of the edge loop and the mixed loop have to be translation vectors of the 
lattice, we will assume a  dependency, and thus that , so that

Example II:     (25.86)
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with the following physical consequences

    (25.87a)

(25.87b)

In the case where the torsion of the twist loop is zero, when , the value of the parame-
ters would be then .
The values of the parameters  are not known, but have to satisfy 

. Their real values must have physical consequences which should be wi-
thin experimental reach, albeit difficult to reach.

On the possibility of existence of a kind of magnetic monopoles
in the case of a variation of the background expansion of the cosmic lattice

There is another disconcerting physical consequence. Indeed if the radius of the edge disloca-
tion loop has a value different of 1/3 ( ) which assures us of the existence of dispira-
tions analogous to electrons, that would mean that the number of holes or interstitials of the EL 
should vary if the local expansion changes. However the only possibility for this number to vary 
is that the edge loop behaves like a sink or source of vacancies or interstitials in the presence of 
a variation of the expansion .  This effect would have very striking implications for Maxwell 
equations, as in this case there exists divergent flux of vacancies or interstitials, meaning that 
the equation of Maxwell  should be replaced by , with as the analog 

. In other words, in the case where , the edge dislocation loops behave 
like magnetic monopoles in the presence of variation of the expansion of the cosmic lattice. 
This effect should be measurable by the HS observers, which would measure a very small 
monopole magnetic component linked to particles containing edge loops and caused by a local 
expansion (which HS should not in principle be able to measure.). And this monopole com-
ponent of the particles containing edge loops must exist due to the effect of cosmological ex-
pansion of the universe, which could open a very exciting chapter of this approach.
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Short range «gravitational» interaction
and the weak force of cohesion of a dispiration
           
The previous chapter dealt with the long-distance gravitational interactions bet-
ween the diverse singularities of the cosmic lattice. This chapter will look at the 
very short distance gravitational interaction between a twist disclination loop (TL) 
and an edge dislocation loop (EL) due to the charge of curvature of the EL and the 
charge of rotation of the TL and their respective perturbations to the field of expan-
sion. 
We show that this interaction between charges of rotation and curvature corres-
ponds to a repulsive force at very short distance that scales in  when the 
loops are separated, but that it is an attractive force between the two loops when 
they form a dispiration. 
This gravitational interaction between a charge of rotation and a charge of curva-
ture presents numerous analogies with the famous ‘weak force’ of particle physics.

26.1 – Long and short distance interactions between
           a twist disclination loop (TL) and an edge dislocation loop (EL)
 
If a twist loop with radius  gets close enough to an edge loop with radius , the energy of 
interaction will feature an energy associated with long range gravitational fields, but also an in-
teraction energy due to the short range perturbations of the expansion field (23.2). We express 
the short range (SR) field of the twist loop TL in the following way

(26.1)

The energy of distortion (25.7)  of the edge loop EL is

(26.2)

The total gravitational energy between the two loops is written, by using (25.39a) and (25.39b)

(26.3)
Taking into account that  (23.16), the total energy of the two loops can be 
written
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loping the exponentials and taking into account that  , under the form

(26.5)

At long distance, it is the term in  which dominates, so that the energy of interaction is ne-
gative if , meaning if the edge loop (EL) is of vacancy type and positive if 

, meaning the EL  is interstitial (fig. 26.1).
At short distance, it is the term in  which dominates, so that the energy of interaction be-
comes positive (fig. 26.1). In the case of a vacancy edge loop (EL), we have  , so 
that the energy of interaction goes through zero for  which is worth

(26.6)

From the energy increase , we can deduce the gravitational force between the loops

(26.7)

At long distance it is the term in  which dominates so that the interaction force is negative 
and repulsive if , meaning if the edge loop (EL) is interstitial, and it is positive and 
attractive if , meaning if the EL is of vacancy type.
At short distance, it is the term in  which dominates, so that the interaction force becomes 
negative and repulsive. In the case of a vacancy edge loop for which , the force of 
interaction goes through zero for  which is worth

(26.8)

and it presents a maximum for  which is worth

(26.9)

26.2 – The coupling energy of a Twist-Edge dispiration Loop (TEL)
           formed of a twist loop (TL) and an edge loop (EL)

If a twist disclination loop (TL) with radius  is coupled with  an edge dislocation loop (EL) 
with radius , we obtain a Twist-Edge dispiration Loop (TEL). The elastic energy and 
the kinetic energy of this dispiration loop is due to the field of rotation of the screw loop, to the 
field of expansion and of shear of the edge loop and to the velocity fields of the two loops.  As 
the various fields of the two loops are all orthogonal and contained in the torus around the dispi-
ration loop, the relativistic energy is the sum of the relativistic energies (20.47) and (20.48)

(26.10)
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However if we consider the external field of perturbation of expansion associated with this dispi-
ration loop, we will superpose the fields (23.2) of the twist loop with the fields of the edge loop, 
both long and short distance, so that

(26.11)

The gravitational energy of this field of perturbation is calculated in the following way

(26.12)

We find the individual energies of the field of perturbation of each of the loops, but we add a 
new coupling term between the two loops, due to the interaction between TL and EL which in-
tervene in the square term , and which gives us the following 
increase in energy 

(26.13)

By carrying the integration and recalling that  and by conserving the most 
important term of this integration, we obtain the coupling energy between the external gravita-
tional fields of the two loops comprising the dispiration

(26.14)

In fact, this energy is due to the coupling of the rotational charge of the twist loop and the curva-
ture charge of the edge loopL. It is then an interaction between charges of rotation and curva-
ture of the two loops of the TEL. We note that this coupling energy is negative if , 
meaning if the edge loop is of vacancy type and positive if , meaning if the EL is 
interstitial

On the binding energy of a TEL dispiration 

Let’s compare now the gravitational energy at short distance  between two loops 
separated by distance  with coupling energy  within the dispiration loop. We have

(26.15)
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the perfect cosmic lattice

(26.16)

In this expression, there appears the ratio  which most likely is very small 
compared to 1, so that the absolute value  of the coupling energy of the dispiration is 
assuredly smaller than the interaction energy  between the two loops when they are 
separated by a distance  .

Figure 26.1 - Interaction potentials between an edge dislocation loop (EL) (of vacancy or interstitial type) 
and a twist disclination loop (TL) to form a twist-edge dispiration loop (TEL)

From which we deduce that the potential energy of interaction  between the two loops, 
as a function of distance  between the two loops in fact behaves like a capture potential  such 
as that represented in figure 26.1 in the domain “dispiration”. This potential holds the two loops 
together within the dispiration, with a binding energy  corresponding to the difference of 
energy between the maximum of the potential energy of interaction  of the TL and EL 
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and the coupling energy  of the dispiration (fig. 26.1). 
The potential energy of interaction has a repulsive force that scales as  as soon 
as the loops are separated by a critical value on the order of . To separate the two 
dispiration loops, it suffices: 
- either a fluctuation in energy equal or superior to the binding energy  of the dispiration 
loop, so that the individual loops are at a distance  and repulse each other indefinitely,
- either the edge loop crosses the barrier  by a quantic tunnel effect and the loops start 
repulsing each other indefinitely.

26.3 – On the analogy with the weak interaction 
           of the standard model of particle physics

The short range interaction that we just described between the charges of rotation and curva-
ture, meaning between a twist disclination loop (TL) and an edge dislocation loop (EL) respecti-
vely, present a remarkable analogy with the weak interaction of the Standard Model of particle 
physics.
The weak interaction of the standard Model is one of the four fundamental forces of nature. It is 
responsible for the radio-active decay of fundamental particles and it applies to all fermions, 
meaning electrons, neutrinos and quarks.  In the standard model, the weak interaction is linked 
to the exchange of massive bosons ,  and , and it allows us to explain the weak 
interactions for leptons, semi-leptons and hadrons. It is because this interaction is of very short 
range and is very weak, compared to the strong force, that it is called the weak interaction. Also 
this interaction breaks the parity symmetry P and the symmetry CP. It is also directly linked to 
the electrical charge since the electromagnetic interactions and the weak interaction have been 
unified as two different aspects of electro-weak interaction. 
The analogy between the short range interaction between TL and EL and the weak interaction 
of the standard model is rather self-evident if you consider:
- both are the foundation for a weak binding at the heart of particles or loops,
- both are very short distance interactions,
- both allow the decay of a particle or a loop in other particles or loops,
- the decay  of a particle or a dispiration loop can be obtained by a local fluctuation of energy, or 
a quantum tunnel effect, which is random, just like radio-active decay, which is a statistical phe-
nomena,
- the weak interaction participates in the breaking of the P and CP, symmetry, which coincides 
with the fact that there is an asymmetry of interaction between a TL and an EL of vacancy or 
interstitial nature (fig. 26.1). 
As an example, let’s consider the weak decay of a muon  into an electron  as shown in 
figure 26.2.  This weak interaction of leptonic type shows an initial decay of a muon  in a 
muon neutrino  and a massive boson , and the decomposition of a massive boson  
and an electron  and an electronic anti-neutrino .
Let’s consider conjecture 8 which stated that “singularities of a vacancy nature correspond by 
analogy to anti-matter and interstitial singularities to matter». On this basis, let’s assume for 
example that the combination of a twist loop  with an interstitial edge loop  in a twist-
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edge dispiration loop (TEL) is the analog of an electron , and let’s imagine then that the 
combination of a twist loop  with an interstitial edge loop  with slightly different topolo-
gies (see chapter 30) makes a dispiration loop which is the analogous of a muon . The weak 
decay changing the muon  in an electron  represented in figure 26.2(a) would posses 
then a decay analogous to the decay of loops represented in figure 26.2(b). The initial dispira-
tion corresponding to muon , and composed of the couple  linked by the weak 
force, decomposes in a twist loop  carrying the charge of rotation, and is analogous to the 
massive boson carrying the electrical charge, and an interstitial (i) edge loop  analo-
gous to the muonic neutrino .  Then the twist loop  is combined  with an interstitial (i) 
edge loop  to form a dispiration , analogous to the electron , by emitting a 
vacancy (l) edge loop , anti-loop of the interstitial (i) edge loop , and analogous to 
the electronic anti-neutrino .

Figure 26.2 - Analogy between weak leptonic interactions
 and the decay and formation of dispiration loops

The weak interaction corresponds to the transformation of the anti-muon  and a positron  
represented by figure 26.2(c) and also has a perfect analog with the loops presented in figure 
26.2(d). But this time, the  is replaced by the anti-loop  with a charge of rotation oppo-
sed and the vacancy edge loop  is replaced by an interstitial edge loop  and vice-
versa. If we consider now the interaction between loops of figure 26.2(b) and 26.2(d), we can 
imagine immediately that there exist an asymmetry between these two reactions due to the po-
tentials of interaction that are slightly different in the case of vacancy or interstitial edge loops 
(fig. 26.1). This asymmetry becomes then analogous to the violations of P  parity and CP  sym-
metry in the case of weak interactions. We will return in detail in chapter 31 on the topological 
structure of twist loops and edge loops which could be associated with weak interactions.
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Chapter 27

A plausible scenario of cosmological evolution
towards our current Universe
           
As we study the analogies of our approach with the great theories of physics, we 
start this chapter, which is essentially qualitative and speculative, by emitting some 
hypothesis as regards the composition of matter and anti-matter and by supposing 
that particles and anti-particles are made up of clusters of topological loop singula-
rities, such as screw disclination, edge dislocations and mixed dislocations, of a 
perfect cosmic lattice. The weak asymmetry that exist between matter and anti-
matter is introduced by assuming that matter is based on the edge dislocation 
loops of interstitial nature and that anti-matter is based on the edge dislocation 
loops of vacancy type. By using the results of the previous chapter (table 25.1), we 
will see that the interactions of gravitational nature between particles and anti-par-
ticles of the Universe are almost all attractive, while showing a weak scaling of the 
intensity of interaction depending on the type of particles that are interacting. Only 
the forces which feature at least one particle based exclusively on a cluster of in-
terstitial nature (which we will interpret as neutrinos) present a repulsive nature. 
On the basis of these considerations, it is possible to imagine a scenario of cosmo-
logical evolution of the topological singularities which form after the big-bang. This 
scenario explains the formation of galaxies, the phenomenon of dark matter of the 
astro-physicists, the disappearance of anti-matter from the Universe, the formation 
of massive black holes in the center of galaxies of matter, the formation of stars 
and the formation of neutron stars during the gravitational collapse of matter. 
Then we will seek to interpret the Hubble constant, the redshift of galaxies and the 
background cosmic radiation in the frame of our approach.

27.1 – Matter, anti-matter and their gravitational interactions

The existence of 15 gravitational forces depending on the nature of the singularities involved 
(tableau 25.1), as well as the behavior of the forces as a function of the background expansion 
of the lattice (figure 25.1), allow us to elaborate a simple scenario for the cosmic evolution of our 
Universe.

On matter and anti-matter

Starting from conjecture 8, which stipulated that the singularities of vacancy nature correspond 
by analogy to anti-matter and the singularities of interstitial nature to matter, we introduce the 
following hypothesis:
- the particles of matter (électron , neutrino , neutron , proton , etc.)  of the Uni-e− ν 0 n0 p+
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verse are made of twist disclination loops, which confer them an electrical charge, of mixed dis-
location loops, which give them a dipolar electric charge, and of edge dislocation loops of inter-
stitial nature, which gives them a negative curvature charge,
- the particles of anti-matter (positron , anti-neutrino , anti-neutron , anti-proton , 
etc.) of the Universe are made of twist disclination loops, which give them an electrical charge, 
of mixed dislocation loops, which give them a dipolar moment, and of edge dislocation loops of 
vacancy type which gives them a positive curvature charge.

On the asymmetry between particles and anti-particles

If we accept this distinction between particles and anti-particles, the existence of a positive or a 
negative charge of curvature, due to whether the edge loop is of interstitial or vacancy type, 
does not appear in General Relativity, nor in the Standard Model. This introduces a weak 
asymmetry between particles and anti-particles which only exists in our approach. 
This asymmetry is similar to the asymmetry observed experimentally between particles and 
anti-particles in particle physics, but which has no explanation. This asymmetry is seen in cer-
tain properties of fundamental particles (like the violation of CP symmetry, an action combined 
of a charge conjugation C  and a reflexion symmetry P ), but not the rest mass of these particles 
(linked to the non-violation of the CPT symmetry, an action combined of a charge conjugation C, 
a reflexion symmetry P and a time inversion T ). However, in modern physics, be it the Standard 
Model or General Relativity, the notion of charge of curvature doesn’t exist as it only appears 
due to the presence of topological defects of the lattice as developed in this work.  This property 
of curvature charge which is linked to the topological singularities could therefore be a great 
candidate to explain the experimentally observed asymmetry between particles and anti-par-
ticles.

To simplify let’s call:

- particle  a matter particle like an electron , a muon , a tau , a neutrino , a pro-
ton (or any other elementary particle composed of quarks) which involves twist loops, with 
electrical charges, eventually mixed loops in the case of a dipolar electrical field and a majority 
of edge loops of interstitial nature, and thus a negative curvature charge,

- anti-particle an anti-matter particle like a positron , an anti-muon , an anti-tau , an 
anti-neutron , an anti-proton (or any other particle made of quarks) which involves twist 
loops and their electrical charges, eventually mixed loops in the case of a dipolar electric field 
and a majority of edge loops of vacancy nature and thus a positive curvature charge,

- neutrino  a particle of matter corresponding to the electronic neutrino , to the muonic 
neutrino  or to the tau neutrino , which contains no twist loops and no mixed loops, but 
only edge loops of interstitial nature and therefore a negative curvature charge,

- anti-neutrino  a particle of anti-matter corresponding to the electronic anti-neutrino , the 
muon anti-neutrino  or the tau anti-neutrino , which contains no twist loops, no mixed 
loops but only edge loops of vacancy type, and thus a positive curvature charge.
To these 4 types of particles or anti-particles, we can, thanks to the previous chapters, assign 
inertial masses and equivalent masses of curvature, which satisfy the following relations in the 
case of particles and anti-particles and in the case of neutrinos and anti-neutrinos

e + ν 0 n 0 p−

X e− µ− τ − n0

p+

X e + µ+ τ +

n 0 p−

ν 0 νe

νµ ντ

ν 0 νe
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(27.1)

(27.2)

On the effect of the asymmetry between particles and anti-particles
on the gravitational interactions

Thus, without knowing a-priori the exact composition of the various particles in terms of singular 
loops, we can deduce thanks to these relationships between mass of inertia and mass of curva-
ture, relevant informations with regard to the behavior of the forces of gravitational interaction 
between the diverse particles. Indeed, in the case of the interactions between particles  and  

, we have, thanks to table 25.1, that

(27.3)

From which we deduce the following inequality relationships between the forces of gravitational 
interaction

(27.4)

As , the difference between the forces of interaction remain weak, but it as-
sures us nonetheless that there is an asymmetry between particles and anti-particles (gravita-
tionally the particles attract each other a little less than the anti-particles) which will play an im-
portant role in the evolution of the Universe as we will see in the next section.
In the case of the interaction between particles  and  , we have

(27.5)

From which we deduce the following inequality relations between the gravitational forces
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(27.6)

These relations show again that particles attract each other a little less than anti-particles.
As regards neutrinos

(27.7)
From which we deduce the following relations

(27.8)

In other words, neutrinos repulse each other, with the same amplitude as the force with which 
anti-neutrinos attract each other. With regard to the interaction between neutrinos and anti-neu-
trinos, it is very weak as it involves .
Finally, with regards the interactions between particles and neutrinos, we have

(27.9)
which implies that

(27.10)

Thus, the interaction between a neutrino and a particle is repulsive. Between an anti-neutrino 
and an anti-particle, it is attractive. And between a neutrino and an anti-particle, or an anti-neu-
trino and a particle, the interaction can be slightly positive or negative, but with less amplitude 
than in the first two cases.

27.2 – A plausible scenario for the cosmological evolution
           of topological singularities in a perfect cosmic lattice

The effects of cosmological expansion of the lattice on the gravitational interactions

With the inequality relations between the gravitational interactions that we just developed we 
can return to the cosmic evolution of the perfect cosmic lattice (fig. 16.8 and 16.11g), and in-
clude the behavior of gravitational forces between particles. We obtain figure 27.1.
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Figure 27.1 - Behavior of gravitational forces as a function of cosmic evolution of background expansion

As seen in this figure there appears a series of characteristic values of expansion  for 
which there are sudden modifications, either of the behavior of cosmologic expansion, either of 
the behavior of the diverse forces of gravitational interaction. In this figure, we also have repor-
ted the gravitational interaction concerning the macroscopic vacancies (black holes as soon as 

) and the macroscopic interstitials (neutron stars). Amid the characteristic values of 
cosmic expansion that are important, we have

, which represents the ‘big-bang’ of the lattice at time ,

, which represents the value of expansion for which the interaction force between 
a macro vacancy and a particle or anti-particle goes from repulsive to attractive,

, which represents the value of expansion for which the interaction force between 
a macro vacancy and a macro interstitial goes from repulsive to attractive,

 (16.15), which corresponds to the transition from the inflation phase, during 
which the velocity of expansion decreases to the expansion phase during which the 
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expansion velocity  grows again,

, which corresponds to the transition from the repulsion stage between macro-
scopic vacancies to the attractive stage between macroscopic vacancies,

, which corresponds to the value of expansion from which macroscopic vacancies 
become black holes,

, which represents the critical expansion from which we have longitudinal waves 
within the lattice, but no more local proper mode of vibration of expansion, and which also cor-
responds to the critical expansion for which many gravitational forces change sign, either by 
going through a singularity, or a null value.
Beyond , the cosmic evolution of the lattice goes from the expansion phase, during which 
the velocity of expansion  is positive, towards a contraction phase during which the 
velocity of expansion  becomes negative, and which finishes, after phases of 
contraction and deflation, in a «big-crunch» followed by a new «big-bang» of the lattice, and 
thus a «big-bounce» of the lattice due to the kinetic energy stored, as shown in figures 16.8 and 
16.11g.
On the basis of figure 27.1, we will develop a plausible scenario for the evolution of topological 
singularities in a cosmic lattice, which implies several steps.

On a hypothetical liquefaction and solidification of the lattice during the «big-bounce»
and on the formation of an initial «hot primordial soup» of singularity loops

In the scenario of a «big-bounce» universe as represented in figures 16.8 and 16.11g, the in-
tense contraction of the lattice in the end of «big-crunch» must heat the lattice since its kinetic 
energy becomes enormous, which could lead to a «liquefaction». It is evident that such a phe-
nomenon, based on our knowledge of matter, is not easy to imagine, and that the nodes of the 
lattice are associated with ‘strange particles’, which would be responsible for the mass of the 
lattice and could correspond to the famous Higgs particles of the standard model. For the lattice 
to present a transition phenomenon of «liquefaction», it would be necessary for its complete 
state function to not only contain the free energy terms of deformation (13.6), but also thermic 
terms leading to its phase transition.
By assuming thus that the «big-bang» following the «big-crunch» happens from a very hot liquid 
of ‘strange particles’ which have mass, the inflation phase of the cosmologic evolution should 
lead to a cooling of the liquid (a reducing of its thermal agitation) and a sudden “liquid-solid” 
phase transition leading to the cosmic lattice which we introduced in chapter 13. During this 
phase transition, there could appear structural defects of the lattice as dislocations, disclina-
tions, loops, vacancies and interstitials, and even grain boundaries, in a way that is very similar 
to that observed during a rapid liquid-solid transition of a metal. 
We could talk about ‘primordial hot soup’ of the loop singularities, the term ‘soup’ alluding to the 
facts that we have an initial homogenous distribution of diverse types of loops of singularities 
and a great mobility of these loops as in a liquid, while the term ‘hot’ representing a lattice that is 
very hot, meaning containing a large quantity of transversal wave modes (photons) and locali-
zed modes of longitudinal vibrations (gravitons), implying a strong thermal agitation of the initial 
loops.
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On the inflation and condensation of singularity loops in particles and anti-particles

During inflation, and thus the cooling of the cosmic lattice, and as soon as temperature will be 
low enough, the various loops will congregate within the “hot soup” to form complex localized 
topological dispirations, forming loops of dislocations and disclinations linked by the weak inter-
action force (section 25.3), which will correspond to the various particles of matter (electron , 
neutrino , neutron , proton , etc.) and anti-matter (positron , anti-neutrino , anti-
neutron , anti-proton , etc.) of our universe.  The existence of such combinations of loops 
in a local form, which could correspond to the various particles of our Universe, will be discus-
sed later in this book. 

On the precipitation of matter and anti-matter within the sea of neutrinos
and on the formation of galaxies

Within the hot soup, a homogeneous mixture of particles and anti-particles, there are particles 
and anti-particles whose interaction is attractive (electron , neutron , proton , positron 

, anti-neutrino , anti-neutron , anti-proton , etc.), but there are also the various 
neutrinos  for which gravitational interaction with the other particles (such as electron , 
neutron , proton , positron , anti-neutron , anti-proton , etc.) is repulsive or non 
existent (with the anti-neutrinos ), and there is also a sea of highly energetic photons interac-
ting strongly with the charged particles and anti-particles by the Compton diffusion mechanism. 
This situation linked to the component of edge loops and their curvature charge is unique to our 
approach, and will necessarily lead to a known phenomenon, which is really hard to explain at 
the moment by the other theories, which is the initial formation of galaxies.
Indeed, we can build a very simplified model of the initial, homogeneous hot soup of particles 
and anti-particles to describe the formation of galaxies. Let’s consider that the initial soup forms 
a sort of liquid composed of attractive  on one hand (electron , neutron , proton , 
positron , anti-neutrino , anti-neutron , anti-proton , etc.) and of neutrinos  
which are repulsive on the other hand (electronic neutrino , muon neutrino  and tau neu-
trino ,), and let’s try to express the free energy of interaction  per particles within 
this liquid mixture . By introducing the concentrations  and  of repulsive neu1 -
trinos  and attractive particles  within the mixture, the free energy of interaction can be 
written like a sum of a term of free energy of interaction and a term of entropy 

(27.11)

where  is the average coordination number, which represents the average neighboring num-
ber with which a particle can form an interaction of pairs and where the 1/2 factor is introduced 
to not count twice the same interaction.
By introducing now an average value for the inertial mass of attractive particles  and 
of neutrinos , as well as the average curvature  of matter neutrinos, 

e−

ν 0 n0 p+ e + ν 0

n 0 p−

e− n0 p+

e + ν 0 n 0 p−

ν 0 e−

n0 p+ e + n 0 p−

ν 0

X e− n0 p+

e + ν 0 n 0 p− ν 0

νe νµ

ντ f interaction

C
ν 0

CX = 1−Cν 0

ν 0 X

f interaction = z
2

ex−y
interaction

x,y∈ν 0 ,X( )
∑ CxCy − kTlattice Cx lnCy

x,y∈ν 0 ,X( )
∑

z

M 0
X > 0

M 0
ν 0 > 0 Mcurvature

ν 0 < 0

 see section 7.6 in «Théorie eulérienne des milieux déformables: charges de dislocation et de désinclinai1 -
son dans les solides», G. Gremaud, Presses Polytechniques et Universitaires Romandes, Lausanne 2013, 
ISBN 978-2-88074-964-4 (751 pages).

. 



chapter 27498

and by supposing an average distance  between the particles in the initial hot soup, we 
can express very approximatively the free energy of interaction per particle under the form

(27.12)

In this expression, the term containing the factor  is negligeable with respect to 
the two other terms so that we write with 

(27.13)

If we represent this free energy as a function of concentration  of neutrinos for different 
temperature of the lattice (figure 27.2), we notice that at high temperature the minimum free 
energy is obtained with a homogeneous mixture of attractive particles  and of repulsive neu-
trinos . But if the temperature of the lattice drops sufficiently, there appears two minima of 
free energy as a function of concentration : a minimum corresponding to a weak concentra-
tion of neutrinos and a minimum corresponding to a strong concentration of neutrinos. In fact 
there is a phase transition by precipitation which tends to separate the attractive particles  
and the repulsive neutrinos . There will be precipitates, clusters of attractive particles , 
within a sea of repulsive neutrinos . At low temperature, the energy minima correspond to 
concentrations  and , which corresponds to a complete separation of attractive 
particles and repulsive neutrinos.

Figure 27.2 - The free energy of interaction per particle within the initial hot soup of particles
 as a function of the concentration of repulsive neutrinos for different temperatures of the lattice

The phase transition by precipitation of attractive particles and anti-particles in the form of loca-
lized clusters corresponds to the formation of galaxies in our Universe. In this model, it is the 
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existence of repulsive neutrinos that becomes the driver for the formation of galaxies. And it is 
very interesting to note that the repulsive nature of neutrinos of matter is due exclusively to the 
charge of curvature of neutrinos, which is a concept that exists neither in General Relativity nor 
in the Standard Model. Also, we already know that the curvature charge is also at the origin of a 
small asymmetry between matter and anti-matter, which confirms the strong link existing bet-
ween this experimentally observed asymmetry and the initial formation of galaxies and of the 
structures of our actual Universe.

On the «dark matter» of astrophysicists 

With regards to the formation of a ‘sea of repulsive neutrinos’  in which our galaxies bathe, it 
explains perfectly the phenomenon of ‘dark matter’ of astrophysics. Indeed when one observes 
a galaxy and we measure the velocities of stars that compose it as a function of their distance to 
the center of the galaxy, we notice that the velocities of the stars situated in the periphery of our 
galaxy are too high compared to the velocities obtained by applying the Newton law of gravita-
tion with the mass of stars (which we can calculate experimentally based on their brilliance). 
Everything happens as if there was a halo of matter, invisible to our eyes, in the periphery of the 
galaxy, which, through its gravitational effect, forces the stars to rotate faster to compensate for 
this attractive effect. This halo of invisible matter was called dark matter by astrophysicists, and 
the quest for the nature of this dark matter is actually one of the great topics in fundamental 
physics. In our approach, the concept of dark matter is no longer necessary, as it is replaced by 
the concept of «sea of repulsive neutrinos» in which all the galaxies are bathed, the globular 
clusters, and the other structures of the visible Universe. Indeed, consider a galaxy submitted to 
the repulsive force of the neutrino sea. This repulsive force corresponds to a compression force 
which applies to the stars of the galaxy suburbs. To resist to this compression force, the per-
ipheral stars have to turn more quickly than the velocity calculated by Newton’s gravity on the 
basis of the visible mass, in order to equilibrate the compression force of the repulsive neutrino 
sea by an additional centripetal force of rotation.

On the formation and separation of matter and anti-matter within galaxies

Let’s look at what happens inside birthing galaxies, during this phenomenon of precipitation of 
attractive particles and anti-particles. Within the liquid phase that is precipitating, the attractive 
gravitational interactions present slight differences, depending on whether we are dealing with 
particles or anti-particles. Let’s consider for example a family of particles  and anti-particles 

. The gravitational forces of interaction between these particles can be written, from (27.3)

(27.14)
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With the mass of inertia  of these particles, we deduce, thanks to the classic Newton equa-
tion, the acceleration that these particles undergo during their interaction

(27.15)

We deduce that the anti-particles  attract each other more strongly than the particles , and 
we must therefore see a progressive segregation phenomenon of anti-particles and particles, 
during which the anti-particles will have a tendency to regroup in the center of the nascent ga-
laxy, leaving the particles in its periphery.
It is clear that this segregation phenomenon must be accompanied by an intense activity of an-
nihilation between particles and anti-particles, in a zone situated around the center of the ga-
laxy, and that would necessarily be a source of gamma radiation. But there also must be a com-
bining activity between particles and anti-particles to form matter and anti-matter (initially of hy-
drogen and anti-hydrogen atoms and helium and anti-helium atoms). These processes of anni-
hilation and recombination must follow through until there is an effective separation between the 
heart of the galaxy, composed essentially of anti-matter and the periphery of the galaxy compo-
sed essentially of matter. We again notice that this separation of matter and anti-matter is due to 
the existence of the curvature charge of the edge dislocation loops, since these charges are 
responsible for the equivalent mass of curvature , which is itself responsible for the 
small difference of gravitational interaction between matter and anti-matter.

On the formation of a cosmological radiation background

Initially, all the particles and anti-particles are in thermal equilibrium with a sea of photons, via 
interactions by Compton diffusion, while their temperature has not dropped enough to form 
atoms. But as soon as the temperature drops below 3’000 K, there is formation of helium, anti-
helium, hydrogen and anti-hydrogen, assuring us of the electric neutrality of matter and anti-
matter.  At that instant there is also a decoupling of photons and neutral matter and anti-matter. 
The universe becomes 
transparent to photons, which fill the whole space in the form of a cosmic radiation background. 
This cosmic radiation background is known as the cosmological microwave background and has 
been studied and observed experimentally. It is almost isotropic and present the spectrum of a 
perfect black body radiation, meaning a Planck distribution of density of energy  of pho-
tons, centered on a temperature  which is measured currently at a value of 2,7 K

(27.16)

with  being the speed of light,  the Planck’s constant,  the Boltzmann constant,  the 
temperature of the black body and  the frequency of photons.
We will revisit, in the next section, the process by which the background radiation ‘cools’.
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On the gravitational collapse and the disappearance of anti-matter 
by the formation of gigantic black holes in the center of galaxies

The formation by precipitation of galaxies composed of particles and anti-particles that attract 
within the sea of repulsive neutrinos will lead to large pressures at the heart of galaxies as they 
evolve. The emergence of twist in galaxies allows to partially balance the attractive gravitational 
forces within the galaxies and the compression force of the sea of neutrinos. But at the center of 
the galaxies, the compression forces could reach values large enough to lead to a gravitational 
collapse at the heart of the galaxies.  If such a collapse happens, as the heart of the galaxies is 
formed essentially of anti-matter, it will be responsible for the appearance of macroscopic lattice 
vacancies, as during the collapse the disclination twist loops will annihilate each other (if anti-
matter is electrically neutral), while the vacancy edge dislocation loops, which characterize anti-
matter, combine to form the macroscopic lattice vacancies in the center of the galaxies.
The macroscopic vacancy created in the center of a galaxy by the gravitational collapse of anti-
matter is a giant topological singularity which becomes a large black hole as soon as the expan-
sion of the background exceeds unity ( ). This phenomena of gravitational collapse of 
anti-matter at the heart of galaxies would explain simply, and at once both, the experimental 
observation that there exist gigantic black holes at the center of galaxies and that anti-matter 
seems to have disappeared from our present Universe.

On the coalescence of matter in galaxies and on the formation of stars

The matter which composes galaxies after the collapse of the heart of anti-matter in a black hole  
will coalesce bit by bit under the effect of gravitational attraction to form hydrogen gas and he-
lium gas, various types of stars and planetary systems, such as observed in our actual universe.

On the gravitational collapse of stars and on the formation of neutron stars

As the galaxies are essentially made of matter, based on interstitial edge dislocation loops, all 
gravitational collapse of a large star under the effect of its own gravity will lead to a localized 
topological singularity of macroscopic interstitial type and not of the vacancy type. As a conse-
quence, there cannot be the emergence of a vacancy black hole after the gravitational collapse 
of a massive star of matter. 
Experimentally, we sometimes suddenly observe this gravitational collapse of massive stars of 
matter under the form of ‘supernovas’ and in the form of the residual gas after the initial explo-
sion of the star, which extends at great velocity, with, in the center of the supernova a rather 
small and massive object, which should correspond to a residual interstitial singularity, which we 
usually call a pulsar (due to its emission properties of electromagnetic pulses corresponding to a 
frequency of rapid rotation of the object on itself) or neutron stars (due to the high mass density 
of the object).
The rest of the story is well known and described by astrophysicists with the formation of atoms 
of increasing size by nuclear fusion of hydrogen and light elements inside the stars, and by the 
dispersion of these elements by supernovas, which leads finally to the apparition of all elements 
of the table of Mendeleïev and the formation of stars which are more and more complex, plane-

τ 0 ≥1

. 
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tary systems, etc

On the future of our universe

In the scenario of the universe «big-bounce» which was depicted in figures 16.8 and 16.11g, 
which corresponds actually to our own universe, the expansion phase with constant velocity, in 
the condition where there are no longitudinal waves, is found between values  and 

. Our actual universe must then be in this range of values of the background 
expansion since recent observations have shown that the expansion of the universe is probably 
done at increasing speed. We can even say that the expansion of the background should be in 
the domain , since massive black holes seem to have been observed in the cen-
ter of most galaxies, notably in the center of our galaxy, the milky way.
As this range  ( ) is very large, it is hard to know where we are actually  and 
how much time we will need to reach critical expansion . What we can already say however 
is that when it gets close to , there will appear titanic transformation of celestial bodies, of 
matter, of black holes and of the sea of repulsive neutrinos since the following will be:
- the gravitational constant  will become negative by going through a singularity at ,
- the localized vibration models will disappear to the profit of longitudinal models (which should 
correspond to the disappearance of quantum physics as we will see later in this treatment.).
These two phenomenas should be cataclysmic. But we can go further by considering the phe-
nomena appearing during the re-contraction phase of the cosmic lattice, specifically during the 
transition through  in the inverse direction, where the gravitational constant becomes posi-
tive again and where there appears again proper modes of localized vibrations in lieu of longitu-
dinal waves. These predictions are possibly in the domain of the possible with our approach, but 
surely very hard and approximative. Actually, we are now in science fiction land.
It remains so that our approach goes much further in the explanations and predictions than Ge-
neral Relativity and that many exotic phenomenas such as instantaneous displacement in space 
time via wormholes as described in general relativity, and which delight theoretical physicist and 
science fiction writers alike, are pure delirium (aka bullshit) in our approach. 

27.3 – Hubble constant, redshift of galaxies
           and ‘cooling’ of the cosmic background radiation

Experimentally, we notice that the light from galaxies shows a ‘redshift’  in the spectral emission 
of atoms. This redshift was attributed by Hubble to the velocity of galaxies moving away from us 
with apparent velocity of galaxies as a function of their distance due to the expansion of 
the Universe. The experimental relationship between velocity of recession and distance  was 
measured by Hubble, who found , where  is the Hubble constant which is ap-
proximately worth 70 (km/s)/Mpc (70 kilometers per second per megaparsec).  The interpreta-
tion of this initial observation as a Doppler-Fizeau effect due to the velocity of escape of distant 
galaxies leads us to the conclusion that galaxies situated further than 4’000 megaparsecs away, 
would be moving with velocities superior to that of the speed of light, which is non-sense accor-
ding to special relativity. The solution to this problem, can be deduced in General Relativity, for 
which the expansion of the Universe must not be interpreted by a movement of galaxies in 
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space but by that of the fabric of space itself (here a swelling of the crystalline ether), which im-
plies a progressive distance of object contained there-in.  We have the same solution in our ap-
proach, where the perfect cosmic lattice is expanding.

On the Hubble constant in our theory

Let’s take a look at the Hubble constant in our approach, which is different than General Relati-
vity, if anything because of the existence of a scalar of volume expansion  of the cosmic 
background. Assume thus a cosmic evolution of the crystalline ether as that described in figures 
16.8 and 16.11g. During the evolution, suppose that the GO observes a certain region in graph 
16.11g, in which the cosmic lattice is in expansion, and indeed in expansion with growing veloci-
ty. This situation can be simulated with a development at second order of the expansion as a 
function of time, under the following form

     with          and     (27.16)

Suppose then that the GO observes two galaxies which are originally distant by  at moment 
.  If these galaxies do not move with respect to the cosmic lattice in expansion, the initial 

distance  will evolve during time, and the GO will observe that the distance between the two 
galaxies will grow as

(27.17)

so that two galaxies will move away from each other with relative velocity

(27.18)

At instant , the relationship existing between velocity  and distance  is written

(27.19)

This relationship is indeed equivalent to Hubble. But if the GO observes the relationship at an 
instant , he will find that 

(27.20)

and that the Hubble ‘constant’ becomes dependent on time.  Notably it increases in a domain 
where the velocity of expansion is increasing.

On the redshift of galaxies in our theory

Let’s consider now two galaxies separated by distance  at instant  for the GO. If, at this 
instant , the galaxy 1 emits a signal towards galaxy 2, the signal will carry a distance  
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during a time  such that . But as this lattice is in expansion according to relation 
(27.16), and by neglecting the acceleration of expansion, we have that

(27.21)

where  is the velocity of the transversal waves at instant . The distance  bet-
ween the two galaxies will thus be covered in a time  such that

(27.22)

But  is given by (27.17), so that

(27.23)

By supposing then the case where , we obtain the time lapse measured by 
GO  between the emission of the signal by galaxy 1 and the reception of the signal by galaxy 2

(27.24)

During the reception of the signal by galaxy 2, the expansion of the universe will reach a critical 
value of expansion  worth according to (27.16)

  (27.25)

Suppose that the signal emitted by galaxy 1 at instant  is measured by a local observer 
HS(1) as having frequency  for a given atomic spectral emission. The frequency of the 
received signal  is measured by an observer HS(2)  in galaxy 2 at instant will be 
different due to the increase in expansion  of the Universe which appeared during 
propagation.  Thus, an HS(2) observer situated in galaxy 2 will be able to compare the frequency 

 of this signal received with frequency  of the same spectral ray of the atom emit-
ted in it’s own laboratory, and we will call redshift of galaxy 1 the ratio between the two frequen-
cies

(27.26)

To calculate this redshift, we must represent schematically how we link the physical measure-
ments as measured by observer HS(1)  in galaxy 1 at instant  with the same physical va-
lues measured by the GO at instant  and at instant  and by the observer HS(2)  in 
galaxy 2 at instant . 
For that, we recall that the elapsed time  measured by an HS in its proper referential 

 are perceived by the GO in its local referential  as lapses of time  linked 
by expression (24.23)
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(27.27)

in which  is the expansion of the lattice at the place where the HS is. This expression allows 
us to link the measures of the frequencies done by an HS  and by the GO

(27.28)

With this relation, we can schematically represent how the measures of frequency and length 
behave during the transmission experience between galaxies 1 and 2 (fig. 27.3).

Figure 27.3 - Schematic representation of the physical values measured by the observers HS(1), GO and 
HS(2) during the transmission of a signal between galaxies 1 and 2.

We notice then that the «redshift» measured by observer HS(2) is worth

(27.29)

By using the value  obtained in (27.25), we obtain for the redshift measured by the 
observer HS(2) 

(27.30)

The redshift depends simultaneously on the instantaneous velocity of expansion  and 
the distance  between the two galaxies. But we can also link the redshift to the “instanta-
neous constant” of Hubble  with the relative velocity of recession of the galaxies by using 
relation (27.19) 
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The redshift observed by observer HS(2) will thus be proportional to  which means that the 
ratio between frequencies is smaller as the initial distance  between the galaxies is great, 
and thus that the “shift towards the red” of the spectral ray augments with the increase in initial 
distance . The redshift is also proportional to , which means that it gets smaller if 
the Hubble constant gets bigger. Finally it is proportional to . But the velocity at which 
two galaxies separate from each other is not limited by the velocity of transversal waves in our 
approach, since this velocity is associated with the absolute velocity of the lattice in the absolute 
space of the GO, which satisfies a purely newtonian dynamic. Thus, the redshift measured can 
tend towards 0 if the velocity of recession  due to expansion tends towards infinity.
It is noteworthy that the calculations were made by making the following two restrictive supposi-
tions:
- we find ourselves in a limited region of the graph 16.11g in which the cosmic lattice is in ex-
pansion, and which can be approximated by a development to second order in expansion 
in time (27.16). For the phenomenas which would spread over larger time periods, the calcula-
tions get singularly more complicated, since we should then know the exact function  of the 
cosmic expansion of the lattice.
- That galaxies do not move with respect to the cosmic lattice  in expansion. If that was not the 
case, for example due to gravitational interactions between galaxies, we should add to the red-
shift due to the expansion of the lattice a Doppler-Fizeau effect due to the displacement of the 
galaxies with respect to the lattice, such as described in section 21.3.

On the mechanism of “cooling” of the cosmic background radiation in our theory

The diffuse cosmic background radiation is actually observed as the spectrum of a perfect black 
body radiation, following precisely the distribution (27.16) of Planck of the density of energy 

 for  photons, centered on a temperature  worth 2,7 K. We suppose that this radiation 
carries over from the big-bang and was formed during the decoupling of the photons and the 
particles during the formation of neutral helium and hydrogen atomes, and that, as a conse-
quence, it was first emitted at a temperature of 3’000 K. We can then ask ourselves what is the 
cooling mechanism of this light radiation in our approach. For that it suffices to look at figure 
27.3. If we suppose that the decoupling of photons and matter appeared when the Universe had 
an expansion  and that the actual expansion of the universe is , the frequency of emission 
of the diffuse background is given by  and the observed frequency actually observed by a 
HS(2)  is worth

(27.32)

According to the Planck distribution, there exists a ratio between the frequency of the black 
body and it’s temperature of color, measure at expansions  and 

(27.33)

We deduce a numerical value of the variation of expansion of the lattice between the moment of 
decoupling of matter and photon and the actual time
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(27.34)

This augmentation of expansion corresponds in fact to an augmentation of volume of the basic 
mesh of the lattice of the crystalline ether, which is approximatively

(27.35)

which must take place during the inflation phase of the cosmic lattice (fig. 16.11g).
We notice that the apparent ‘cooling’ of the background radiation is a direct effect of the expan-
sion of the lattice, which modifies strongly the behavior of local clocks and frames . 
It is interesting to notice that, for the GO, the frequency  of the cosmic background will 
not change during the expansion since it will always be the same value during it’s emission

(27.36)

But on the contrary, for the GO, it is the wavelength  which will evolve with the expan-
sion, since it will then be equal to

(27.37)

The points of view of the local observers HS(i)  and the external observer GO  are thus very dif-
ferent, and that is due to the fact that the velocity of the transversal waves of rotation (speed of 
light) is a universal constant  for the HS(i)  observers, independently of the state of expansion 
of the lattice in which they are placed, while the velocity of the transversal waves of rotation 

 varies greatly as a function of instantaneous expansion  of the lattice for the 
external observer GO.
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PART II
D

Quantum physics
and Standard Model of particles

Gravitational fluctuations associated to the topological singularities:
quantum decoherence limit, quantum physics, Schrödinger’s equa-
tion, uncertainty principle, bosons, fermions and exclusion principle

Spin et intrinsic magnetic momentum of the singularities

Quantified transversal fluctuations:
photons, wave-particle duality,

 entanglement and decoherence

Ingredients of the Standard Model of elementary particles:
strong force and families of leptons and quarks
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Chapter 28

Gravitational fluctuations of singularities beyond the 
quantum decoherence limit

In figure 22.0, we have seen that when the mass density of a singularity or cluster 
of singularities exceeds a certain critical value, there are no static solutions for the 
field of internal expansion perturbations, which means that these internal perturba-
tions must necessarily become dynamic perturbations. Intuitively, it is suspected 
that the existence of such dynamic solutions of Newton's second partial equation 
(18.9) could well be related to the appearance of quantum physics, i.e. the exis-
tence of localized temporal fluctuations of the expansion field of the perfect cosmo-
logical lattice when it does not exhibit longitudinal wave propagation in the domain  

 . We will show in this chapter that a wave function, deduced directly from 
Newton's second partial equation of the lattice expansion perturbations, is indeed 
intimately related to the mobile topological singularities of the lattice, whether these 
are clusters of elementary loops or isolated elementary loops. 
We will thus be able to give a quite classical and rather simple "wave" interpreta-
tion of quantum physics: the quantum wave function would in fact represent the 
amplitude and the phase of the gravitational fluctuations coupled to the topological 
singularities. This interpretation then implies that the square of the amplitude of the 
normalized wave function is indeed related to the probability of presence of the 
associated topological singularity. 
In the wake of this, we will also find Heisenberg's uncertainty principle, the notions 
of bosons, fermions and indistinguishability, Pauli's exclusion principle, and the 
path towards a physical understanding of intriguing phenomena such as quantum 
entanglement and quantum decoherence.
Thus, from figure 22.0, we deduce that the critical value of the mass density at 
which expansion perturbations become dynamic is nothing more than the quan-
tum decoherence limit of this singularity or of the cluster of singularities.

28.1 – Quantum decoherence limit and dynamic gravitational   
           fluctuations of the expansion field of a topological singularity

Wave equation of the dynamic fluctuations of the gravitational field of expansion

Beyond the quantum decoherence limit, i.e. for values of the mass density of a singularity or 
cluster of singularities greater than the critical mass density (figure 22.0), assume the existence 
of dynamic longitudinal fluctuations in the cosmological lattice. These fluctuations must obvious-
ly satisfy the dynamic version of Newton's second partial equation (18.12). The first-order re-
sults as a function of   are obtained, also taking into account the geometrokinetic equation 
for  , by the following approximate equations

τ 0 < τ 0cr

τ ( p)

τ ( p)
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 (28.1)

with    

  (28.2)

which can be reduced to a single equation dealing with gravitational fluctuations 

   (28.3)

Let us suppose that we are in the perfect cosmological network and in a domain quite far from 
the critical value , therefore with the following hypotheses

Hypothesis 1:        ;          ;     (28.4)

In this case, one can write an approximation for  which leads to 
the transverse wave velocity appearing as  , and the wave equation of 
the dynamic gravitational fluctuations can then be written as approximately

  (28.5)

This equation is perfectly realistic, in that it is derived from Newton's equation of the lattice. Ho-
wever, it cannot be solved in this form because it would require to know the function  

 associated with the topological singularity, which depends in particular on 
the trajectory of the singularity within the lattice, a trajectory that we do not know a priori. We 
can therefore say that this function is in fact a hidden variable of the problem. It will thus be 
necessary, as we have already done in chapter 22 in the static case by introducing a mean va-
lue of the static internal field , to find here again a subterfuge to find some form of solution 
to this dynamic equation.

Isolated gravitational fluctuations within the cosmological lattice

Let's start by proposing a solution for gravitational disturbances by neglecting the last two terms 
of (28.5) in the bracket. By introducing a pulsation  , we will write for convenience a solution 
in complex formulation in the following form

 (28.6)

where  is the oscillation of the fluctuation and the complex wave function  repre-
sents the phase and amplitude of this oscillation.
By introducing this solution (28.6) into the simplified Newton's equation (28.5) of the lattice fluc-
tuations, a wave equation for the complex wave function  of the following form is then 
obtained

(28.7)

Let us first propose a simple, localized and time-independent solution of this equation for the 
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wave function  , assuming that the pulsation  is a constant independent of time and 
space, of the form 

 (28.8)

By introducing this solution in (28.7), we obtain

 (28.9)

So that there appears here a localized gravitational fluctuation

 (28.10)

This fluctuation corresponds to a local vibrational regime, non damped, with frequency  and 
which decays symmetrically and exponentially in the vicinity of the origin, with spatial characte-
ristic length worth  and , which are correlated to each other and which decrease with 
the frequency via relationship (28.9). 
We deduce that, in a perfect cosmological lattice which satisfies hypothesis (28.4), there very 
well may be stable localized fluctuations of volume expansion. We will revisit this in chapter 32.

Gravitational fluctuations associated with a mobile topological singularity

Let us imagine that mobile topological singularities within the lattice, such as clusters of elemen-
tary loops or isolated elementary loops as described in the previous chapters, are also associa-
ted with dynamic longitudinal gravitational fluctuations, which should obviously satisfy the dy-
namic version of Newton's second partial equation (28.5) in the vicinity of the topological singu-
larity. 
It is known that, when the energy density of a singularity is lower than the critical value of the 
quantum decoherence limit, Newton's second partial equation (18.9) reveals static gravitational 
perturbations of the expansion field within immobile clusters, perturbations that are directly de-
pendent on the elastic distortion energy of these singularities. And in section 25.1, it was shown 
that this internal expansion perturbation field has a mean value  which is directly respon-
sible for a static external gravitational field of expansion perturbations which also depends on 
the elastic distortion energy of the stationary singularity or cluster of singularities via the para-
meter .
On the other hand, when the energy density of a singularity is higher than the critical value of 
the quantum decoherence limit, the gravitational perturbations can only be dynamic, and must 
then satisfy Newton's relation (28.5), which also depends on the elastic and potential energy of 
the singularity.
There are therefore strong presumptions that, beyond the quantum decoherence limit, the field 
of the dynamic gravitational perturbations  of the expansion outside a moving singularity 
can be represented by a subterfuge consisting in imagining a pattern similar to the one given by 
(28.6), but this time also depending on the elastic distortion energy of the singularity, but proba-
bly also on the energy associated with the motion of the singularity. Now we know that a topolo-
gical singularity in motion in the lattice is entirely characterized by a total relativistic energy  
and a total relativistic momentum . Therefore, the pulsation  of the associated expansion 

ψ !r( ) ω f

ψ !r( ) =ψ 0 e
−
x1
δ1 e

−
x2
δ2 e

−
x3
δ 3

1
δ1
2 +

1
δ 2
2 +

1
δ 3
2 =

ω f
2

ct
2

τ ( p) ≅ψ (!r )e ±( )iω f t ≅ψ 0 e
−
x1
δ1 e

−
x2
δ2 e

−
x3
δ 3 e ±( )iω f t

ω f

δ1 ,δ 2 δ 3

τ int
(E )

4Ggrav / ct
2

τ ( p)

Ev
 
!
Pv ω f



 chapter 28514

fluctuations should certainly also depend on the relativistic energy  of the singularity 
and its relativistic momentum . Therefore, we will a priori hypothesize that there should 
be a relation of the following form for 

Hypothesis 2:     (28.11)

The pulsation  of the expansion fluctuations should therefore depend on the time and space 
surrounding the topological singularity, via the temporal and spatial dependence of the energy 

and momentum  of the moving singularity. The following solution for gravitatio-
nal pulsation disturbances can then be proposed

 (28.12)

where  corresponds to the oscillation of fluctuation and the complex wave function  
 represents the phase and amplitude of this oscillation.

By introducing this solution (28.13) into Newton's simplified equation (28.5) of lattice fluctua-
tions, and making another simplifying assumption, namely

Hypothesis 3:   we can neglect the temporal and spatial derivatives of 
  with respect to the temporal and spatial derivatives of              (28.13)

we obtain a wave equation for the complex function of the following form

(28.14)

On the conjecture of existence  of energy and momentum operators

In this equation (28.14), there appears explicitly the frequency  of gravitational fluctua-
tions, which we suppose depends on energy  and on momentum  of the singu-
larity via relation (28.12), and the complex wave function  which represents the phase 
and amplitude of gravitational fluctuations. 
If the frequency  of gravitational fluctuations depends effectively on  and 

, these two quantities are implicitly contained in the spatial and temporal behavior of the 
spatial complex function  associated with the mobile singularity.
This wave function  associated with the wave equation (28.14) reminds us of the wave 
function that appears in quantum physics, and quantum physics says it is possible to define 
operators measuring  and  from the quantum wave function . When they are ap-
plied locally to the wave function, these quantum operators correspond to the partial derivatives 
with respect to time and space of the quantum wave function, giving us the total energy and the 
total momentum that the singularity has at this point, multiplied by the wave function . 
By analogy with quantum physics, we can conjecture a priori an operator with similar properties

Conjecture 10:   There exists two operators which, when applied to the wave function 
                            of a mobile singularity in the lattice, allows us to measure its relativistic             
                            energy and its relativistic momentum, namely

                     and     (28.15)
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In these relations, we have introduced, as in quantum mechanics, the constant  allowing us to 
normalize the partial derivatives of the wave function to energy terms (and which is in the case 
of quantum mechanics the Planck constant). It is rather simple to verify that these operators, 
applied twice to the same wave function give us the square of total energy and the square of the 
total momentum

       and     (28.16)

We can normalize equation (28.14) under the form of an equation composed of terms corres-
ponding to squares of energy by multiplying by 

(28.17)

From which we deduce that each term in the equation must represent the product of the square 
of an energy by the non-dimensional wave function . We deduce that the terms  
has the dimension of an energy. Furthermore, the second derivative operator with respect to 
time gives us the square of the total relativistic energy  of the singularity at the spot where 
we apply the operator. The laplacian operator gives us the square of the total relativistic mo-
mentum  of the singularity at the spot where we apply the operator. From this definition of 
operators of second derivative and of laplacian, we deduce the operators giving directly the total 
energy of the singularity and the components of the quantity of movement at a given spot.
Armed with these hypothesized operators modeled after quantum mechanics, we can try to ap-
ply them to relation (28.17) which we deduced from the second partial derivative equation of 
Netwon. We have

(28.18)

We thus obtain the relation that should exist between the relativistic energy  of the singulari-
ty, the energy of motion  of the singularity and the frequency  of gravitational 
fluctuations associated with the singularity and which becomes a complex number

(28.19)

Wave equation of gravitational fluctuations of a mobile singularity

In the case where a singularity moves with relativistic velocity, it must satisfy the relativistic rela-
tions (20.41) and (20.42) of chapter 20, namely 

       (28.20)
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ty, which is directly linked to  and , and  is the relativistic momentum, given by
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These expressions lead us to the following relation giving the complex frequency  of 
gravitational fluctuations associated with a topological singularity (an elementary loop or a clus-
ter of elementary loops linked between themselves) and moving with velocity 

(28.22)

The complex relativistic pulsation of  presents two conjugated solutions 

(28.23a)

It is interesting to notice that we do find an expression that doesn’t contradict hypothesis 2 
(28.11) by doing the product of the conjugated values of the pulsation, and we notice that the 
norm of the complex pulsation  is a simple function of  and 

(28.23b)

The wave equation (28.17) for  possesses two relativistic versions due to the sign  
which appears in , while the first sign  in (28.22) does not appear anymore 

(28.24)

Gravitational perturbations associated with a singularity moving with relativistic speeds 

Let’s go back to the relativistic wave equation (28.24) and let’s try to find a solution for a mass 
singularity which would move ‘almost-free’ with relativistic velocity more or less constant in 
the direction , which implies that the following hypothesis be satisfied.

Hypothesis:    varies slowly in space and time (28.25)

Under this hypothesis the total relativistic energy of the singularity varies slowly in space and 
time, so that we can admit that the wave function , which represents the amplitude and 
phase of the oscillation at frequency , is in fact a function of position  along axis 

. Lets then propose a wave solution to the relativistic wave equation along the axis , 
which does not depend explicitly on time

(28.26)

where the complex number  also varies very slowly in space and time. By injecting this 
solution into (28.24), we obtain the following expression for the value of the complex wave num-
ber

(28.27)

We notice that  depends in fact on  and  uniquely through the dependency of the 
relativistic energy  in  and . The wave function  associated with the singula-
rity is written as a consequence
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(28.28)

which allows to express the fluctuations of expansion (28.3) associated with the relativistic sin-
gularity

(28.29)

By introducing the value (28.12) of , we obtain

(28.30)

Only two solutions among the four really have a physical significance, so that, finally, the solu-
tion can be written as

(28.31)

which allows us to explicitly write the real fluctuations of expansion of a relativistic singularity, by 
taking the real part, in the following form

(28.32)

To discuss this expression, we decompose the cosine by writing

(28.33)

We notice that this function represents the product of oscillations in time and oscillations in 
space.  The oscillations in time have a frequency given by

 (28.34)

And the oscillations in space a wavelength given by

(28.35)

The frequency  of temporal oscillations is thus an increasing function of velocity  and relati-
vistic energy  of the singularity, and it tends towards an infinite value for . It depends 
directly on the position  of the singularity and on the time  via the dependencies in potential 

.  With regards to the wavelength  of these spatial oscillations, it diminishes as a func-
tion of velocity  and of relativistic energy  of the singularity, and it tends towards 0 for 

. It is also modulated in space and time via the potential function . 
The amplitude of these temporal and spatial oscillations is modulated by an envelope which is 
exponentially decreasing on both sides of the average position  of the singularity 
(which thus moves in direction of the axis  or in opposite direction depending on the sign + 
or -).  How the envelope decreases  is linked to the ‘range’  of the envelope of oscil-
lations which is worth

(28.36)
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The range  of the envelope of oscillation decreases when the velocity  of the singularity 
increases and when it’s relativistic energy  increases. It tends towards 0 for . It is 
then modulated in space and time via the potential  to which the singularity is submitted. 
All of this implies that the gravitational fluctuations associated with the total relativistic energy of 
the singularity are of very short range and become negligible for heavy singularities, such as a 
cluster of loops. For example, for an electron with non-relativistic velocity, the reach of gravita-
tional perturbations associated with its rest energy  is already small, on the order  of

.
Finally, we notice that the dynamic fluctuations of expansion associated with the relativistic sin-
gularity are contracted along the axis  of movement of the singularity as a function of the 
singularity velocity , as we can see on the wavelength  of spatial oscillations and on the 
range  of the envelope of oscillations. These effects correspond exactly to the relativistic ef-
fect of contraction of rods of a cluster of singularities as described in section 21.2 .

28.2 – Schrödinger’s equation of the gravitational fluctuations
           of expansion for a non-relativistic singularity

The “reduced” wave equation of a singularity moving at non-relativistic speeds

The treatment of the previous section applies to gravitational perturbations associated with rela-
tivistic energy of a singularity which is massive enough not to be influenced by the random gra-
vitational perturbations that would exist within the perfect cosmological lattice (see chapter 32). 
But for a singularity small enough to be subjected to the effects of gravitational fluctuations, 
there must exist a wave equation which takes these effects into account.  Let’s consider thus 
the case of a microscopic singularity (a twist disclination loop or an edge dislocation loop) in 
non-relativistic regime , and let’s rewrite the wave equation (28.24)

(28.38)

By using the first relation (28.16), namely

(28.39)

the wave equation can transform in a ‘reduced’ form which only contains the first time derivative

(28.40)

But the total energy of the non-relativistic energy can be approximatively written as

(28.41)

So that we can express the reduced wave equation by doing the following replacements
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We then recognize a wave equation which starts looking a lot like the Schrödinger wave equa-
tion of quantum mechanics, except for the fact that we have the term  in lieu 
of . Using definitions (28.15) and (28.16)  of the operators to interpret this wave equa-
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tion, we have

(28.43)

The wave equation (28.42) expresses thus the fact that total energy  of a singularity is equal 
to the sum of its rest energy , its kinetic energy  and its potential energy .
The solution for dynamic gravitational perturbations associated with the singularity is written as 
a consequence as the product of the wave function  deduced from the wave equation 
(28.42) with the oscillatory term with frequency 

(28.44)

The Schrödinger wave equation of a non-relativistic singularity

We start again with solution (28.44) for the dynamical gravitational perturbations, and rewrite it 
under the following modified form

(28.45)

which introduces an oscillatory term of frequency  corresponding to the hamiltonian 
 of the singularity, meaning the sum of its kinetic energy and its potential energy, by introdu-

cing the proper rest frequency  of the singularity in the wave equation  
associated with that hamiltonian. It is easy to show that the wave function  derives 
then from the following wave equation

(28.46)

which is exactly the Schrödinger wave equation of quantum mechanics.  Indeed, we can 
verify thanks to the interpretation of this wave equation with the operators (28.15) and (28.16)

(28.47)

that this wave equation gives us a wave function  linked to the hamiltonian of the sin-
gularity, namely the sum of its kinetic and its potential energy.

On the interpretation of the Schrödinger wave equation for a non-relativistic singularity

The wave equation (28.46) corresponds very precisely to the equation of Schrödinger of quan-
tum mechanics for a non-relativistic particle, if we admit that the universal constant  which we 
have introduced is effectively the Planck constant  of quantum mechanics. 
This perfect similarity is not gratuitous and allows us for the first time to give a comprehensible 
interpretation to quantum mechanics by saying that:

“The Schrödinger equation is an equation deduced from the second partial equa-
tion of Newton of a perfect cosmological lattice in the domain , which 
allows us to calculate the wave function  of a topological singularity, 
representing the amplitude and phase of dynamic gravitational fluctuations 
with frequency  associated with its hamiltonian”. 
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On the static wave equation of a singularity placed in a static potential

If the potential in which we place the topological singularity is a static potential , the left 
term of equation (28.40) is an operator giving total energy  of the singularity, which must evi-
dently be a constant since the moving singularity is in a static potential. We then have

(28.49)

which we rewrite under the following form

(28.50)

We find here the expression of the static Schrödinger equation of quantum mechanics, 
which is as we know from quantum mechanics a problem with eigenvalues, which means that 
the hamiltonian  is a constant which can take various eigenvalues 

 depending on potential , so that the wave function presents eigenstates  satisfying 
the following equation

(28.51)

On the basis of solution  of the wave equation, we deduce the real physical value, name-
ly the static perturbations of expansion associated with the singularity via potential , given 
by (28.45)

(28.52)

and this real part of  will represent the real perturbations of expansion.

28.3 – On the consequences of the Schrödinger wave equations
           of gravitational fluctuations of a non-relativistic singularity
   
On operator commutators and the Heisenberg uncertainty principle

We know the power of the dynamic Schrödinger equation (28.42) and the static Schrödinger 
equation (28.51) in quantum mechanics. Many consequences linked to the Schrödinger equa-
tion are described in Appendix B, and the consequences are applicable in our approach, such 
as:
- the commutators of operators: relations (B.5) to (B.8),
- the Heisenberg uncertainty principle: relations (B.9),
- the static eigenstates of a particle in different kinds of potentials (harmonic oscillator, anhar-
monic oscillator, particle in a box, rotation of two linked particles, particle in a central potential): 
relations (B.12) to (B.23), 
- the density of states in phase space: relations (B.24) to (B.27).
Due to this perfect correspondence between our approach of gravitational perturbations asso-
ciated with topological singularities and the Schrödinger wave equation of quantum physics, 
which is experimentally verified, we deduce that our conjecture 10 is à posteriori justified. As a 
consequence we have a “classical” interpretation of quantum mechanics, namely that quantum 
mechanics is a consequence of the second partial equation of Newton applied to describe the 
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expansion perturbations of the lattice.

On the probabilistic interpretation of the square of the wave function

Whereas the complex wave functions  do not give us any indication as to the position 
and trajectory of the singularity, we can find a very physical interpretation for them. As these 
wave functions correspond to a complex representation of amplitude and phase of the gravita-
tional fluctuations with frequency  associated to the singularity, it is logical and pro-
bable that, if there are locally no gravitational fluctuations, meaning if the wave function  
is very small in certain parts of space, there will be no chance of finding the topological singula-
rity there, while if the fluctuations become maximal in other parts of space then you will probably 
find the topological singularity there. 
We thus arrive at an interesting interpretation of the complex wave function : it must be 
associated with the probability of presence of the topological singularity to which the gravitatio-
nal fluctuations  are associated. The function  is in fact a complex mathematical 
object representing the amplitude and phase of gravitational fluctuations , while a probabi-
lity of presence is a mathematical object, a positive scalar, whose sum over the whole space 
must be equal to one. As a consequence, a possibility of extracting a quantitative value of pro-
bability of presence of the topological singularity from function  is to use the fact that the 
square of an oscillating function gives us a positive scalar. In the case of a complex quantity 
such as , it is the product  of the complex function  by its 
complex conjugate  which represents the square of amplitude of the function. It suf-
fices thus to normalize the product  taken on a portion of space  by this 
product taken over all space  which could contain the singularity, to obtain a probability  of 
finding the singularity in a portion of space 

(28.53)

We find the usual interpretation of the wave function of quantum mechanics, while giving it a 
conceptual grounding.
The fact that the complex function  allows us to deduce, not the position of singularities 
at a given moment, but their probability of presence in a given place at a given time, signifies 
also that the wave equations (28.42) and (28.46) which allow us to calculate  (or 

 in the stationary case), and which are nothing else than results of the Newton equation 
of the lattice applied to the gravitational fluctuations, are at the same time a new form of equa-
tions for the dynamics of topological singularities inside the lattice. 

On the possible “stochastic walk” of topological singularities

As the exact microscopic movements of the topological singularities are not computable via their 
complex wave function , but only their probability of presence, when submitted to a po-
tential  or , can be obtained, the real movements of the singularities within the lat-
tice must be stochastic and chaotic movements.
We can imagine for example that random gravitational fluctuations (see chapter 32), with dif-
ferent frequencies , that appear and disappear in the vicinity of the singularity, could move it 
about by giving it random accelerations. These accelerations would contribute then to the sto-
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chastic movements of the singularities. But as the stochastic march of the singularity must also 
be coupled to its gravitational fluctuations with proper frequency , this stochastic march will 
have to present a statistical distribution of presence which will manifest via the probability pre-
sence (28.53) deduced from the wave function.
There exists two physical phenomena that are observable, which present strong analogies with 
such a stochastic march of topological singularities:
- in solids, the dislocations can present a microscopic march under the effect of random thermal 
fluctuations (due to phonons) that can push them. There appears then a stochastic movement 
of the dislocations, called “brownian motion”, such as described for example in the article «over-
view on dislocation-point defect interaction: the brownian picture of dislocation motion»  .1

- recent macroscopic experiences, realized in labs with droplets bouncing on a liquid surface 
vibrating at a given frequency, present rather striking results. The drops move randomly on the 
surface of the liquid, which is the reason they have been called “walkers” . This “walk” is attri2 -
buted to a resonant interaction of the drop with its own wave field . The measure of the probabi3 -
lity of distribution of the droplet on a  given surface can then present regularities that look similar 
to the probability of presence of quantum particle confined in a potential well . 4

28.4 – Superposition of topological singularities,
           bosons, fermions and the exclusion principle

We can legitimately ask ourselves what becomes of the field of gravitational fluctuations when 
two topological singularities are next to each other. 

On the stationary state of superposition of two identical topological singularities

Let’s imagine two singularities (a) and (b) which evolve in the same space and the same poten-
tial. We search for the standing wave of ‘superposition’, meaning the way we can write the per-
turbations of volume expansion due to the two singularities at the same time.  By supposing that 
the Schrödinger equations for standing waves are valid for both singularities, we have

(28.54)

We try to combine these two relations, by multiplying the first one by  and the second 
one by , and by summing it all. We have
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(28.55)

which is the Schrödinger equation for the superposition wave function . We de-
duce that the oscillatory perturbations of volume expansion due to the superposition of two sin-
gularities is written 

(28.56)

We note that there are two types of possible superpositions, following the signs of the expo-
nents, which present global oscillation frequencies that are different

(28.57)

By analogy with quantum physics, we will call “bosons” the singularities corresponding to the 
first solution of superposition, whose frequency is , because the two singularities 
can occupy the same level of energy without disappearance of the oscillatory disturbances of 
expansion. With respect to the singularities which correspond to the second frequency 

, we call them “fermions” because they cannot be superimposed in the same 
energy level as in this case the gravitational perturbations disappear. 
This state of fact on how singularities will superpose then directly shows the famous Pauli ex-
clusion principle: the singularities which combine according to the second possibility (28.57), 
namely fermions, cannot be found in the same state (in ).
In usual quantum physics, where we only talk about the wave functions and where we ignore 
the physical significance of these wave functions in terms of amplitude and phase of the oscilla-
tory gravitational perturbations, we can manifest a difference between bosons and fermions di-
rectly in the superposition  of the wave functions. For that we note that for a given 
energy  of the system, there are two possible solutions to equation (28.55) for the wave func-
tion  of superposition, which correspond simply to exchanging two identical singularities

     and     (28.58)

However, one of the fundamental properties of homogeneous linear differential equations is that 
any linear combination of solutions is also a solution, so that the most generic form of solution 
for the Schrödinger equation (28.55) can be written as the following superposition

(28.59)

This expression would indicate that there exist a large number of stationary states for a system 
with two singularities. Nonetheless, we must now take into account the fact that due to the un-
certainty principle linked to the commutation of operators, the identical singularities lose their 
individuality. We say the singularities are indiscernible which simply means that it is not possible 
to follow the trajectory of a given singularity over time. If we consider the wave function  
(28.59) of the system, we know that  determines the possibility to find the two singularities in 
a portion of space. If we exchange the two singularities, it is clear that  must remain un-
changed. However, the phase of  can be modified by this exchange, so that . If 
we proceed to a second exchange of singularities, we have evidently  and we find 
ourselves in the initial state , so that . For that to be true it suffices that  or 
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. 
In the case where the wave function  transforms as  during the exchange of two 
singularities, the wave function is said to be symmetric, and the singularities are called bosons. 
The wave function  is written with a normalization factor 

(28.60)

If the wave function  transforms as , the wave function is said to be antisymmetric, 
and the singularities are called fermions. The wave function  is written with a normalization 
factor 

(28.61)

The indistinguishability of the two singularities is clearly shown with the previous two expres-
sions of the wave function . We notice also that, for an anti-symmetric wave function, it is not 
possible that both singularities be in the same state as  would then be null: this is the ma-
thematical expression at the level of the wave function itself, of the exclusion principle associa-
ted to expressions (28.57), which states that two fermions cannot occupy the same state simul-
taneously as the gravitational perturbations disappear in that case.
In the case of a system with  identical singularities, the previous concepts are easily genera-
lized. In the case of bosons, the symmetric wave function  of the system can be written

(28.62)

where the sum refers to all the possible permutations of all the different states of the system. If 
the system possesses  singularities with energies ,  singularities with energy ,  
singularities with energy , etc., the number of terms comprising the wave function  is

(28.63)

In the case of fermions, the anti-symmetric wave function  of the system can be written in 
the form of a determinant

(28.64)

In effect, the permutations of two columns of a determinant changes the sign of the determinant, 
which assures us of the anti-symmetry of wave functions  under the exchange of two sin-
gularities.  Also, we know that a determinant is null if two lines are the same, which corresponds 
to the expression of the Pauli exclusion principle, namely that a given state cannot be occupied 
by more than a fermion.

28.5 – On the analogy with quantum physics

It is entirely remarkable that the wave function associated with gravitational perturbations of vo-
lume expansion is perfectly similar to the quantum wave function of a particle, and that it satis-
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fies a wave equation identical to Schrödinger’s equation. This deserves a more in depth discus-
sion.

On the strong analogy with the quantum wave equation and the Schrödinger equation

We have shown in this chapter that beyond the quantum decoherence limit, i.e. for singularities 
whose mass density is above a certain critical value (figure 22.0), it is possible to link to this sin-
gularity a relativistic wave equation (28.24) deduced by a "subterfuge" from Newton's second 
partial equation (28.3). This equation has made it possible to describe the dynamic "gravitatio-
nal" fluctuations of expansion associated with a massive singularity moving at relativistic veloci-
ties within the lattice. With regards to the non-relativistic wave equation of a singularity linked to 
a potential, it is absolutely identical to the Schrödinger equation of quantum physics since their 
respective interpretations in terms of probability of presence of a particle are identical . The key 
passages used to reach the Schrödinger equation (28.46) of a singularity from the second par-
tial equation of Newton (28.3) for the gravitational perturbations of expansion are, first conjec-
ture 10 which postulates the physical significance of operators of space and time applied to the 
wave function, and secondly the reduction of the wave equation allowing one to go from the 
wave equation (28.38) of second degree in the spatial derivatives to the wave equation (28.40) 
which is of first degree in the spatial derivatives, by using here again conjecture 10. It is these 
two key passages that allow us to establish a physical theory completely similar to the quantum 
mechanics to describe the microscopic behavior of topological singularities within the cosmolo-
gical lattice which does not present longitudinal waves. 
But we are still missing in our approach a physical explanation of these two passages and their 
reason for being.  Notably, we can legitimately ask why the Planck constant exists, where does 
its value come from, and whether it is really a universal constant, or whether one can deduce it 
from other constants in our approach. A response to these questions would afford us a deeper 
comprehension about quantum mechanics.

On the demystification of quantum mechanics

In our approach, the complex wave function  and the Schrödinger wave equation are 
physically demystified, as they become the mathematical expressions of the envelope and 
phase of the vibrational fluctuations of expansion, and thus of gravitational fluctuations correla-
ted with topological singularities. 
From this innovative interpretation of quantum mechanics, we have the possibility to have singu-
larities of the type «bosons»  and of the type «fermions», we have the fact that we cannot dis-
cern between topological singularities when they contribute to the same field of gravitational 
fluctuations, and the fact that singularities of the type «fermions» must satisfy an exclusion prin-
ciple similar to the Pauli exclusion principle.  This is probably the most remarkable and striking 
result of our calculations, as it demystifies a side of QM that was always rather obscure.
Finally, it is just as remarkable to note that all these properties, such as the property of superpo-
sition (the symmetry of the wave function  of singularities of type “bosons” and the anti-
symmetry of the wave function  of singularities of type «fermions», and the indistingui-
shability of topological singularities and the exclusion principle) are direct consequences of the 

 ψ
!r ,t( )

Ψ sym

Ψantisym



 chapter 28526

fact that the gravitational fluctuations associated with one of more singularities must satisfy the 
second partial equation of Newton of the cosmological lattice.
In fact, the image of a field with gravitational fluctuations correlated with a topological singularity 
has great potential to explain simply the quantum phenomena we have observed and calcula-
ted, but remain mysterious within the framework of usual quantum mechanics. Let’s think about 
the following examples:
- the concept of wave-particle duality of quantum mechanics finds here an immediate and 
simple explanations since the particle is the topological singularity and the wave is the gravita-
tional fluctuations associated with it,
- the quantum interference experiences obtained by the passage of particles through two slits,  
but with one particle at a time, can be explained by the fact that the singularity can only go 
through one slit while the gravitational field perturbations go through both slits, so that there is a 
possibility of interference of these perturbations, which leads to a coupling with the singularity 
and a modification of its trajectory, and finally there will be a statistical distribution of impact 
points on a screen placed after the two slits,
- the Heisenberg uncertainty principle, which is evidently satisfied in our approach since it ad-
mits à fortiori  the same interpretation of operators acting on the wave function of quantum me-
chanics, and satisfies thus all the relations of Appendix B. The uncertainty relations are then 
directly linked to the existence of perturbations of the gravity field linked to the singularity,
- the very mysterious experiences of entanglement and quantum decoherence. We can imagine 
that entanglement is embodied in the fact that two or more singularities can possess a common 
field of gravitational fluctuations, in which case, acting on one singularity is going to modify the 
common gravitational fluctuations, which will act on the other singularities, namely the decou-
pling of the topological singularities via a decoupling of the gravitational fluctuating fields.

«God does not play dice»

Einstein used to say «God does not play dice» referring to QM.  What he meant was that he 
considered that the theories of his age were incomplete theories. In his opinion, there had to be 
a rational and pragmatic explanation to account for the probabilistic nature of QM. This opinion 
of Einstein has been widely discussed, even scorned.  It was proven that there could not be lo-
cal hidden variable to explain quantum mechanics, however there could be non-local hidden 
variables, and that is precisely the case with gravitational fluctuations linked to topological sin-
gularities. We must concede here that Einstein was right, and that there exists a rational expla-
nation to quantum mechanics. 
There is a highly ironic tone in the famous sentence of Einstein, since QM would be explained 
by the gravitational fluctuations of the volume field of expansion and by a stochastic movement 
of the topological singularities interacting with said gravitational fluctuations. These are ingre-
dients with which God WOULD be playing dice. Ironically it was Einstein himself who proposed 
both General Gravity and brownian motion, which got him a Nobel prize.
Thus, our explanation for quantum mechanics goes with Einstein and shows that it is the ex-
pression of very small scale gravitational fluctuations in a cosmological lattice without longitudi-
nal propagation. As a consequence, all the modern attempts at quantifying gravity are bound to 
fail since QM is precisely the expression of the gravitational fluctuations at a microscopic scale.

 



Chapter 29

Gravitational fluctuations within topological
singularities: spin and magnetic moment

In this chapter, we will find a solution to the second partial equation of Newton with 
the torus around a SDL. We will show that there are no static solutions to this 
equation and that, as a consequence, we will have to search for a dynamic solution 
for the gravitational perturbations of expansion in the immediate vicinity of the loop. 
This dynamic solution will turn out to be a quantized movement of rotation of the 
loop on itself.  This solution satisfies the second partial equation of Newton, which 
becomes in this case the Schrödinger equation as we have seen in the previous 
chapter.
This movement of rotation of the loop about itself is nothing else than the «spin» of 
the loop, and we can show that a magnetic moment is associated with it, which 
corresponds exactly to the magnetic moment of particle physics. Furthermore we 
will show that, within our approach, this is a real movement of rotation, and that it 
does not infringe on special relativity, contrary to what the early pioneers of quan-
tum mechanics thought of spin. 

29.1 – Internal field of “gravitational” perturbations of the expansion
           of a twist disclination loop (TL)

We have already calculated the static external fields (23.2) of gravitational perturbations of ex-
pansion of a twist disclination loop (TL) and we have seen that these fields are responsible for 
long distance gravitational attraction via the gravitational force (section 24.2), but they are also 
responsible for short distance coupling effects with other loops via the weak force (chapter 26). 

The existence condition of an internal static field of expansion

We have not yet considered the case of fields of perturbations of expansion in the immediate 
vicinity of the twist disclination loop (TL). We must calculate this field within the torus encom-
passing the TL. By using a simplified static version of the second partial equation of Newton 
(18.14), we have, within the torus 

(29.1)

in which  represents the position vector giving us a point of the torus in relation to the center 
of the section (fig. 19.2). In this second degree equation, the energy of distortion  is as-
sociated to the fields of rotation and shear of the TL and is worth, according to (19.5)
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(29.2)

A static field of perturbations would then be deduced from equation

(29.3)

For this equation to have a real solution, it would be necessary for the argument under the root 
to be positive, and thus that the distance  to the center of the loop satisfy relation

(29.4)

Knowing that the rotational charge of a TL satisfies the following relation

(29.5)

we deduce the condition for the existence of a static solution to equation (29.3), notably in the 
domain of expansion of the background 

(29.6)

Which is equivalent to the condition that

(29.7)

We will try to express the condition that must exist on module  for this condition to be equiva-
lent to distance  being superior to radius . We quite easily find that this condition is written

(29.8)

What this means is that if module  is bigger than critical value , there are no static solu-
tion to equation (29.3) within the whole volume of the torus around the TL.
It is now interesting to consider numerical values inspired by “the real world”, by using for 
example an analogy to electrons, namely that they have an electrical charge worth 

, and a radius estimated to be on the order of and that 
the elastic modules  are actually the analogs to the dielectric constant of vacuum, so 
that we can use numerical values: . With these nume-
rical values, the condition (29.8) would then imply that .

On the existence and nature of an internal dynamic field of expansion

The condition that module  be superior to some critical value  is likely to be true 
in the presence of twist loops according to the numerical values obtained with an electron from 
the ‘real world’.  Let’s make the following conjecture
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Conjecture 11:    satisfies the following equation in the cosmological lattice

                                 (29.9)

If we admit this conjecture then the gravitational field within the torus around the TL cannot be a 
static solution (29.3), and must consequently become a dynamical gravitational perturbation 
field. But the Newton equation for the dynamic perturbations is nothing else than the Schrödin-
ger equation (28.46). We must then find a movement of the loop which is not a translation but a 
movement confined to the same volume.  The only possible movement is a rotation about itself.

29.2 – Angular momentum, spin and magnetic moment 
           of a twist disclination loop (TL)

Let us consider a TL with radius  as represented in figure 19.2,  and let’s imagine that it can 
turn about an axis of direction  contained in the plane of the loop with an angular velocity 

, which is not impossible since the loop corresponds to a pseudo-screw dislocation. If we 
first treat this problem in a classical way, we can use polar coordinates to define the angular 
momentum  of the loop about it’s axis of rotation, by supposing that the mass of the loop is 
uniformly distributed at the surface of the loop

(29.10)

As we only roughly know the mass distribution in the vicinity of the loop, we will introduce a nu-
merical factor  of correction such that 

     with     (29.11)

We can then introduce the moment of inertia of the loop about the axis of rotation

     with     (29.12)

An twist loop will also possess a charge of rotation  (analogous to the electric charge), so it 
also possesses a «magnetic moment»  in the direction of the axis of rotation, which we can 
calculate by supposing that the charge is located on the contour of the loop, as

(29.13)

As we only approximatively know the charge distribution in the vicinity of the loop, we will intro-
duce a numerical factor  of correction such that 

     with     (29.14)

We find now a direct relation between the «magnetic moment»  and the angular momentum 
 of the loop, which is called the gyro-magnetic ratio
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    with     (29.15)

We can furthermore calculate the kinetic energy  associated with this movement of 
rotation, under the form

(29.16)

With the corrective factor  on the mass distribution within the loop, we obtain

    with     (29.17)

We have the following links between kinetic energy, angular momentum and moment of inertia

(29.18)

On the quantification of the angular momentum of the twist loop

If we admit that the twist loop (TL) does indeed turn about itself, this microscopic movement of 
rotation must be calculated with the static version of the Schrödinger equation (28.46). We sum 
up in appendix B the treatment of the movement of rotation of a microscopic object about it’s 
axis, obeying Schrödinger’s stationary equation. The energy is quantized by

(29.19)

For each value of the energy  corresponding to a given angular velocity, there are  
eigenstates corresponding classically to different orientations of the axis of rotation. We say that 
the energy state  is  times degenerated.
With regards to the quantum magnetic number  , which characterizes the projection of the 
angular momentum along a certain axis , it can take the following values

(29.20)

so that the projection  on the  axis takes the values
(29.21)

The kinetic energy and the angular momentum of the loop are thus worth

(29.22)

The magnetic moment of the loop along  is then written

    with     (29.23)

where  is the Landé g-factor of the TL, roughly equal to 2, but which would depend on the 
distribution of mass and charge in the case of other topological singularities. 
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We note that, in the expression (29.23), we find the famous value of the Bohr Magneton, namely 
.

On the classic interpretation of the spin of a particle

In quantum mechanics, the spin of a charged particle like the electron was initially attributed to a 
self rotation of the particle.  However, at the time, the electron was considered to be a spherical 
particle, very small in size. This made people doubt the classical interpretation of spin. The 
strongest argument against the classical interpretation of spin was the fact that the calculated 
equatorial velocities of the electron would be much larger than the speed of light, thereby viola-
ting special relativity.
But it is completely different in our approach. Indeed, if we try to calculate the equatorial velocity 
in the case of a TL, which we obtain from its radius  and its angular velocity 

(29.24)

To determine the angular velocity , we identify the kinetic rotation energy of the loop (29.17) 
with its kinetic energy (29.22) which we determined from the Schrödinger equation. We have

(29.25)

By introducing this value of  in the expression of the equatorial velocity , we obtain

(29.26)

Numerically, let’s use the known numerical values of the electron, namely the mass
, its radius on the order of , the value  close to 1, 

the value of the Planck constant , and its known spin of .  
We then have the velocity

(29.27)

We find also that this equatorial velocity is largely superior to the speed of light in the lattice, 
namely , as was found by the pioneers of QM. 
However in our approach, there is a new fact, which is that the static volume expansion in the 
immediate vicinity of the singularity is very large.  We can express the static volume expansion 
at the limits of the torus where the perturbations of expansion are static. In this limit, the local 
volume expansion is maximal and is given by the unique solution to equation (29.3) when the 
term under the root is null, so that

(29.28)

From which we deduce that the real velocity of transversal waves in the immediate vicinity of the 
loop is actually worth

(29.29)
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since . As a matter of fact, it suffices that 

(29.30)

for the equatorial velocity of the loop to be possible.  
We can try to determine what is the limit value of module  for the rotation of the loop to be 
possible.  We obtain

(29.31)

And this condition is always satisfied since . In our approach, we are thus assured 
that the movement of rotation of the loop on itself is not only possible but may very well be ne-
cessary as it is the only possible solution to the second partial equation of Newton...
We conclude that there exists a very classical explanation for the spin of a particle, as a real 
quantified movement of rotation of the loop about an axis and which does not violate special 
relativity. This explanation takes away the magical nature of the notion of spin in QM. It also ex-
plains perfectly the existence of a quantized magnetic moment of the electron, directly associa-
ted to the real rotation of the charged loop.

29.3 – On the problem of the value of the spin of a topological loop

If the existence of a proper rotation of loops is a necessity in our approach to satisfy the second 
partial equation of Newton in the immediate vicinity of the loop, we have a new question: what is 
the value of the spin we should attribute to the loop?
Formulated otherwise, this question is equivalent to looking for a value to attribute to the azimu-
thal quantum number  which characterizes the quantification of the energy of rotation and of 
the angular momentum as in (29.22) for the loop, as well as it’s magnetic moment (29.23). 
Experimentally, we know that the spin of the electron is worth  and that the spin of the 
boson  is . But the deeper reason for which these particles possess these particular 
values remain very mysterious.  It is the same case in our approach: besides the fact that spin 

 and  are the weakest, and thus correspond to the lowest possible kinetic ener-
gies, no reasonable argument allows us for now to make a choice regarding the value of  to 
be chosen for a twist loop. Let’s take a look at the consequence of a spin  or a spin 

 on the TL.

Twist disclination loop with spin 1/2

Consider a TL with spin . No matter what the direction of the axis of rotation is, there 
can only be 2 eigenvalues for the loop, corresponding to a left or right handed rotation about the 
axis, as the degeneracy of energy is in this case .
The kinetic energy of the loop is then worth

(29.32)
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With regards to the magnetic quantum number , it can take the following values

(29.33)

so that the projection  of the angular momentum along an axis  takes the values 

(29.34)

We find here exactly the notion of a particle of spin 1/2. 
The magnetic moment of the loop along  is then written

    with     (29.35)

Twist disclination loop with spin 1

Consider a TL with spin . Whatever the direction of the rotation may be, there can only be 
3 proper states for the loop, a left handed rotation, a right handed rotation and no rotation at all, 
as the degeneracy of the energy is worth .
The kinetic energy and the angular momentum are written

(29.36)

The magnetic quantum number  can take the following values

(29.37)

so that the projection  of the angular momentum along axis  takes values 

(29.38)

We recover here exactly the notion of particle with spin 1. 
The magnetic moment of the loop along  is written   

    with     (29.39)

On the existing link between bosons, fermions and spin

The question of knowing if a loop singularity behaves like a fermion or a boson in the case of 
superposition of various loops (see section 29.4) and the question of the value of spin for a loop 
singularity are linked. Indeed, we know from QM that fermions have a spin 1/2 and that bosons 
have a spin 1. From QM, we also know that the spin component of the wave function  of two 
particles is symmetric when the spin of the two particles are parallel, and anti-symmetric if the 
spins are anti-parallel, thus we have the following possibilities for the wave function  of two 
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particles:
• Fermions:  anti-symmetric wave function  parallel spins and anti-symmetric spatial com-
ponent, or anti-parallel spins and symmetric spatial component.
• Bosons:  symmetric wave function  parallel spins and symmetric spatial component, or anti-
parallel spins and anti-symmetric spatial component.
It would be very interesting to look deeper into this problem, and to see what topological inter-
pretation to give it in our approach of topological loops. But this problem is, for now, beyond this 
book, and will be left as ‘open problem’ in the model of the cosmological lattice.

⇒

⇒

 



Chapter 30

Quantified transversal fluctuations: photons 

In chapter 14, we have demonstrated that the propagation of a linearly polarized 
transversal “electromagnetic” wave of rotation is accompanied with a ‘gravitational’ 
wavelet. In this chapter, we will focus on what happens in the case of a localized 
wave packet. We will show that these wave packets can only appear with a non-
null helicity so that their total energy does not depend on time. By supposing that 
these wave packets are emitted when a topological singularity changes state sud-
denly, it becomes understandable that they present a ‘quantification of energy’. 
These wave packets behave as energetic quasi-particles of ‘electromagnetic’ fluc-
tuations that we could call «photons» and which have properties very close to that 
of photons, as helicity, momentum, wave-particle duality, non-locality and entan-
glement, etc. 

30.1 – Localized transversal electromagnetic fluctuations

We have seen in chapter 14 that the propagation of a polarized transversal wave within the 
cosmological lattice is constrained by a perturbation correlated to the expansion of the lattice, 
and that only the circularly polarized waves are transversally ‘pure’ without wavelets of expan-
sion associated with them. We can reasonably ask ourselves if this striking property couldn’t be 
at the origin of quantized “electromagnetic” fluctuations, who would then look like the famous 
photons of QM?

The localized wave packets of rotation, real ‘electromagnetic’ fluctuations

Let’s consider transversal waves propagating along , with a polarization of the field of rota-
tion along axis  and of velocity along .  The linearized field of the fluctuations are dedu-
ced from (14.13), (14.14) et (14.18) and are written, by supposing a perfect cosmological lattice 
in the  domain 

   (30.1)

We try to form a transversal packet of waves, with frequency , and an exponential envelope 
with ranges  and , expressed in complex form with a  rotational field given by

 (30.2)

By using the wave equations (30.1), we can show that we obtain the following fields
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 (30.3)

By writing the real fields , the real part of complex fields, we then have

(30.4)

The energy per unit of volume of this fluctuation in a cosmological lattice where the expansion 
satisfies  is written in this case

(30.5)

so that, as , we have the following density of energy

(30.6)
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(30.7)

By written the wave packets of rotation  and  under the complex form

.

(30.8)

we show thanks to relations (30.7) that the wave packets associated to the lattice velocities 
 and  are then written

(30.9)

Thanks to the last relation (30.7), we deduce also that the fields  and  due 
to  and  cancel simultaneously, as a matter of fact simply because

(30.10)

This implies that, if there exists a field  associated with the rotational wave packet, it 
is independent of fields  and , and it must satisfy the following wave equation, 
identical to relation (28.5) 

(30.11)

The energy of the rotational wave packet 

The wave packed defined by (30.8) and (30.9) represents an electromagnetic wave packet, 
which MUST posses a right or left helicity for it’s energy to be independent of time, and more 
importantly so that it not be associated with a gravitational perturbation. In the real representa-
tion we obtain in this case    
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(30.12)

Knowing that  in the perfect cosmological lattice for , the volume density of 
energy of this wave packet is given by

(30.13)

By effecting the variable change , we can quite easily calculate the total energy of 
this fluctuation of the field of rotation, which is then worth

(30.14)

30.2 – Quantification of the energy of ‘electromagnetic’ fluctuations
           and analogy with ‘photons’ quasi-particles

If we consider that the perfect cosmological lattice is a real representation of our Universe, then 
rotational wave packets that we just described must correspond to photons. By supposing that 
these wave packets are emitted when a topological singularity suddenly changes state (for 
example during the transition of an electron in an atom), it is then very simple to explain that 
they have a quantification. Let’s assume that a singularity goes from a higher energetic state (a) 
to a lower energetic state (b). According to relation (28.22) expressed in the non-relativistic 
case, we then have the following energetic transition

(30.15)

with 

(30.16)

During the transition, the singularity loses the following energy

(30.17)

and this energy is dissipated in the form of a photon, and thus in the form of a transversal wave    
carrying this lost energy by the singularity, so that

(30.18)
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This relationship is then quite remarkable, as it shows that the energy of the transversal fluctua-
tion is quantified with the value , and that the frequency  of the transver-
sal wave is nothing else than the difference of frequencies of the gravitational perturbations of 
the singularity in states (a) and (b). We find again as a consequence the experimental observa-
tion that the energy of the photons is quantified, as was first proposed by Einstein, and that the 
energy of a photon does indeed possess a fixed value proportional to its frequency  via 
the Planck constant.

On the non-locality of the rotational wave packet

The wave packet thus formed possesses a “volume” , an amplitude  and an energy 
. As its energy is bound to remain constant, it implies that neither the amplitude 

 , neither the «volume»  are predetermined, but they are simply linked by the following 
relation

(30.19)

The wave packet presents a sort of ‘malleability” or “plasticity”: it can for example extend or 
contract in the axis of propagation , or expand or contract alongs the axis  and 
perpendicularly to the direction of propagation, or expand and contract in an isotropic fashion, 
as long as the product  remains a constant equal to . 
If the wave packet is ‘scrunched up’ meaning if its volume  is very small and its amplitude 

 is large, it will behave as if it was a localized quasi-particule with energy . But 
during its propagation, it can also expand and occupy a ‘volume’  which would be very 
large with a small   amplitude and behave in this case more like a wave, which is then ca-
pable of interference and diffraction just like a wave does.  We find here the property of ‘non-
locality’ of the particle during its propagation, in the QM sense. 

On the momentum of the ‘photon’ quasi-particle

In the guise of a quasi-particle, meaning when the wave packet is contracted and has a small 
volume, the wave packet does not contain any inertial mass, but it has a non-null momentum. 
We deduce this particularity from the fact that the wave packet moves with velocity  and that it 
must then satisfy the relativistic energy equation (20.42), with an inertial mass , namely

(30.20)

Which implies a non-null momentum (quantity of movement) in the direction of propagation 

(30.21)

On the wave-particle duality of the rotation waves packet

The waves packet exhibits a wave-particle duality similar to that of QM. The only restriction im-
posed to this waves packet, due to the fact that it propagates in a medium satisfying , 
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is that it must remain a single entity, with a given energy and helicity, so that its energy  re-
mains constant and there are no expansion perturbations. 
This implies that such a waves packet, if it is very extended and if it must go through a slit for 
example must necessarily contract sufficiently to go through the slit as a single entity. But no-
thing prevents the wave nature of the entity to interact with the slit during its flight, and therefore 
for the trajectory of the quasi-particle to be modified.
In the same fashion, if this extended waves packet finds a double slit, it can go through the two 
slits by contracting locally and recombine after the fact, assuming that its structural integrity was 
not touched during said movement.  But the sum of the wave entities after passage through 
both slits creates waves interference, so that the probability of finding a quasi-particle in the 
space after the slits has similar fringes to the interference fringes to that of a plane wave going 
through both slits.
This implies that if the waves packet, which extends during its propagation, starts to be absor-
bed by an obstacle, the condition that its energy remains constant during time forces it to 
contract so that the absorption of energy is a very local phenomenon.  We could reasonably talk 
about ‘dematerialization’ of the wave packet in the form of a quasi-particle. It must then behave 
as a very local quasi-0particle during its creation and annihilation. 
It should be noted that what we call the “measurement problem” in QM corresponds exactly to 
this type of phenomena.  Any attempt at touching the waves packet is going to force it to modify 
so that its energy remains constant in time.  Thus a measure on this waves packet is necessari-
ly an action which will change this waves packet and modify its characteristics. 

On the creation of pairs of “photon” quasi-particles

As the ‘photon’ quasi-particle possesses a momentum due to it’s relativistic behavior, the crea-
tion of a unique photon would violate the conservation of quantity of movement. This implies 
that the photons can only be created as ‘pairs of photons’ with the same frequencies, that pro-
pagate in two opposite directions so that their global momentum is null. 

On the phenomenon of entanglement of two virtual quasi-particle ‘photons’

Initially, during the creation of a pair of photons, there could exist only a single packet created 
locally, in which case it must extend at velocity  on both side of the axis of propagation to en-
sure that the global momentum be null.  We could say in this case that the unique waves packet 
of energy  represents the two quasi-particles with momentum  
corresponding then to an entangled state of the two quasi-particles.  However if one of the ex-
tremities of this waves packet is suddenly ‘materialized’ in the form of a quasi-particle (photon 
1), transferring an energy  to an “object’ interacting with it, the second end of the 
waves packet will regroup and will posses an energy  and the quantity of mo-
vement . It will transform then necessarily in a wave packet representing 
photon 2, which will be materialized in the form of a quasi-particle.  It should be noted that the 
initial wave packet possessed, at the time of ‘materialization” of the first quasi-particle, a polari-
zation and a helicity which were measured and that this polarization and helicity that are measu-
red become the property of the residual wave packet. It is exactly what QM predicts when it 
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talks about entanglement of two photons. And there is therefore no ‘instantaneous’ transmission 
of information between a quasi-particle (photon 1) to the other quasi-particle (photon 2) since it 
is during ‘materialization’ of the first quasi-particle (photon 1) that the wave packet associated 
with the second quasi-particle (photon 2) forms and acquires the complementary characteristics 
to the first quasi-particle (photon 1), characteristics which will be observed during the ‘materiali-
zation’ of the second quasi-particle (photon 2).  

On the phenomenon of decoherence 

As we just saw, a waves packet with energy  represents the two photons ini-
tially created which can elongate along a single axis over great distances. But this elongation 
implies that the amplitude  of the wave packet diminishes.  As the wave packet ‘extends’ it 
will become more and more sensitive to its environment, meaning to the fluctuations of the field 
that it encounters, until it find a fluctuation strong enough to ‘break’ the initial waves packet and 
divide it in two independent waves packets, which will no longer be entangled. At this point, the 
two waves packets become independent.  We can then talk about the phenomena of decohe-
rence, in the sense that the ‘materialization’ of two waves packets in the form of two individual 
photons will not behave as we have just described in the previous section. This phenomenon is 
similar to the phenomena of ‘decoherence’ of QM to explain the passage from microscopic to 
the classic macroscopic world.

On the analogy with the photons, the quantum fluctuations of the vacuum, 
the multiverses and the  gravitons

The results obtained in this chapter are very interesting, as they signify that the cosmological 
lattice, which does not present longitudinal waves for ,  can contain local perturbations 
of pure transversal waves of circular polarization which have all the characteristics of photons 
(quantification, duality wave-particle, entanglement, etc.).  In chapter 31, we will show that there 
could exist a superposition of local longitudinal fluctuations of expansion whose energy is null, 
resembling what we call the quantum fluctuations of the vacuum in QM. We will mention also 
hypothetical correlated fluctuations of expansion, whose energy would essentially be kinetic, 
and which could represent, at the macroscopic scale, multi-verses in expansion and contraction, 
and, at the microscopic scale, quantified perturbations which could be identified to ‘gravitons’ 
but who would be very different from the ‘gravitons’ postulated in General Relativity.

 E
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Chapter 31

Ingredients of an analogy with the standard model
of particle physics
           
It has been shown previously that the perfect cosmological lattice has strong ana-
logies with all the major theories of modern physics, namely the equations of elec-
tromagnetism, special relativity, general relativity, black holes, cosmology, dark 
energy and quantum physics, including the notion of spin and magnetic moment, 
and that there can exist three types of basic topological singularity loops posses-
sing respectively the attributes of an electric charge, an electric dipole moment or a 
curvature charge (which is the exclusive prerogative of our perfect cosmological 
lattice approach, and which explains quite simply several mysterious phenomena 
at present, such as the weak coupling force of two topological loops, black mass, 
galactic black holes and the disappearance of anti-matter).  
In this chapter, we will try to find and describe the ingredients that could explain, on 
the basis of basic topological singularity loops, the existence of the standard model 
of elementary particles. In other words, we will try to find what mechanisms could 
generate the families of fundamental particles such as leptons and quarks, what 
could be the origins of the existence of three generations of these elementary par-
ticles, and where could come from the strong force with asymptotic behavior that 
binds quarks together to form baryons and mesons.
This chapter does not pretend to provide an elaborate theory or a definitive and 
quantitative solution to explain the standard model of particle physics, but rather to 
show by some specific arguments that it is certainly the choice of a particular mi-
croscopic structure of the perfect cosmological lattice that could bring an answer to 
the various questions that arise concerning the standard model. This chapter will 
therefore bring some elements of reflection by showing that a whole "zoology" of 
loops of topological singularities can appear in a solid of well chosen structure, 
which can have a strange family resemblance with the elementary particles of the 
standard model. It will also allow to present behaviors very similar to the behaviors 
of elementary particles, such as the presence of an asymptotic strong force that 
can participate to a coupling between topological loops.  

31.1 – The problems of the standard model of fundamental particles

Currently, particle physics explains the fine structure of matter with the help of a model called 
“the Standard Model of Particle Physics” (see annex C).  In this model there appears fermions,  
particles of matter which present different families, the family of leptons and the family of 
quarks, as well as 3 types of interactions which can appear between fermions: the electroma-
gnetic interaction, the weak interaction and the strong interaction. 
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The interactions between fermions happen via the exchange of particles called gauge bosons, 
corresponding to the quantas of the quantum fields of interaction. The electromagnetic interac-
tion involves photon , the weak interaction the three gauge bosons ,  and , and 
the strong interaction involves 8 gauge bosons called “gluons”. 
The mass of particles is introduced in the standard model via a new interaction associated with 
the quantum Higgs fields, and the mediating particle is called the ‘Higgs boson’. The existence 
of the Higgs boson has been verified experimentally at CERN, quite recently.

The problems of the standard model which already have solutions
          in the theory of the perfect cosmological lattice

The standard particle model, despite its undeniable success, leaves many questions 
unanswered. In the rest of this chapter, we will try to see if an approach to the standard model 
by our approach of the perfect cosmological lattice can provide an answer to these various 
questions. It will not be a question here of giving a complete and quantitative answer to all these 
problems, but of sketching, in a very qualitative way, in other words "with the hands", how the 
cosmological lattice could provide a solution to these problems. Some of the problems raised by 
the standard model already contain a sketch of an explicit solution in the previous chapters.
So let's take a tour of the problems posed by the standard model which already have an 
explanation in the approach of the cosmological lattice and explain how the cosmological lattice 
answers, at least partially, to these various problems:

- the absence of gravitational interaction in the standard model:
The gravitational interaction is directly part of the results obtained with the cosmological lattice, 
as a static solution of Newton's second partial equation, and it is moreover this same equation 
in its dynamic form which made it possible to introduce and give a simple explanation of 
quantum physics and the notion of spin of loop topological singularities.

- the need for the Higgs boson and the impossibility of calculating the masses of the various 
fermions and bosons in the standard model:
In the basic standard model, fermions have no mass, and theorists had to introduce an ad-hoc 
mechanism, the interaction with the Higgs field via the Higgs boson, which provides the mass of 
inertia to the elementary particles. However, in the standard model, it is not possible to obtain 
quantitative values of the inertia masses of the particles, which must therefore be "calibrated" on 
the values obtained experimentally. The theory of the cosmological lattice actually contains a 
mechanism fairly analogous to the Higgs field: it is the field of the masses of inertia of the 
"corpuscles" of the network (which are therefore a kind of analog of the spin 0 Higgs bosons) as 
well as the elastic energy of distortion of the lattice, which are responsible together for the 
relativistic properties of inertia of topological singularities, and which allow a quantitative 
calculation of the masses of inertia of topological singularities, without having to “calibrate” 
these values on results experimental.

- the physical nature of the electromagnetic interaction in the standard model:
The electromagnetic interaction, as well as its vector boson, the photon, with its various 
quantum properties, are an integral part of the theory of the cosmological lattice, and have there 
a simple and well-defined physical explanation based on the field of rotation within the 

γ Z 0 W + W −
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cosmological lattice.

- the physical nature of the weak interaction in the standard model:
A weak interaction presenting an analogy with the weak interaction of the standard model has 
been obtained in the theory of the cosmological lattice (chapter 26), in the form of a very short-
range bonding force binding "topological fermions" between them (twist disclination loops to 
edge dislocation loops), by coupling their rotation and curvature charges.

- violation of the CP invariance (charge / parity) in the standard model:
In the current universe, there is a violation of the invariance CP (charge / parity) that theorists 
believe to be the probable cause of the matter / anti-matter asymmetry and of the matter / anti-
matter imbalance in the current universe. In the theory of the cosmological lattice, this weak 
asymmetry between matter and anti-matter exists well, and is explained perfectly by the 
existence of the charge of curvature by bending of the edge dislocation loops, charge which has 
absolutely no equivalent in the standard particle model. This same phenomenon is also behind 
the explanation of the famous dark matter of astrophysicists and the disappearance of anti-
matter during the cosmological evolution of the universe.

- the absence of explanation of the dark energy and the dark matter in the standard model:
These two concepts invented by theorists to provide explanations for the acceleration of 
cosmological expansion and the gravitational behavior of galaxies both have a direct 
explanation in the theory of the cosmological lattice: the energy of elastic distortion with regard 
to dark energy and the repulsive gravitational force of the neutrino sea with respect to black 
matter.

The problems of the standard model which have not yet been explained
           in the theory of the perfect cosmological lattice

Among the problems of the standard model of elementary particles, there are some for which 
plausible explanations have not yet appeared in the theory of the cosmological lattice. These 
include:

- the existence of fermions in the form of three generations of leptons and quarks:
If the fermions correspond to topological singularities in the theory of the cosmological lattice, 
the existence of fermions in the form of leptons and quarks, as well as the existence of three 
generations of these fermions, should probably be explained by a judicious choice of the 
structure of the cosmological lattice and of the constitution of elementary particles as topological 
singularities in the form of dispiration loops, judicious assemblies of loops of twist disclination, of 
edge disclination, of edge dislocation and of mixed dislocation .

- the existence of three massive gauge bosons in the weak interaction:
Since the weak interaction has already appeared in our approach as the force linking the twist 
disclination loops to the edge dislocation loops, it remains to find out what the massive gauge 
bosons, vectors of this interaction, are in cosmological lattice theory.

- the existence of a strong interaction linking quarks by a color confinement mechanism:
The strong interaction, with its color confinement mechanism and its vector bosons, the gluons, 
is the only interaction that has not yet appeared in the framework of cosmological lattice theory. 
But we have already encountered mechanisms which could be very interesting potential 
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candidates to explain this force and its asymptotic behavior, such as for example the 
mechanisms generating a fault energy within the lattice, such as the dissociation of a dislocation 
by example.

- the existence of quantified electrical charges, of relative values 1, 1/3 and 2/3:
The electrical charges of fermions have relative values 1, 1/3 and 2/3 between the charge of the 
electrons and the charges of the quarks. These quantified values have absolutely no 
explanation in the standard model, but it is a safe bet that the choice of a particular structure of 
the cosmological lattice could provide an explanation for this problem.
In the rest of this chapter, we will try to find answers and explanations to these questions of the 
standard model, playing exclusively on the structure of the cosmological lattice and on the 
properties of the topological singularities that it can contain. In the standard model, 26 different 
parameters are required in the case where the neutrinos are massive to obtain a functional 
theory, such as the masses of the particles and the intensities of the various forces, and these 
parameters must necessarily be “calibrated” on the values of experimental results. It is a safe 
bet that the model of the cosmological lattice can make it possible to greatly reduce the number 
of parameters to be adjusted, simply by the fact that it can provide new physical explanations for 
phenomena that do not have any in the standard model. 

31.2 - A "colored" face centered cubic lattice with specific stacking
          and rotation rules to explain the first family of quarks and leptons

In the perfect cosmological lattice, we have seen that the simplest topological singularity for 
explaining the electric charge is the twist disclination loop. As we saw in chapter 8, for the 
gravitational interaction of twist disclination loops to satisfy behaviors similar to experimentally 
observed behaviors (time dilation, curvature of wave rays), it is sufficient that the coefficients 

 and  in the expressions  and  giving the 
dependence of the radius and the torsion angle of the twist disclination loop as a function of the 
background expansion of the lattice satisfy the relation . This implies that 
the angle of twist  could
(i) either be a constant independent of the expansion, in which case  and

, which allows the existence of a topological reason for the explanation of the 
existence of discrete values, independent of the expansion, for the angle ,
(ii) either depend in fact on the volume expansion, in which case  cannot take a discrete 
value which is directly linked to the structure of the lattice since this angle would then depend 
continuously on the volume expansion.
Thus, so that it appears quantified charges like the charge of the electron, but also fractional 
charges of 1/3 and 2/3 of the charge of the electron as it is the case of the quarks of the 
standard model, the screw loops should be obtained by rotating the two planes inside the loop 
by an angle corresponding to the symmetry of the lattice, for example , , , ... in 
the directions perpendicular to the planes of a simple cubic lattice, or , , , ... in 
the directions perpendicular to the compact planes of a compact hexagonal or face-centered 
cubic lattice.
We will therefore choose hypothesis in the form of the conjecture 12 explained in figure 31.1 to 
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try to find a cosmological lattice which could explain the standard model of elementary particles.
To satisfy this assumption, it seems a priori preferable to choose a compact stacking lattice, 
namely a compact hexagonal lattice or a face-centered cubic lattice. For reasons that will be 
explained later, we will choose the face-centered cubic (FCC) lattice, as illustrated in figure 31.2.

In the FCC cell, there are four families of dense planes, shown in figure 31.2(a). The four 
axes perpendicular respectively to these four families of dense planes are third-order rotational 
symmetry axes passing through two opposite vertices of the FCC cell. Only rotations of , 

, , ... about these axes respect the dense stacking of the FCC cell. 
Let us imagine a priori that this FFC lattice is moreover an axial lattice, i.e. that each plane of 

"corpuscles" has a preferential direction represented in figure 31.2(b) by arrows making an 
angle of   between each dense layer. This axial property can be represented by "colored 
planes of corpuscles" with alternating three fundamental colors R, B, G. Each of these colors 
represents one of the three preferred directions of the dense planes, as shown in figure 31.2(b). 

2π /3
4π /3 2π

2π /3
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These imaginary "colors" are chosen only for convenience, and so far have no relation to the 
"colors" used in the standard model to explain the color charge of quarks and gluons. Even if we 
do not know the physical reason for the existence of this axial property represented by these 
"colored planes", we can suppose that this alternation of colors of the corpuscular planes can be 
a condition for the existence of a perfect cosmological lattice in the absence of topological 
singularities, and that, if the R, B, V alternation of the lattice planes is broken by the presence of 
a topological singularity, fault energies can appear if a "corpuscular" plane does not follow the 
R, B, V arrangement. Let us then postulate a priori rules of stacking and rotation of the colored 
planes in this very particular lattice, in the form of a thirteenth conjecture reported in figure 31.3.  
In this conjecture, there are three rules which are all three associated with the axial property of 
the FCC lattice that we have postulated:
- The first rule stipulates that the R, B, V alternation of the dense planes of the lattice cannot be 
broken, under penalty of an important stacking fault energy, i.e. the preferential directions 
associated with the "corpuscles" must if possible alternate with an angle of    from one 
dense layer to the other.
- The second rule states that there may be planes perpendicular to the dense planes that 
separate two domains of the lattice with a shift in the succession of planes R, B, V. These joints 
thus correspond to sorts of connecting fault planes, and it is assumed that these joints have a 
non-zero connecting fault surface energy .
- The third rule states that if a dense plane is rotated by an angle ,  or 
about an axis perpendicular to this family of dense planes, and thus leaves the FCC structure 
intact, it is the preferred direction of this dense plane represented by the arrows in figure 31.2(b) 
that changes, and thus it is the "color" of this plane that changes since the color represents this 
preferred direction. 

Existence of quarks due to combining a screw disclination loop 
      with an edge dislocation loop

We can introduce a screw disclination loop in our particular lattice, shown symbolically in figure 
31.5d, with a rotation angle of the lower plane of  or  or  . But according 
to rule 3, a rotation of  or  will change the color of the inner plane of the 
screw disclination loop. In this way, rule 1 would no longer be satisfied. Therefore, on the one 
hand, an interstitial or lacunar edge loop must be added to satisfy rule 1 with the upper dense 
plane, and on the other hand, a cylinder must be induced in which all dense planes below the 
screw disclination loop change color to satisfy rule 1. Then, according to rule 2, a cylinder of 
connecting faults with fault surface energy  is generated, as schematically represented in 
figures 31.4a to 31.4d.
The intercalated plane in the case of the interstitial edge loop has one of the three colors R, B, 
V (red, blue, green), whereas the missing plane in the case of the lacunar edge loop has the 
anti-color of the color of the interrupted plane, namely one of the colors  ,  or . One 
uses indeed in the figures the complementary colors of R, B, G, which are the colors cyan, ma-
genta and yellow, as represented in figure 31.3. In the four cases (figures 31.4a to 31.4d), the 
screw disclination loop is obviously linked to the edge dislocation loop by the weak force descri-
bed in chapter 26, but also by the necessity to introduce the edge loop to ensure the succession 
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of the colors of the planes at the level of the screw disclination loop.
The dispirations thus formed have a "color", which corresponds to the color of the interstitial 
loop plane or to the anti-color of the lacunar loop plane (the anti-color or complementary color of 
the corpuscular plane in which the lacunar loop appears). 

Existence of intermediate gauge bosons

As for disclination loops of angle  (figures 31.5a to 31.5c), they do not need to be combi-
ned with edge loops since these rotations do not cause any color change in the lower planes, 
and therefore also no connecting fault cylinder below the loop.
In the table of figure 31.6, we have reported the properties of the different topological singulari-
ties thus formed, giving them, as in figures 31.4 and 31.5, a name chosen "by chance", and 
using the fact that the two dispirations on the right (a and c) in figure 31.4 are clearly the anti-
loops of the loops on the left (b and d). 
In table 31.6, we then see that the rotation charges , analogous to the electric charge, 
have three different values, corresponding respectively to 1/3x, 2/3x and 1x the charge of the 
loops   or . On the other hand, only the dispirations , ,  and  present a non-
zero curvature charge , and the sign of these charges, positive in the case of the lacunar 
edge loop and negative in the case of the interstitial edge loop, implies, as we have already 
postulated with conjecture 8, that the particles   and  c correspond by analogy to matter 
and that their anti-particles  and  correspond to anti-matter. The parameter  is in this 

±2π

qλ BV

W − W + d u d u
qθ BC

d u
d u a



ingredients of an analogy with the standard model of particle physics         551

 



chapter 31552

case the distance between two dense planes of the lattice. As for the particles ,  and 
 which do not have a curvature charge, they must certainly have a large mass since they 

are loops of screw disclination with a very high rotation angle .$

Weak interaction between quarks via intermediate bosons 

It is interesting to note here that the combination of two dispirations and , or  and  
contributes to create a pure screw disclination loop   or , which can again be transfor-
med into a pair  and , or  and  . One can also imagine an exchange of an  or 

 loop between two dispirations  and , or  and , which will change their nature, or 
to put it more colorfully or poetically, their "taste" or "flavor". 
These combinations and exchanges are illustrated in figure 31.7 as Feynman diagrams. They 
are characterized by the fact that the total rotation  is conserved, which ensures at the 
same time the conservation of the rotation charge  . We also see that the total charge 

 is also conserved in these reactions. It is then undeniable that these reactions have a 
strange similarity with the weak interactions of the standard model reported in figure C.3.
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Existence of localized "baryons" and "mesons", formed by 3 and 2 dispirations 

Each of the dispirations in figures 31.4a to 31.4d generates a connecting fault cylinder that has 
an energy proportional to the lateral surface of the cylinder. Consequently, it is impossible for 
these dispirations to appear in isolation, because the connecting fault cylinder would then be of 
gigantic length , and consequently of gigantic energy. One can then ask how to generate 
singularities composed of such dispirations, and which are of reasonable energy.
In fact, there are three ways to combine the four dispirations in figure 31.4 so that the resulting 
topological singularity is perfectly localized, namely that the connecting fault tube is of finite 
length:
- the combination of three singularities  or  represented in figure 31.8a,

 ∼ R∞

u d
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- the combination of three anti-singularities  or  represented in figure 31.8b,
- the combination of one singularity  or  with one anti-singularity   or  represented in 

figure 31.8c.
In order for the three rules previously stated to be all perfectly satisfied in these various combi-
nations, it is necessary that:
- the sum of the angles of rotation  of all the dispirations of the combination is zero or a 
multiple of  , which allows the connecting fault tube to be of finite length,
- the color of the assembly thus formed is "white", thus that the assembly presents the sum of 
the 3 colors R, G, B (figure 31.8a), or the sum of the 3 anti-colors  , ,  (figure 31.8b), or 
the sum of one of the colors R, G, B with its respective anti-color , ,  (figure 31.8c).

In the table of figure 31.9, the 8 different possible combinations of 3 dispirations of the table of 
figure 31.6 have been reported with their property, giving them a symbol and calling them ba-
ryons by analogy with the standard model.
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In this table, the analogy with the baryons of the standard model of elementary particles, 
composed of triplets of quarks  and  or triplets of anti-quarks  and , is flagrant and 
perfect. Not only do we see particles composed of quarks with fractional rotation charges  
corresponding to the electric charges of the standard model, but we also add here the curvature 
charge  which has no equivalent in the standard model, and which corresponds perfectly 
with our conjecture 8, namely that the singularities of lacunar nature correspond by analogy to 
anti-matter and the singularities of interstitial nature to matter. The fact that the particles of the 
standard model appear with two different symbols in this table for the combinations , 

,  and  is explained by the notion of spin of the screw disclination loops, de-
veloped in chapter 12. Indeed, if each quark has a spin  , then the spin composition can 
create a global spin of  in the case of particles (neutron) and (proton) and anti-particles 
(anti-neutron) and (anti-proton), or a spin  in the case of particles  and  and anti-
particles   et . In the case of the combinations , ,  and , the 
spins of the 3 quarks are obligatorily aligned (for a reason which remains to be explained, but 
which is most probably linked with the exclusion principle) and the composition of the spins can 
then only provide a global spin of  in the case of the particles  and  and anti-
particles   and . In the case of the combinations  and  , the complete col-
lapse of the quarks with spin  then presents exactly the configuration of the leptons 
"electron" and "positron" as represented in figure 31.12. We will come back to this subject in the 
rest of this chapter.
In the table of figure 31.10, the different possible combinations of 2 dispirations of the table of 
figure 31.6 have been reported with their property, giving them a symbol and calling them me-
sons by analogy with the standard model.

In this table, the analogy with the mesons of the standard model of elementary particles, com-
posed of quarks doublet  or  with anti-quarks  or  , is flagrant and perfect. One can 
see particles composed of quarks with fractional rotation charges , which correspond to 
the mesons of the standard model, but with a zero curvature charge , which means that 

u d u d
qλ BV

qθ BC

dud
udu d u d u d u

±1/ 2
±1/ 2

±3 / 2 Δ0 Δ+

Δ0 Δ− d d d uuu d d d u u u

±3 / 2 Δ− Δ++

Δ+ Δ−− d d d d d d
±1/ 2

u d u d
qλ BV
qθ BC

 



chapter 31556

these topological singularities cannot be catalogued as anti-matter (singularities of lacunar na-
ture) or matter (singularities of interstitial nature).  
The fact that the particles of the standard model appear with two different symbols in this table 
is also explained by the notion of spin of the screw disclination loops, developed in chapter 29. 
Indeed, if each quark has a spin  , then the spin composition can create a global spin of 
0 in the case of particles , ,  and  , or a spin  in the case of particles  , 

,   et .

The strong force and its asymptotic behavior 

The quarks composing the particles in the tables of figures 31.9 and 31.10 are bound by a cy-
linder of connecting faults, so that the energy of the topological singularity increases as 

 if the distance  between two dispirations increases. The binding force of 
the dispirations is thus "asymptotic in nature", in the sense that it is a strong force, because the 
binding force increases if one tries to separate the dispirations. This is similar to the case of the 
stacking fault energy between two partial dislocations in a FCC lattice or the case of the connec-
ting fault energy between three partial dislocations in an axial cubic lattice (see chapter 9). The 
equilibrium distance  between dislocations is then controlled by a competition mechanism 
between the interaction energy between the loops composing the particle and the connecting 
fault energy between the loops, a mechanism quite similar to that described in the case of figure 
9.33.

Strong interaction between quarks via the gluon gauge bosons

In the standard model, the quantum treatment of the "colors" of quarks is provided by quantum 
chromodynamics, in which there are 8 colored gauge bosons, carriers of the strong force, called 
gluons. 
And it is the exchange of a colored gluon between two quarks that allows then to exchange the 
color of these two quarks, by an interaction that can be represented, as in figure 31.11, in the 
form of a Feynman diagram illustrated by the configuration of the topological singularities invol-
ved. 
The colored gluons then correspond to two associated edge dislocation loops, one of interstitial 
nature and one of lacunar nature, and their rotation charge  is zero. The edge loops are 
linked together by the existence of a connecting fault cylinder, and are therefore subject to the 
strong force. As for their curvature charge , i t is null since we have  

, so that the energy associated to the distortions of this pair of 
loops must be extremely low, and that, consequently, the mass of the gluons must be almost 
null, while it has a non null energy coming from the connecting fault cylinder. From this point of 
view, gluons are similar to photons.
In quantum chromodynamics, it is thought that it is this mechanism of exchange of gluons bet-
ween neutrons and protons of the atomic nucleus that explains the cohesion of atomic nuclei. It 
is therefore a side effect of the strong force since these exchanges of colored gluons disturb the 
distances between the dispirations composing the neutrons and protons, and consequently dis-
turb the energies of the protons and neutrons.

±1/ 2
π 0 π − π + η0 ±1 ρ 0

ρ− ρ + ω 0

 Eγ ∼ γ 0 2πRBVd d

d

qλ BC

qθ BC
qθ BC = +2πa( ) + −2πa( )



ingredients of an analogy with the standard model of particle physics         557

The constitution of neutrino and anti-neutrino leptons

In the standard model, there is also a first family of quasi-punctual particles called leptons, re-
presented by the electron , the anti-electron or positron , the electron neutrino  and the 
electron anti-neutrino . 
In the cosmological lattice, we have already postulated the existence of the neutrino in the form 
of an edge dislocation loop of interstitial nature, while the anti-neutrino corresponded to an edge 
dislocation loop of lacunar nature. This is what allowed us to deduce exceptional repulsive gra-
vitational properties for the neutrino, due to its curvature charge which largely dominates the 
attractive gravitational effects due to its inertial mass. In the case of the "colored cosmological 
lattice" of figure 31.2, in order to respect the three rules that this lattice must satisfy, the neutrino 
can only correspond to the insertion of three consecutive planes of color R, G, B, and the anti-
neutrino to the subtraction of three consecutive planes , , , as represented in figures 
31.12a and 31.12d, so as to form an inclusion or a hole that has no color, i.e. white color. In this 
form, neutrinos and anti-neutrinos have exactly the properties that we deduced in the previous 
chapters for prismatic edge dislocation loops, provided that their Burgers vector has a norm 
such that  , so that their curvature charge by flexion has a norm equal to  

.
In particle physics, the helicity  of a particle is defined as the projection of its spin  
on the direction  of its momentum  (this projection corresponds to the component of 
the spin along the direction of propagation). We say that a particle's helicity is right (positive) or 
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left (negative) depending on whether its spin is oriented in the same direction or in the opposite 
direction to its motion. In the case of the neutrino and the anti-neutrino, experimental observa-
tion shows that all neutrinos always have a left helicity, and that all antineutrinos always have a 
right helicity. And the fact that neutrinos are always left-handed is very important, because it 
explains the phenomenon of parity violation in the weak interaction.

An explanation of this helicity behavior can be given here by considering classically the motion 
of neutrinos and anti-neutrinos in figure 31.12. Indeed, if we consider that these particles move 
in the lattice perpendicularly to the dense planes at velocity  as illustrated in figures 31.12, we 
find that the direction of momentum  associated with the displacements of the massive planes 

!v!p
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is in the direction of the neutrino's velocity , but in the opposite direction to the direction of the 
velocity  of displacement in the case of the anti-neutrino. As for the direction of rotation of 
neutrinos and anti-neutrinos, represented by the angular velocity vector  of the "corpuscle" 
planes concerned, it can be seen that it is always opposite to the direction of the velocity . If 
we classically qualify the helicity of these motions by the sign of the scalar product  of the 
momentum  and the angular velocity , we can see that the helicity of the neutrino is always 
negative, so that the motion of the neutrino is always of left-handed helicity, while this same 
product in the case of the anti-neutrino is always positive, so that the motion of the anti-neutrino 
is always of right-handed helicity.

The constitution of electron and positron leptons 

As for the electron and the anti-electron or positron, we have already hypothesized that the 
screw disclination loop is a good candidate to represent them. In this case, to ensure that the 
rotation charge matches well, the rotation angle  between two consecutive planes must be 
equal to , so that the norm of the rotation charge satisfies the relation . 
However, in this pure form, the screw disclination loop has already been identified as the par-
ticle   or  in figures 31.5a and 31.5b. Moreover, the electron and the positron must 
present the dissymmetry between matter and anti-matter, and they must satisfy the weak lepto-
nic interactions of figure C.3. To satisfy these desiderata, one must again use a combination of a 
screw disclination loop of angle , which satisfies rule 3 and therefore has no color, with an 
edge dislocation loop corresponding to the insertion of three consecutive planes of color R, G, 
B, or the subtraction of three consecutive planes , , . 
In principle, there should thus be four different electrons, of charges  and 

 as represented in figures 31.13c to 31.13f. But in reality, one observes in nature 
only the electron  and the anti-electron or positron . The "unknown leptons" represented 
in figures 31.13e and 31.13f could be considered in fact as a positive electron of matter and a 
negative anti-electron, but they are not observed in nature, whereas nothing seems a priori to 
show the reason in figures 31.12.
However, there could be a rather simple explanation, although difficult to justify. One could ima-
gine that the charged leptons are in fact the results of collapses of three-quark baryons. Let us 
consider the simplest case, namely the compression of assemblies of quarks  and 

, so as to collapse the three screw loops into one, and to collapse the three edge loops 
into one. We then obtain directly the electron and the positron represented in figures 31.13c and 
31.13d. But it would be necessary that these collapses lead to leptons of spin 1/2 since the 
electron and the positron are of spin 1/2. However, in table 31.9, we see that the assemblies of 
quarks  and  lead exclusively to baryons  and   of spin 3/2, and that there 
are no baryons  and  with a spin 1/2. One can therefore imagine that the assem-
blies of quarks  and  with spin 1/2 must necessarily become leptons, thus elec-
trons and positrons, as suggested in table 31.9.
By admitting this explanation, it becomes quite simple to explain the non observation of the 
"unknown leptons" of figures 31.13e and 31.13f. Indeed, it is enough to note that there is no 
assembly of three quarks in the table 31.9 which could lead by collapse to the two "imaginary" 

!v!v !"ω !v!p ⋅
!"ω!p !"ω

ΩBV
±2π qλBV =2π 2RBV

2

W − W +

±2π

R V B
qλBV = ±2π 2RBV

2

qθ BC = ±6πa
e− e +

d d d
d d d

d d d d d d Δ− Δ+

d d d d d d
d d d d d d

 



chapter 31560

leptons of figures 31.13e and 31.13f, hence the explanation of the non-existence of these two 
leptons.

Looking at the table of figure 31.9, we also see that there are no spin 1/2 baryons obtained by 
combining quarks  and , and we could then ask ourselves if there would not exist a 
positive lepton   of spin 1/2 and double charge coming from the collapse of the quark as-
sembly and a negative anti-lepton  of spin 1/2 and double charge coming from the 
collapse of the quark assembly  . The existence of these two leptons would have the ad-
vantage of filling the two gaps left in table 31.9. Note that in the literature, doubly charged lepto-
nic states appear in type II flip-flop mechanisms, in strong electroweak symmetry breaking mo-
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dels, in some extensions of supersymmetric models, in models of flavors in extra distorted di-
mensions, and in even more general models, in string theory inspired models and in 3-3-1 mo-
dels . In addition, doubly charged stable leptons are also considered by some as an acceptable 1

candidate for cold dark matter.

Weak interaction of leptons and intermediate bosons of the standard model 

In the standard model, the weak interactions correspond to exchange of intermediate bosons  
ou , which allow to exchange the electric charge between two particles, as reported in 

figures C.3 and 31.6. For the Feynman diagrams of these figures to work with the dispirations of 
our model, it is necessary that the intermediate bosons are pure screw disclination loops of rota-
tion angles  worth respectively   or  , as represented in figure 31.4e to 31.4g. 
The intermediate bosons are then the only massive gauge bosons, which is understandable if 
they are indeed pure loops of screw disclination. Experimentally, it has been found that their 
mass is much higher than that of the electron and the positron, which could be explained by the 
fact that the rotation of  must be entirely done on a distance of  in the case of the inter-
mediate bosons, whereas in the case of the electron and the positron, the rotation of  can 
be distributed on 3 successive planes, thus on a distance of , which must decrease very 
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considerably the local distortions of the lattice, and thus the energy of the particle. This could 
also be the reason why a gauge boson would associate extremely quickly with 3 interstitial or 
lacunar edge loops to strongly decrease its energy, which would perfectly explain the weak in-
teractions of figure C.3.
Note also that, in the standard model of particles, the gauge bosons and  are of spin 1, 
and therefore they do not satisfy the exclusion principle, which means that two gauge bosons 
can occupy the same state, and thus superimpose, which creates a loop of screw disclination of 
angle  equal to for example . On the other hand, the electron and the positron are 
particles of spin 1/2, which satisfy the Pauli exclusion principle. They cannot therefore occupy 
the same state, which means that they cannot be superimposed, which becomes naively almost 
an evidence if we consider the loop structure of electrons and positrons represented in figure 
31.10. One can then plot the properties of the leptons and the gauge bosons in the table of fi-
gure 31.14.

31.3 - An attempt to explain the three families of quarks and leptons
          of the standard model 

In the Standard Model, there are not only the quarks and leptons just described, but there are 
also two additional families of quarks and leptons (figure C.1), distinguished mainly by the much 
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higher masses observed experimentally each time one moves from one family to the next. The 
progression of masses within the table of elementary particles of the standard model is plotted 
in figure 31.15, giving the approximate multiplicative factor of the masses, in the horizontal di-
rection of the table and in the vertical direction of the table. It can be seen that the average mul-
tiplicative factors reported outside the table are indeed very high when moving from one family 
to another, while the multiplicative factors for moving from one particle to another within each 
family are not so high, except in the case of the neutrino to electron transition, which would tend 
to suggest that the topological structure responsible for the large mass increase most likely 
changes from one family to another but most likely remains the same within the same family. It 
is also remarkable that the multiplicative factors associated with the neutrino  are colossally 
higher than all other factors, which tends to make one think that it is probably the structure of 
the edge loops that change from one family to another. 
As for the colossal multiplicative factor to go from neutrino  to electron , it is explained by 
the huge energy difference between an edge dislocation loop and a screw disclination loop, as 
we have explained in chapter 19.

About the possibility of involving the stacking fault energy between axial dense planes

The fact that there are two additional families with much higher energies could perhaps be 
attributed to the appearance of stacking faults between axial dense planes, faults that were ini-
tially eliminated by rule 1 in conjecture 13. Indeed, we have built the first family of particles ta-
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king into account this rule, i.e. making sure that the R, V, B succession of dense planes is never 
faulty. To do so, we had to introduce edge dislocation loops of the right color to describe quarks, 
and introduce a triple edge loop of three colors to describe leptons. 
Let us imagine, then, that stacking faults can exist between the dense planes of the lattice, as 
we have described them in figure 31.16. There are only two types of stacking faults that can be 
realized, either by shrinking a dense plane (figure 31.16b), or by shrinking two successive 
dense planes (figure 31.16c). Assume that the fault energies associated with these two types of 
stacking faults are primarily due to the axial properties of these planes, and thus have axial sur-
face fault energies  and   respectively. The fault energy  associated with the shrin-
kage of a single dense plane is related to a V-R-V-R type stacking fault, while the fault energy 

 due to the shrinkage of two successive dense planes is associated with a V-V  type sta-
cking fault. The fault energy is therefore related to a stacking error with the second neighboring 
plane, whereas is related to a stacking error with the first neighboring plane. There is therefore a 
good chance that the energy  is significantly higher than the energy , and therefore that   

. One can also consider the stacking errors associated with the addition of a dense 
plane (figure 31.16e), or with the addition of two successive dense planes (figure 31.16f). As 
these operations by addition correspond in fact to the inverse of the operations by withdrawal, it 
is likely that the fault energies are the same for the case of withdrawals as for that of additions, 
thus  for the addition of a dense plane and  for the addition of two successive dense 
planes.

The constitution of neutrino families 

Let us take the case of neutrinos, which are known to exist in three different states or three "fla-
vors", as physicists say: electronic, muonic and tauic. By removing or adding one or two planes 
to the electron neutrino and anti-neutrino in figures 31.13a and 31.13b, we can construct the six 
neutral leptons shown in figure 31.17. By comparing the stacking faults of these leptons with the 
faults reported in figure 31.16, we see that the addition or removal of three planes does not lead 
to any stacking faults of the axial dense planes, and thus correspond to the electron neutrinos 
and anti-neutrinos of the 1st family. The addition or removal of 1 axial dense plane corresponds 
to a fault energy  and could therefore correspond to muonic neutrinos and anti-neutrinos of 
the 2nd family, while the addition or removal of two axial dense planes corresponds to fault 
energy  and could therefore correspond to tauic neutrinos and anti-neutrinos of the 3rd fami-
ly.
Experimentally, it has been observed, surprisingly, that neutrinos are capable of spontaneously 
changing from one flavor to another during their movement. They are even the only elementary 
particles endowed with this property, called "oscillation". The major result of these experiments 
is that this transformism of neutrinos can only be explained by the fact that they have different 
masses, which is the case since they differ from one family to another (from one flavor to ano-
ther) by their lattice deformation energy and by their axial dense plane stacking fault energy.
As for the mechanism that leads to this oscillation, it is assumed that at the moment of creation 
and emission of neutrinos or antineutrinos by the weak interaction (for example in beta decays 
of radio-active nuclei), one cannot separate the mass states. A coherent superposition of defi-
ned mass states is formed, and the wave function now contains all types of neutrinos. There is 
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then a probability of observation of each type of neutrino which can be deduced from the wave 
function, and this probability function exhibits a beautiful oscillatory behavior. Neutrino oscilla-
tions can only be observed if the masses m1, m2 and m3 are not all identical, which leads to 
slightly different velocities from one flavor to another, hence the oscillation phenomenon, and if 
the initial neutrino (emitted in a weak interaction process) is created in a coherent superposition 
of mass eigenstates.

The constitution of electron families

In the case of the electrons and anti-electrons of figure 31.13c and 31.13d, it is enough to add 
to the neutrinos of figure 31.17 the loops of screw disclination with an angle of rotation  ΩBV

 



chapter 31566

worth respectively  . We obtain in these cases respectively the electrons and anti-elec-
trons of the 1st family, the muons and anti-muons of the 2nd family, and the taus and anti-taus 
of the 3rd family represented in figure 31.18.

The constitution of the quark families

In the case of quarks, one can add or subtract 1 or 2 axial dense planes to the quarks  and  
or to the anti-quarks   and , so as to make appear stacking errors of the axial dense planes 
with energies  or . We then obtain the family of quarks represented in figure 31.19, 

±2π

u d
u d
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which is also composed of three generations of two types of electrically charged particles: a first 
generation is formed of the down (d) and up (u) quarks, respectively of electric charges -1/3 and 
+2/3 of the electric charge of the electron, a second generation composed of the strange (s) and 
charm (c) quarks, respectively of electric charges -1/3 and +2/3 of the electric charge of the 
electron, and a third generation composed of the bottom (b) and top (t) quarks, respectively of 
electric charges -1/3 and +2/3 of the electric charge of the electron. And each quark also has its 
anti-particle of electric charge of opposite sign ( , , , ,  and ).d u s c b t
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31.4 - About the interest of the analogy between the "colored" 
          cosmological lattice and the standard model

The analogy between our "colored" cosmological lattice model, with the elementary topological 
singularities it may contain, and the standard model of elementary particles is excellent, and it is 
very fruitful to provide explanations to several rather mysterious facets of the standard model 
that we are going to list here.

- The structure of the Standard Model particles in three families of quarks and leptons: 
The topological structures of edge dislocation loops and screw disclination loops introduced in a 
"colored" FCC lattice having strict rules of arrangement and rotation of the "colored" corpuscular 
planes, with connecting and stacking fault energies ,  and , allow to reconstitute all 
the particles of the standard model of elementary particles, namely quarks and leptons. These 
particles present a structure in three families whose very different masses can be explained by 
the stacking fault energies  and . These various quarks and leptons also satisfy all the 
properties of the weak interaction and the strong interaction using respectively the intermediate 
gauge bosons  and  and the gluons, which also have their own topological structures in 
the "colored" cosmological lattice. As for the strong force, it has good asymptotic properties due 
to the fact that it is generated by a cylinder of connecting faults whose fault energy   in-
creases if it is lengthened, and it is responsible for the existence of baryons and mesons, which 
are localized and "uncolored" topological structures that it is possible to form on the basis of 
quarks. In this way, one can reconstruct all the particles of the standard model, such as the ba-
ryons and mesons of figure C.4, composed of the quarks and anti-quarks u, d, s and/or c. 

- The weak and strong force interaction fields:
As for the force fields acting between the topological loops, they have simple topological expla-
nations: 
(i) the weak force is essentially due to the decrease in the formation energy of a dispiration loop 
when an edge dislocation loop is associated with a screw disclination loop, as discussed in 
chapter 26. It is the very weak range of the capture interaction potential of this force that then 
explains the radio-active decay of elementary particles, by the crossing of the interaction poten-
tial by quantum tunneling. In fact, the weak force is an interaction between the rotation charge 
of a screw disclination loop with the curvature charge of an edge dislocation loop.
And there are indeed gauge bosons exchanged during the weak interaction: these are the in-
termediate bosons  et , which have a well defined topological structure, reported in fi-
gure 31.5.
(ii) the strong force, which binds two or three quarks together, is due to the connecting fault cy-
linder generated by the fact that the screw disclination loops associated with the quarks have 
charges  that are only 1/3 or 2/3 of the charge of the perfect screw disclination loop asso-
ciated with the electron. The dissociation distance between loops of a doublet or a triplet of 
quarks depends essentially on the energy of connecting faults per unit area. If this energy is 
very high, one can imagine that the loops will be very close, as illustrated in the figures of this 
chapter. But if this energy is low, one could also imagine fault tubes constituting membranes 
whose diameter (equal to the diameter of the topological loops) is much smaller than their 
length, so that the topological singularities in doublet and triplet could then have the aspect of 
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γ 1a γ 1b

W ± Z 0

γ 0
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"long strands" terminated at each end by topological loops.
And there are indeed gauge bosons exchanged during the strong interaction: these are the bi-
color gluons, which have a well-defined topological structure, shown in figure 31.11.

- The possibilities of calculating the energy of the particles of the standard model:
A first very interesting consequence of this explanation of the Standard Model particles is rela-
ted to the fact that, in the case of dispiration loops and their interactions via the weak and strong 
forces, the energies involved in the formation of loop multiplets has a known origin since it is in 
fact the sum of the following various energies:
(i) the formation energies associated with the very strong local lattice distortions generated by 
these objects, and stored in the lattice in the vicinity of these objects,
(ii) the energies of connection faults (related to ) and stacking faults (related to and ) appearing 
due to the fact that the imaginary cosmological lattice considered here is a "colored" lattice 
which must have axial properties, 
(iii) the energies involved by the weak force in the gravitational couplings between the edge dis-
location loops and the screw disclination loops, as described in chapter 26,
(iv) the longer range stored energies, which are due to the long range distortions of the lattice 
related to the global charge  of curvature by flexion and the global charge  of rotation by 
torsion of loop multiplets, which are contained in the calculations of energies that we made in 
the previous chapters, as well as the proper vibration and proper rotation energies of the loops 
that we obtained in chapters 28 and 29, respectively. 
The total energy of formation of the loop multiplets could thus be calculated in a rigorous way, 
provided that the exact elastic properties (the moduli  , ,   and ) as well as the sur-
face energies of fault ,  and  of the cosmological lattice in which these objects appear 
are known. This energetic aspect is very important because, in the case of the standard model 
of particles, the origin and the value of the energy of elementary particles (their mass) still re-
main very mysterious, and are introduced as parameters of the standard model, which must be 
measured experimentally. 

- The "elementarity" of the particles of the standard model:
Another interesting consequence of our conception of the standard model is the existence of a 
difference in "elementarity" between the topological loops of dispiration of our imaginary cosmo-
logical lattice and the leptons and quarks of the standard model. Indeed, the dispiration loops 
that we have described, contrary to the elementary leptons and quarks of the standard model, 
are not strictly speaking elementary particles, but are already assemblies of screw disclination 
loops and lacunar or interstitial edge dislocation loops. 
To judge the other potentialities of this idea of the constitution of the Standard Model particles, 
one would have to check whether this approach would allow to justify and explain the complica-
ted set of selection rules that had to be introduced in particle physics to describe all the experi-
mentally observed interactions. This is obviously only a suggestion, and its detailed develop-
ment is beyond the scope of this treatise. Note that other similar approaches to decompose the 
Standard Model particles have already been proposed in particle physics, but in different forms, 
such as the model based on pre-quarks called "rishons". But these models have proved to be 
unsuccessful.

qθ qλ

K0 K1 K2 K3
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- The role of the curvature charge in the standard model:
The curvature charge  plays an important role in the development of a model of "elementary 
topological singularities" to explain the standard model of particles. It is quite easy to see that 
this charge, for which we do not see a direct analogy in the standard model, satisfies a conser-
vation principle during the interactions between loops, both during weak and strong interactions. 
But this charge has another major interest related to the bosonic or fermionic nature of particles. 
Indeed, we find that all particles with a curvature charge (leptons, quarks and baryons) are fer-
mions with a half-integer spin, which satisfy the Pauli exclusion principle, while all particles wi-
thout a curvature charge (photons, gauge bosons, gluons and mesons) are bosons with an in-
teger spin, not subject to the Pauli exclusion principle. There is most probably a crucial role 
played by the curvature charge, which remains to be elucidated, but which is not within the 
scope of this treatise.
The question is also to know if the charge , which is conserved during the loop interactions, 
has a correlation with one of the characteristic quantities or with one of the conservation rela-
tions of the standard model, such as the Gell-Mann-Nishijima relation for example. The answer 
to this question could certainly present very important potentialities for particle physics, espe-
cially since we have already shown many times that it is the curvature charge  that is res-
ponsible for the weak asymmetry between matter and anti-matter, and consequently for the 
cosmological evolution of matter and anti-matter in the universe, and for the presence of a "dark 
mass" in the form of a sea of repulsive neutrinos surrounding the galaxies.

31.5 - Still open questions about the "colored" cosmological lattice model
          and its analogy with  the standard model

The analogy developed in this chapter between the topological loops of dispiration in an imagi-
nary "colored" cubic cosmological lattice and the standard model of elementary particles proves 
to be very fruitful to try to understand some points still unclarified in particle physics, such as the 
topological nature of elementary particles, as well as of the strong and weak forces, or the origin 
of the mass of elementary particles. 
However, there are still several unanswered questions, which deserve to be studied in detail, 
among which the main ones are the following:

- The application of the concept of spin:
As we have already mentioned in chapter 29, the notion of spin seems to correspond to a real 
rotation of topological loops. But there are still many questions that need to be studied in detail.
The first question is obviously to try to imagine how an edge dislocation loop, and/or a screw 
disclination loop can rotate on itself in a "colored" FCC cosmological lattice, knowing moreover 
that there is a stacking fault tube responsible for the strong force in the case of baryons and 
mesons.  Is there a possible topological explanation for such a spinning motion, or should we 
imagine a lattice with "even stranger" properties? 
The second question is obviously related to the value to be assigned to the spin of a topological 
loop. For example, why does the electron, which would correspond to a weak coupling between 
an edge dislocation loop and a screw disclination loop, have a spin 1/2, while the gauge boson, 
which would correspond to an isolated screw disinclination loop, has a spin 1? This is where the 
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important observation that we have made is likely to play an essential role in explaining the va-
lue of the spin of a particle, namely that all particles with a curvature charge (leptons, quarks 
and baryons) are fermions with a half-integer spin, while all particles without a curvature charge 
(photons, gauge bosons, gluons and mesons) are bosons with a whole spin. 
The third question would be how to apply more carefully the concept of spin developed in chap-
ter 29 to the "colored" cosmological lattice model that we described in this chapter. The answer 
to this question could allow to find an explanation for the existence of particles composed of the 
same quarks, but of different spins, like mesons  and  composed both of quarks , but 
of respective spins 0 and 1, or baryons (proton) and  composed both of quarks , but 
of respective spins 1/2 and 3/2. Such a study would perhaps also make it possible to explain the 
exact origin of the spin 1/2 of the baryons and the spin 1 of the mesons, which is still a rather 
obscure point of the standard model of the particles, but which could perhaps find an explana-
tion in the case of the "colored" cosmological lattice by supposing that it is the existence or not 
of a curvature charge which imposes a behavior of boson or fermion to a given particle.

- The theory of quantum chromodynamics:
It would obviously be very instructive and interesting to develop a much more detailed study of 
the application of the wave equation calculations, of the concepts of bosons and fermions, of 
the Pauli exclusion principle developed in chapter 11, as well as of the notion of spin introduced 
in chapter 29, to the topological loop singularities analogous of the particles of the standard mo-
del, and to try to see if such a study would not finally lead us to a comprehensible physical ex-
planation of the famous theory of "quantum chromodynamics"? 

- The existence of supersymmetric models:  
A more detailed study of the existence of the curvature charge could not only (perhaps) explain 
why there are fermions (spin 1/2 particles like quarks and leptons) and bosons (spin 1 particles 
like intermediate gauge bosons and gluons) in the Standard Model, but it could also answer the 
question of whether (by chance) it would be possible to create a zoology of particles identical to 
those we have obtained in this chapter, but whose spins 1/2 and 1 would be inverted, which 
could lead to a "supersymmetric model". But we note that in the framework of our model of par-
ticles, it appears very difficult, if not impossible, to imagine such supersymmetric particles.

- The existence of "exotic" leptons:
In our description of the quarks of figure 31.19, the fact that the quarks possess electric charges 
-1/3 and +2/3 of the charge of the electron, whereas the anti-quarks possess electric charges 
+1/3 and -2/3 of the charge of the electron is easily explained by the rules of succession of the 
colors of the corpuscular planes that we have emitted. On the other hand, for the leptons that 
we have introduced in figures 31.17 and 31.18, we have chosen arbitrarily to associate to the 
neutrino an electric charge -1 to obtain the electron of matter and to associate to the anti-neutri-
no an electric charge +1 to obtain the positron of anti-matter. But in fact the rules of color that 
we introduced would not prevent a priori to associate an electric charge +1 to the neutrino to 
obtain an exotic positron of matter and an electric charge -1 to the anti-neutrino to obtain an 
exotic electron of anti-matter, as reported in figure 31.13. There is a subject of reflection there 
that we have already approached by commenting on the table 31.9, where we proposed that the 
electron and the positron could be considered as the result of the compression of assemblies of 

π + ρ+ ud
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quarks  and , which would explain the existence of the electrons of matter and the 
positrons of anti-matter and the absence of the electrons of anti-matter and the positrons of mat-
ter. But this "explanation" of being able to collapse the assemblies of three identical quarks 

 and  to form electrons and positrons also led us to wonder if it was also possible to 
collapse in the same way three identical quarks  and , to form exotic leptons, na-
mely a positive lepton   of spin 1/2 and of double charge and a negative anti-lepton  of 
spin 1/2 and of double charge. The existence of these two exotic leptons would have the advan-
tage of filling the two gaps left in table 31.9. 
There is matter to think about to confirm or deny the formation of leptons by collapse of three 
identical quarks. 

- Conclusion :
To conclude this section, we must note that our model of a "colored" cosmological FCC lattice 
still raises many unresolved questions, and that it could thus be the origin of a new exciting field 
of research, especially if we try to elucidate the preponderant role that the new and original ele-
ment of our approach, namely the curvature charge, must surely play.
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Chapter 32

Gravitational fluctuations: quantum vacuum
fluctuations, multiverses and gravitons

In chapters 22 to 26, we have essentially focused on the static fields of expansion 
associated with topological singularities. We have also studied their interactions. In 
chapters 28 to 30, we have introduced the dynamical fluctuations of the field of ex-
pansion associated with topological singularities as well as transversal waves, 
which correspond to quantum mechanics. In this chapter we will focus on the dy-
namics of the field of expansion in the domain  ,  by dealing with the pro-
blem of temporal fluctuations of the field of expansion which are not associated to 
topological singularities or transversal waves.
We will start by describing random fluctuations with null average energy, which 
presents strong analogies with the famous quantum vacuum fluctuations. We will 
then show that such fluctuations, which we will call “gravitational fluctuations” can 
be stable under the condition that they appear as a quadruplet of fluctuations, so 
that it presents a non null total energy which should not depend on time. 
By considering these fluctuations stable, macroscopic and isotropic, it is possible to 
give another version of the cosmological expansion of the Universe, by introducing 
the notion of multiverses of expansion and contraction in a perfect infinite cosmolo-
gical lattice. 
We can also imagine stable longitudinal “gravitational fluctuations”, microscopic 
and quantized, which would then correspond to hypothetical particles we will call 
«gravitons».

32.1 – Local longitudinal “gravitational” fluctuations

At chapter 14, we have seen that, in a lattice in which the propagation of longitudinal waves is 
not possible, there can be local longitudinal vibrations, which we will call gravitational fluctua-
tions  as they are fluctuations of the field of volume expansion. We will go deeper in 
this topic by describing the longitudinal fluctuations of a cosmological lattice containing no topo-
logical singularities nor transversal waves.

On gravitational fluctuations in the absence of singularities and transversal waves

In the absence of topological singularities and transversal waves, let’s imagine the existence of 
fluctuations  of the field of expansion of a cosmological lattice in the domain  

 (32.1)

These fluctuations , if they exist, must satisfy the equation of Newton of the volume 
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expansion. In the absence of topological singularities and transversal waves, and by neglecting 
the effects of vacancies and interstitials ( ), the equation of motion of Newton for the lon-
gitudinal perturbations is given by relation (18.9)  in which we neglect all the fields besides   
and , and for which we directly perform the divergence

 (32.2)

By considering the fluctuations  small, it is possible to linearize the equation, by ne-
glecting the term  and taking the density  out of the divergence

  (32.3)

We can introduce a parameter  worth

  (32.4)

which is positive if the cosmological lattice does not present longitudinal waves, meaning 
, and we replace the total derivative by the partial derivative of time so that

  (32.5)

By using the geometro-kinetic equation for the volume expansion and no sources of lattice and 
by neglecting the total derivative, namely

  (32.6)

by combining relations (32.5) and (32.6), we obtain the linearized Newton equation for weak 
gravitational fluctuations in the domain 

     with       (32.7)

If we separate the spatial behavior from the temporal behavior of these , we can write 
them as the product of a spatial function  with an oscillatory term in 

(32.8)

By introducing this writing of fluctuations in the Newton equation, we obtain the equation which 
describes the spatial component  when the fluctuations have a frequency 

(32.9)

For example, let’s imagine a local fluctuation around the origin, along 3 axis in space. For such 
a fluctuation to satisfy the Newton equation, the spatial component  must be written under 
the following form

(32.10)

which, introduced in the Newton equation, allows us to link the frequency  of the fluctuation to 
its spatial range  along the three directions of space
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(32.11)

We note then that the frequency of a gravitational fluctuation is inversely proportional to its spa-
tial coordinates. 

On the energy of an isolated gravitational fluctuation

Let’s consider a unique gravitational fluctuation given by

 (32.12)

Let’s calculate the elastic energy stored by this perturbation of the lattice. The density of elastic 
energy is given by the following expression if the background expansion  of the cosmological 
lattice is not null

 (32.13)

The total elastic energy of the fluctuation is obtained by integrating over all the space

 (32.14)

hence

 (32.15)

let’s also try to calculate the kinetic energy stored by this perturbation of the lattice. The velocity 
satisfies approximatively the following equation
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So that
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The density of kinetic energy of the fluctuation is thus worth

 (32.18)

The total kinetic energy of the fluctuation is obtained by integrating over space

 (32.19)

From which we deduce the total energy of the fluctuation is
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32.2 – Random microscopic “gravitational fluctuations”
           and quantum fluctuations of the vacuum
           
Let’s consider now microscopic longitudinal fluctuations, meaning gravitational fluctuations for 
which the amplitude  is very weak. 
Let’s only consider here the very simple case of an isotropic gravitational fluctuation, meaning 
such that the range in the three directions of space is equal. In the case of the perfect cosmolo-
gical lattice, for , we have that   and , so that

 (32.21)

We immediately notice that if this fluctuation is such that , it is the energy of distorsion 
associated with   which largely dominates the others so that

 (32.22)

This results in an energy of fluctuation which can be positive or negative. It means that a lattice 
which does not have longitudinal waves, could be subject to a superposition of local fluctuations 
with various frequencies , various phases  and various amplitudes , and for which the 
centers would be randomly located at positions , so that it would as

(32.23)

with

(32.24)

As the energy of each of the fluctuations can be positive or negative, the global instantaneous 
energy of the field  would always present a null average energy.  We can try to re-
present this schematically in the lattice, as was done in figure 32.1.
This field of microscopic ‘gravitational fluctuations’  is not formed from stable fluctuations in time, 
since their energy is not a constant. It is in fact constituted of ‘vanishing’ fluctuations, which ap-
pear and disappear spontaneously, while maintaining a null global energy of the lattice. As such 
the field of gravitational fluctuations is the perfect analog of the quantum field of fluctuations of 
the vacuum,  which is also composed with quantum fluctuations at the microscopic level, with 
positive and negative energies, but where the average energy remains null.
In the presence of fluctuations (32.23), let’s calculate the product of  by it’s complex 
conjugate.  We have

(32.25)
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(32.26)

         Figure 32.1 - Schematic representation of the field  
of elementary gravitational fluctuations 

The first term of the product clearly has a non-null value since it is the sum of squares of the 
amplitudes of each random fluctuations, while the second term can only have a null value due 
to the random positive and negative terms of the product  . We thus obtain a 
non null product which is nothing else than the instantaneous product of the wave function 

 by it’s complex conjugate

(32.27)
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In chapter 28, we have interpreted the product  as the probability of presence 
of the topological singularity responsible for the wave function . We can thus apply here 
the probabilistic concept and imagine that the instantaneous value of  corres-
ponds to a probability of presence of a virtual topological singularity, namely a topological singu-
larity that does not really exist, which matches perfectly to the usual interpretation of quantum 
fluctuations of the vacuum in quantum mechanics.

32.3 – Stable «gravitational» oscillations
          
is it possible to form stable random gravitational oscillations?

To form stable gravitational fluctuations, as local longitudinal oscillations that have some perma-
nence in the lattice, the total energy (32.20) of the unique fluctuation (32.12) is a complex pro-
blem. Indeed, if the fluctuation must be a localized vibration at frequency , it should in prin-
ciple have an instantaneous energy of oscillation independent of time, which is manifestly not 
the case of the expression (32.20).  In this last one, we first have a term linked to the energy of 
distortion associated with the elastic module , which presents a strong temporal 
dependency on . This term is rather surprising as it has a null temporal value. For the 
energy of the fluctuation to not depend on this term, we must associate to fluctuation (32.12) a 
second fluctuation very close and very similar, so that it depends on , and thus that

 (32.28)

The total energy of this fluctuation will be written

 (32.29)

For the term in  to disappear, we must then have that
 (32.30)

But even if this condition is satisfied, we nevertheless have a term of energy of distortion asso-
ciate with module  and the kinetic energy term which are not independent of time, and which 
are of non null average, which signifies that they are two terms which provide the energy of fluc-
tuation of the oscillation. But for the energy of oscillation to have meaning, it’s instantaneous 
value must be independent of time. These two terms are the ones respectively in  and 

. We could for example imagine that the coefficients of these two temporal functions are 
equal, so that they could combine to erase the temporal dependence. It would be necessary 
that by using relation (32.11) giving the frequency of fluctuation, that

 (32.31)
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By using condition (32.26), and after some calculation, this condition can be rewritten

 (32.32)

But since the term within brackets is larger than 3 and that is should at the same time be smaller 
than 1 if , it is impossible to remove the dependencies in  and  by an 
addition of the potential energy term associated with module  and the kinetic energy term.
We must subsequently imagine another ad hoc mechanism that would ensure the time inde-
pendence of the energy associated with the terms in  and . As a matter of fact, 
it is possible to associate to the fluctuation represented by (32.28) another similar fluctuation, 
but which depends on  instead of , so that the total fluctuation is composed of 
four individual fluctuations a, b, c and d situated in different points of the lattice, respectively in 

, ,  and , so that

 (32.33)

The energy of this fluctuation is then written

 (32.34)

For all the terms that are dependent on time to disappear, we must have all the following equa-
tions satisfied

 (32.35)

By assuming that the amplitudes of the four fluctuations are equal

Hypothesis:     (32.36)
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 (32.37)

where the product  is in fact proportional to the «volume» occupied by a fluctuation within 
the lattice. 

Figure 32.2 - Schematic representation of the 4 fluctuations making the fluctuation  (32.40)
 with constant kinetic energy

In this case, the global energy of the fluctuation becomes independent of time and is written

 (32.38)
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     if     (32.39)

The fluctuation is then written

 (32.40)

in which the range of the fluctuation must satisfy the following relations

 (32.41)

Such a fluctuation is represented schematically in figure 32.2.

32.4 – Stable macroscopic gravitational oscillations
           in an infinite cosmological lattice and multiverse
           
In the domain  of the cosmological lattice in which there are no longitudinal waves, 
there is thus the possibility of seeing a stable macroscopic fluctuation formed of 4 elementary 
fluctuations (32.33) which represents local longitudinal vibrations with a given frequency , 
and such that the total energy of the fluctuation (32.39), essentially of kinetic nature, does not 
depend on time.
Let’s consider the case of a macroscopic fluctuation composed of 4 fluctuations which are iso-
tropic, meaning . From relation (32.39) we deduce the frequency of oscilla-
tion  of this macroscopic fluctuation, which is inversely proportional to the range , as well as 
the energy of the fluctuation which is essentially of kinetic nature

     if      (32.42)

We deduce that the macroscopic gravitational fluctuations with large amplitude  in the do-
main  would have a frequency proportional to the inverse of their range  and that 
their total energy is proportional to the product of the square  of their amplitude and their 
volume , and independent of their frequency .

On the possible existence of interleaved universes in contraction and expansion
in a perfect infinite cosmological lattice

In a perfect cosmological lattice which would be infinite, we cannot develop the scenario of 
cosmological expansion as we have done in chapter 16 (fig. 16.8 et 16.11a) where the lattice 
was finite. However, we can imagine the appearance of macroscopic fluctuations just as the one 
we just described (fig. 32.2), which would have a very large volume , so that its frequency of 
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oscillations (32.42) would be very low. And if its amplitude  was also high enough, for the 
small HS observers, which would be placed within these elementary fluctuations, those would 
present all the characteristics of a universe which would oscillate between a maximum expan-
sion and a maximum contraction with frequency . Thus, the set of 4 elementary fluctuations 
could represent a multiverse. And within each of these elementary fluctuations, meaning within 
each multi-verse, the observations of the HS  would be very similar to those done by the HS  
which would exist within the universe as was described in chapter 16 (fig. 16.8 et 16.11a) in the 
case of the finite cosmological lattice. 

Figure 32.3 - Expansions-contractions of a multi-verse. The behavior of gravitational force of interaction 
between topological singularities that corresponds is shown in figure 27.1

But for that to be true, there are necessary conditions which can be deduced from figure 32.3 
and which would be the following:
- (i) the infinite cosmological lattice has a background expansion such that  so that the 
formation of vacancy black holes appears in the domain (greyed in figure 32.3) where the ex-
pansion of the universe is done at increasing velocity,

ψ 0

ω

τ 0 >>1
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- (ii) that the amplitude  of the oscillation around  be sufficient for that oscillation to go 
from the domain of values situated around  for the scenario of cosmology developed in 
section 27.2 to be applicable to these multi-verses. 
Under these two conditions, each of these multi-verses presents an expansion starting in a 
«big-bounce», but it does not means that the volume expansion goes through a singularity of 
the type , with, in its vicinity, a cosmological evolution similar to that described in sec-
tion 27.2, which presents a phase with an expansion at increasing velocity during which there 
are vacancy black holes, and then a phase of expansion with a decreasing velocity taking us to 
the maximum expansion, which can or not go through a domain of expansion situated beyond 
the critical value of expansion  where there appears longitudinal waves to the detriment of 
local longitudinal fluctuations.  Then this Universe would go through a phase of contraction ta-
king it to a new «big-bounce».
However, it is clear that the full calculation of the behavior of such a multiverse it not as simple 
as what we just talked about, if anything because we have taken the hypothesis that 
in our calculations, which would not be an appropriate hypothesis in the case of large gravitatio-
nal fluctuations forming this multi-verse. 

32.5 – Quantified microscopic gravitational oscillations:
           on hypothetical “gravitons” quasi-particles
           
Let’s consider now stable microscopic oscillations of fluctuations, meaning gravitational fluctua-
tions of the type described by relation (32.40), of constant energy, but for which the amplitude 

 would be very weak. 

On a hypothetical quantification of stable gravitational fluctuations

We will here look only at the very simple case of a gravitational fluctuation that would isotropic, 
meaning that the ranges in the 3 directions of space are equal. Let’s suppose very hypothetical-
ly the constant energy be quantified in the same way that the photons were quantified, by using 
conjecture 11 previously introduced. By taking again relations (32.42) and by introducing the 
quantified energy  corresponding to the four degrees of liberty of oscillation of the fluctua-
tion, we obtain a stable isotropic fluctuation, local and quantized, with range , of frequency 

, of kinetic energy  and of amplitude  such that

         if         (32.43)

This stable quantized fluctuation would then present a spatial extension  proportional to the 
inverse of the frequency, as well as an energy and amplitude proportional to frequency . This 
fluctuation would not need to move about the lattice, but could walk about the lattice. We here 
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have a quasi-particle, just like the photon in the case of transversal electromagnetic waves of 
rotation, but it is a quasi-particle which is associated to longitudinal ‘gravitational’ expansions of 
the lattice. We can then talk in this case of a quasi-particle of type «gravitons».
As a matter of fact, these gravitons do not correspond to the gravitons of GR. The gravitons 
postulated in our approach are quasi-particles that are energetically stable and that can migrate 
within the lattice, but that do not have to move at the speed of transversal waves. On the contra-
ry, the gravitons of GR are supposed to be moving about at the speed of light.  Furthermore our 
gravitons do not cary the gravitational interaction between two singularities, but only the local 
quantized energetic fluctuations of the field of expansion, contrary to the gravitons of general 
relativity, which are considered as mediating particles of the gravitational interaction.
The configuration of the four elementary fluctuations composing the ‘graviton’ quasi-particle, can 
be very complex. The only condition is that the four elementary fluctuations be able to exchange 
energy between themselves in order to maintain the total kinetic energy constant. We could for 
example imagine axial gravitons, meaning quasi-particles for which the four elementary fluctua-
tions are aligned along a preferential axis. In that case, we can give two extreme examples for 
those quasi-particles, depending on whether they are extended of contracted on the preferential 
axis.

Condensed axial “graviton” along axis  

Suppose a gravitational fluctuation condensed along axis , with ranges such  along the 
axis  and  equal and much larger that the range   along the axis . We then de-
duce that

   (32.44)

We notice that it is the spread  of the fluctuation along axis  which is fixed and depends 
on the frequency  of the quasi-particle and that the amplitude  and the spread  along 
the axis perpendicular to  are linked but not fixed, so that a quasi-particle can deform by 
spreading of shrinking along the axis perpendicular to . This effect is again an aspect of the 
famous non-locality of quantum mechanics, such as was described in the case of photons.

Axial “gravitons” spread along axis  

Suppose now a gravitational fluctuation spread along axis , with range  along axis  
and  equal and much smaller than   along axis . In this case, we notice that the 
range  of the fluctuation along axis  and  are fixed and depend on the frequency  
of the quasi particle, and that the amplitude  and the spread  along the axis  are lin-
ked, but not fixed, so that the quasi-particle can deform by spreading or shrinking along axis
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(this is also an effect of the non-locality of quantum mechanics)

  (32.45)

We deduce that an axial «graviton» with frequency , and thus of kinetic energy , can os-
cillate between a condensed form along axis  and spread out along axis  and , and 
an opposed form, very spread out along  and shrunk along axis  and .
In figure 32.4, we have represented schematically the case of a hypothetical axial «graviton» in 
the case where it is spread out along axis . In this representation we have shown the ins-
tantaneous volume expansion of the «graviton», by specifying the oscillations of the four com-
ponents in  and .

Figure 32.4 - Schematic representation of an axial “graviton” spread out along 

Let’s remark, to finish, that the hypothetical quasi-particles we call “gravitons” are very different 
from hypothetical evanescent fluctuations of gravity and are analogous to the quantum fluctua-
tions of the vacuum we described previously (fig. 32.1). Indeed, in the case of the evanescent 
gravitational fluctuations, the energy of the fluctuations is essentially an energy of elastic distor-
tions associated to module  of the cosmological lattice, oscillating between a positive and 
negative value, and with null average energy, while the energy of the hypothetical “graviton” 
quasi-particles is essentially of kinetic nature and possesses a constant value, which assures 
their long term stability. And to obtain this stability, the quasi-particle must be composed of four 
fluctuations strongly correlated and non-separable which assures the constancy of energy, in 
the same way that ‘photon’ quasi-particles are composed of two fluctuations of perpendicular 
rotation and out of phase, which gives them their helicity and assures the constant energy. 
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There is a strong analogy between “photon” quasi-particles and “graviton” quasi-particles, not 
only by the constitution which assures a constant energy but also due to their non-local nature, 
namely their aptitude to spread in space while conserving their identity and energy, which is a 
typical quantum mechanical property.     

 



Conclusion

As we already said in the introduction, this essay does not aim to present a “Theory 
of Everything” in its final form, but aims to show that a rigorous approach to elastic 
lattices via an Euler coordinates description gives us a framework for investigation 
that is a lot simpler than the differential geometries developed in General Relativity, 
but can be very rich and fertile as we were able to show relatively easily that it is 
possible to (i) obtain strong, or perfect, analogies with all the theories of physics, 
including Maxwell equations, special relativity, general relativity, newton gravity, 
modern cosmology, quantum mechanics, and the standard model of particles, and 
(ii) bring to light unifying bridges between these theories

About the central role of Newton's equation of the cosmological lattice

Since the beginning of the second part of this treatise, we notice that the Newton equation of 
motion (13.14) which we have established in chapter 13 for an imaginary isotropic cosmological 
lattice, played a central role and that it describes most of the striking properties of the ‘perfect 
cosmological lattice’ amongst which:
- the propagation of transversal waves coupled with longitudinal wavelets, described by the 
Newton equation of motion (13.14), which implies that the pure transversal waves cannot exist 
without a circular polarization (which is a fundamental property of photons),
- the existence of domains of expansion ( ) in which there are no solutions of longitudi-
nal waves to the Newton equation of motion (13.14), but only quasi-static solutions which give 
rise to the phenomena of gravitational interactions between topological singularities, or the local 
longitudinal modes of vibration, which are the basis for quantum mechanics and the spin of lo-
cal topological singularities,
- the curvature wave rays in the gradients of volume expansion, which is also a direct conse-
quence of the equation of Newton (13.14), and which predicts the possibility of existence of 
black holes which capture the transversal perturbations,
- the complete equations of Maxwell (table 17.1) for the rotation vector  when the field of vo-
lume expansion is homogenous, which shows that the equation  of electro-
magnetism is nothing else than the expression of the equation of Newton (13.14) of the cosmo-
logical lattice applied to this particular case,
- special relativity, with the contraction of distances and the dilation of time for an observer in 
movement within the lattice, is a direct consequence of the first partial equation of Newton 
(18.7),
- Newtonian gravitation and general relativity, which are direct consequences of the quasi-static 
solution of Newton's second partial equation (18.9), in the case where the topological singularity 
considered has an energy density or rotation charge density below a certain critical value, 
- the spatial curvature for a GO  observer exterior to the lattice and the curvature of space time 

τ 0 < τ 0cr
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for the local observers HS within the lattice, which implies a direct analogy between the diver-
gence of the equation of Newton (24.64) and the famous equation of Einstein with null diver-
gence  of the energy-momentum tensor (24.67), which assures us that conservation 
of energy and momentum are respected,

- the black holes, static solutions of the second partial equation of Newton (18.9) in the pre-
sence of macroscopic vacancies of the lattice when ,

- the neutron stars or pulsars, static solutions of the second partial equation of Newton (18.9)  in 
the presence of macroscopic interstitials in the lattice,

- the weak interaction between the edge dislocation and the twist disclinations, which is also a 
consequence of the second partial equation of Newton (18.9),

- the quantum physics, the wave functions, the Schrödinger wave equation, and the notion of 
spin, which are consequences of Newton's second partial equation (18.9) in the dynamic case 
of gravitational perturbations associated with localized topological singularities of the cosmolo-
gical lattice, when these have an energy density or rotation charge density that is above a cer-
tain critical value. This critical value of the energy density or of the rotation charge density then 
becomes an extremely important quantity since it actually corresponds to a quantitative value 
which defines the famous quantum decoherence limit, i.e. the limit of passage between a clas-
sical behaviour and a quantum behaviour of a topological singularity,

- the photons, quantas of the transversal solution with circular polarization of the Newton equa-
tion (13.14)

- and finally quantum concepts, such as bosons, fermions and indistinguishability of topological 
singularities, as well as the Pauli exclusion principle, which are all deduced from the second 
partial equation of Newton (18.9)  applied to many local topological singularities.

About the perfectly innovative role of the curvature charge

In our approach of the cosmological lattice, a perfectly innovative concept appears, the 
charge of curvature of the edge dislocation loops, which is an unavoidable consequence of the 
treatment of a solid lattice and its topological singularities in Euler coordinates. This concept 
does not appear absolutely in all modern theories of physics, whether in general relativity, in 
quantum physics or in the Standard Model, while in our approach this concept provides 
explanations for many obscure points of these theories , among which the main ones are:

- the weak force associated with the cohesion of the corner-screw dispirations:
Considering topological singularities formed by the coupling of a twist disclination loop with 

an edge dislocation loop, which are called dispiration loops, an interaction force similar to a 
capture potential appears, with a very weak range, which induces interactions between loops 
presenting a perfect analogy with the weak interactions between elementary particles of the 
Standard Model.

- the matter-antimatter asymmetry:
In our approach, the matter-antimatter asymmetry has no more mystery because it is 

precisely the charge of curvature which becomes responsible for the appearance of a weak 
asymmetry between the particles (hypothetically containing edge loops of interstitial nature) and 
anti-particles (hypothetically containing edge loops of a lacunar nature).

 
!
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- the mass of curvature associated with the curvature charge and its consequences:
Each topological singularity is associated with a mass of curvature due to the curvature 

charge which is added to its mass of inertia, and which induces slight differences in the 
behavior of the gravitational interaction forces between matter and anti-matter, and which 
provides simple explanations for several still mysterious phenomena of the cosmological 
evolution of matter, such as (i) the segregation between matter and antimatter within galaxies, 
(ii) the formation of gigantic black holes (macroscopic lacunar singularities) at the heart of 
galaxies by gravitational collapse of antimatter, (iii) the apparent disappearance of antimatter in 
the Universe following the formation of the black holes in the heart of galaxies, and (iv) the 
formation of neutron stars (macroscopic interstitial singularities) by gravitational collapse of 
stars of matter within galaxies.

- the appearance of neutrino antigravity and its consequences:
The negative mass of curvature dominates the positive mass of inertia in the case of the 

pure edge dislocation loop, which we associate with the neutrino of the standard model. This 
phenomenon leads to the fact that the neutrino is gravitationally repellant for other particles, 
which provides simple explanations for several still mysterious phenomena in the cosmological 
evolution of matter, such as (i) the formation of galaxies by precipitation of matter and 
antimatter in the form of aggregates within a sea of repellant neutrinos, and (ii) the concept of 
dark matter which is replaced by the concept of "sea of repellant neutrinos" in which  are 
immersed all galaxies, globular clusters, and other structures of the visible Universe. This sea 
of neutrinos exerts a compressive force on the stars of the periphery of the galaxies, which 
must necessarily rotate faster to compensate for this compressive force by an additional 
centripetal force of rotation.
- the bosonic or fermionic nature of the particles:

The curvature charge has another major interest linked to the bosonic or fermionic nature of 
the particles. Indeed, we note that all the particles with which a charge of curvature is 
associated (leptons, quarks and baryons) are fermions with a half-integer spin, which satisfy the 
Pauli exclusion principle, while all particles which do not have a curvature charge (photons, 
gauge bosons, gluons and mesons) are bosons with an integer spin, not subject to the Pauli 
exclusion principle. There is very probably here a crucial role played by the curvature charge, 
which could impose a boson or fermion behavior on a given particle.

About the importance of the microscopic structure of the cosmological lattice

The structure of the cosmological lattice plays a dominant role in the analogies we have deve-
loped, but it is at the level of microscopic loop singularities that they play a crucial role.  It was 
necessary to imagine a cubic lattice with planes (imaginarily «colored» in red, green and blue) 
which satisfy certain simple rules concerning their arrangement to find topological loops which 
are remarkably similar to all the particles, including leptons, quarks, intermediary bosons and 
gluons of the first family of elementary particles of the Standard Model, as well as an asymptotic 
force between singularities analogous to quarks, which is similar to the strong force of the 
Standard Model, and which forces the formation of doublets or triplets of loop singularities simi-
lar to mesons and baryons of the Standard Model. 
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It was necessary to imagine a more complex structure of edge dislocation loops in that cosmo-
logical lattice, based on doublets of edge disclination, to try to explain the three families of the 
Standard model of particle physics.
From this enumeration of the important roles of the equation of Newton and the structure of the 
cosmological lattice, we can conclude that the newtonian inertia of the lattice in the absolute 
space, its elasticity by shear, by rotation, and by volume expansion, and its microscopic struc-
ture are the principal ingredients of the theory of the cosmological lattice and explain all the 
properties of this peculiar lattice, and thus, by analogy, of the real universe, even if there re-
mains many obscure points in this analogy.

Still unclear points about the Crystalline Ether

It is clear that the Crystalline Ether that we developed in this book, in spite of it’s obvious suc-
cesses, is not perfect. There are many obscure points which would deserve to be studied, and if 
possible elucidated, amongst which we will name the more important ones, in the order in which 
they were seen in the book and in the form of questions:
- does a "crystalline ether" really exist, i.e. a cosmological lattice of CFC structure with axial 
properties, what are the "corpuscles" that compose it, which would possess a purely Newtonian 
mass of inertia in absolute space, and what are the relations existing between these "cor-
puscles" and the Higgs boson of the Standard Model?
- what is the physical nature of the elasticity of the cosmological lattice, which leads to modules 

 which allow to express the elastic free energy  of 
the lattice per unit volume?
- where does the kinetic energy which is necessary to the cosmological behavior of the cosmo-
logical lattice come from?
- what role would the ‘lattice corpuscles’ play in the cosmological lattice in hypothetical diffusion 
mechanisms within the cosmological lattice (which could explain certain properties of magne-
tism)?
- would it be possible that there are still vector electric charges?
- what are the parameters   introduced to calculate the energy of loops and are 
they truly independent of the expansion of the background?
- what could be the role of gliding mixed dislocation loops in our analogy with the elementary 
particles?
- what is the relevance of the analogy between the vacancy clusters and the black holes, as 
well as between the interstitial clusters and the neutron stars?
- what physical explanation and what numerical values should we give to parameters 

 which were used for the derivation of the dependence of the 
energy of the loops on the background expansion.
- how do we physically explain the fact that parameters  and , which were used to find the 
local clock and rods of the HS observer, must exactly have the value 1/4?
- what is the thermic dependence of the free energy of the cosmological lattice, and could it be 
justified by a kind of “liquid phase” of the lattice for values that are very small of the volume ex-
pansion, in the vicinity of the «big-bang»?
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- how do we explain that, from a topological standpoint, a dislocation loop or a disclination loop 
can turn on itself?
- what makes a certain topological loop have a spin 1/2 or a spin 1, and what is the exact role of 

the charge of curvature in the value of the spin and the bosonic or fermionic behavior of a par-
ticle?

- what exactly are the structure of the cosmological lattice and the nature of the colored planes 
of this lattice, and what is the link between these colored planes and the "corpuscles" compo-
sing the lattice?
- how can topological singularities analogous to quarks have a spin when they are linked to 
others by a connecting fault energy tube?
- and many other questions, of a purely physical, or even philosophical nature which are not 
within the scope of this book, but which are very intriguing.

About the unifying power of our Crystalline Ether Theory

In fact, even if there are still many obscure points, it appears that our Crystalline Ether Theory 
contains strong analogies with all the great theories of modern physics, and that in this it has an 
enormous unifying power. And this approach by the cosmological lattice is very simple, on the 
contrary of the theories of superstrings or of the theory M which the theorists propose to unify 
“of force” the physical theories by quantifying gravity and by independently introducing into it the 
four elementary interactions, which leads to extremely complicated mathematical theories, in 
very complex spaces with n dimensions (n = 11 for theory M), and which have so far shown no 
predictive power. 
It is interesting to note here that the superstring theories use cords and branes in complicated 
multidimensional spaces to quantify gravity, while our approach also uses cords, loops and 
membranes, but which are then simple topological singularities of a purely three-dimensional 
lattice, with an additional dimension of absolute time completely decoupled from the dimensions 
of space, since time can be measured there by the universal clock of an imaginary observer GO  
external to the lattice in absolute space. 
And if the quasi-static volume expansion of this lattice on the macroscopic scale is the expres-
sion of the phenomena attributed to gravitation, the dynamic fluctuations of the expansion of 
this lattice on the microscopic scale are nothing other than the expression of the phenomena 
attributed to quantum physics. It is therefore wrong to try to quantify the theory of gravitation, 
since quantum physics in the Crystalline Aether Theory is precisely the expression of the dy-
namic fluctuations of gravitation at the microscopic scale.

About the epistemology and the consequences of this essay

It is true that, in this treatise, nothing gives a definitive explanation to the existence of the uni-
verse, to why there is a big-bang, and why the universe could behave like a solid lattice. These 
points remain, at least for now, philosophical or of the domain of individual belief. But from a 
epistemological standpoint, this essay shows that it is possible to find an interesting framework 
to unify the various current physical theories, a framework in which the ‘raison d’être’ of the Uni-
verse remains the only mystery. This approach is based in fact on a very simple concept,  which 
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could be stated as, inspired by a citation of Feynman:

«It it possible to observe and measure from the outside, 
using an Eulerian referential which is absolute and has 
fixed rods and a universal clock, the spatial evolution of 
a solid lattice which possesses a certain microscopic 
structure, elastic properties and newtonian inertial pro-
perties. This sentence alone contains, as you will see, a 
large quantity of informations about the universe if you 
use a bit of imagination and reflexion.»
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Appendix A

Elements of analytical mechanics

Analytical mechanics is a formalism which allows us to elegantly resolve problems 
of mechanics, but which intervenes as well in the formalism of quantum mechanics.

A.1 - Basics of analytical mechanics

To describe a mechanical system composed of  elements and submitted to links, meaning 
conditions that limit the possible movements of the system, it is always possible to introduce 
forces so that the equation of Newton of each element of the system is written

     where     (A.1)

and in which  represents the resulting applied forces and  represent the linking forces.

Generalized coordinates

We can also introduce a set of  generalized coordinates , so that the position  of each 
of the  elements of the system are uniquely determined by the relations

(A.2)

We then call virtual compatible displacement  any displacement of the position  of the 
element , such that it satisfies variations  of the generalized coordinates  and we talk 
of a holonomic system with  degrees of liberty, if the choice of coordinates  and the linking 
forces are such that there are no further condition on variables , and 

(A.3)

For all compatible virtual displacements , we talk about perfect link if they satisfy the 
condition of null virtual work

(A.4)

which implies that the sum of work done by the link forces is null, namely that the link forces 
implied are not dissipative.
For a mechanical system submitted to perfect links, relations (A.1) and (A.4) allow us to deduce 
the D'Alembert equations of the system for any compatible virtual displacement

(A.5)

We talk of a holonomic system with links independent of time if relations (A.2) do not explicitly 
involve time
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(A.6)

A.2 - Lagrangian formalism

The kinetic energy  of a mechanical system, represented by its generalized coordinates (A.2) 
is written

(A.7)

which finally transforms as             

 (A.8)

We note that the links are independent of time (A.6), the kinetic energy is a positive quadratic 
form in the , which does not depend on time . Starting from the kinetic energy, we easily 
calculate the following relation

(A.9)

from which we deduce that for all compatible virtual displacements we have

 (A.10)

Furthermore, if the system is submitted to forces  deriving from a potential , we have

 (A.11)

where the  are the components of the vector . The last two relations allow us to re-
write the equations of D'Alembert (A.5) under the following form

 (A.12)

As we are considering a holonomic system, the  are independent, and if we admit again 
that the potential  is independent of velocities , we can introduce the lagrangian  of the 
system and write the Lagrange equations of the system under the form

 (A.13)

(A.14)

We can define a quantity  called generalized momentum or conjugated momentum to , 
with the following relation

 (A.15)
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If the lagrangian  does not depend explicitly on , the conjugated momentum  is a 
constant of movement.  Indeed, according to the equations of Lagrange (A.14), we have

(A.16)

A.3 - Hamiltonian formalism

Thanks to the definition of the conjugated momentums , we can define the following value  
such that

 (A.17)

By using the Legendre transformation, by inversion of relations (A.15), meaning by extracting 
, we show the hamiltonian  of the system

 (A.18)

The hamiltonian of a system satisfies a set of relations that we can deduce from its definition, 
the Lagrange equation and the definition of generalized momenta

 (A.19)

(A.20)

From which we deduce the Hamilton equations of the system

 (A.21)

as well as the following property

 (A.22)

If the hamiltonian does not explicitly depend on , then the impulse  is a constant of the 
movement.  Indeed, following, (A.21)
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If the Lagrangian does not depend explicitly on time then the hamiltonian will not depend expli-
citly on time and it is a constant of movement. Indeed, following (A.22)

 (A.24)

If the kinetic energy  does not depend explicitly on time (links are independent of time), and 
as the potential energy  does not depend on velocities  by hypothesis, then the hamilto-
nian  represents the mechanical energy of the system.  Indeed thanks to relation (A.13), we 
verify that, if , we have

 (A.25)

so that

 (A.26)

       

dH
dt

=
∂H
∂t

= −
∂L
∂t

= 0

T
V  !qi

H

 ∂
!
ξ(α ) / ∂t = 0

 
pi !qi

i=1

k

∑ = !qi
∂L
∂ !qii=1

k

∑ = !qi
∂T
∂ !qii=1

k

∑ = 2T

H = 2T − L = 2T − (T −V ) = T +V



 

Appendix B

Elements of quantum mechanics

Quantum Mechanics is a formalism that allows us to calculate the behavior of mi-
croscopic physical systems.

B.1 - Wave function and Schrödinger equation

The wave function of a system

In quantum mechanics, it is the complex wave function  which describes a system with 
one or more particles.  One of the possible interpretations of the wave function is to assign to 
the square of the wave function a probability of presence of the particle in space. The probabili-
ty  of finding the particles in a certain volume   is thus equal to the following expression

(B.1)

where  represents the complex conjugate of the wave function .
Any real observable  on this system of particles will be associated with an operator  acting 
on the wave function such that

(B.2)

where the  are the eigenvalues and the  are the eigenstates of the system. The eigens-
tates  form a complete orthogonal set, meaning that, on the total volume  of the 
system ,we have

     and      (B.3)

The complete wave function  of the system can always be represented as a linear superpo-
sition of eigenstates , weighted by the coefficients 

 (B.4)

To the components of the momentum (quantity of movement)  and the position  of a par-
ticle corresponds the operators 

     and      (B.5)

where  is the complex number  and  is the Planck’s constant.
The total energy  of a system at time , is given by operators

     and      (B.6)
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Âψ n = anψ n

an ψ n

ψ n Vt

ψ n
Vt
∫∫∫  ψ *

m  dv = 1     (n = m) ψ n
Vt
∫∫∫  ψ *

m  dv = 0     (n ≠ m)

Ψ
ψ n cn

Ψ = cnψ n
n
∑

 
!p  ξ

!

 
p̂k      →    −i! ∂

∂ξk
ξ̂k      →    ξk

i −1  h = 2π!
E t
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The operators represent the act of measuring, which do not necessarily commute, which cor-
responds to the fact that the order in which the operations are done plays a role in Quantum 
Mechanics. We define the commutator of observables and  as

(B.7)

For example, the operators of momentum and position of a particle, as well as those of energy 
and time do not commute

     and      (B.8)

This is the expression of the uncertainty principle of Heisenberg, which states that the measu-
rement of a pair of observables change one another, so that the variations in measure  , 

, , , … are linked to each other by

     or      (B.9)

The Schrödinger equation of a system

The relations between quantum operators are the same as those intervening between classical 
observables.  For a unique particle submitted to a potential  the classic expression of the 
hamiltonian is written

 (B.10)

Because the hamiltonian of the particle represents its total energy, by replacing the observables 
by the operators associated to it, we obtain the Schrödinger equation of the particle

(B.11)

B.2 - The standing eigenstates of a particle

For a stationary movement, which would not depend on time, the hamiltonian  of a particle 
represents the constant energy  of the particle, and the Schrödinger equation which is inde-
pendent of time is symbolically written

 (B.12)

so that the eigenstates  of the wave function are deduced from the following equation

 (B.13)

in which the  are the eigenvalues of the energy, and thus the quantified energy levels of the 
particle. As an example, we will give some solutions to this stationary equation for various types 
of potentials.

Harmonic oscillator

Let’s consider a particle under potential  of a harmonic oscillator.  This particle 
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satisfies the classic hamiltonian

      with     (B.14)

where  is a callback constant,  is the mass of the particle and  the proper frequency of 
the oscillator.
The resolution of the equation of equation of Schrödinger (B.13) leads us to the following ei-
genvalues of the energy 

(B.15)

Anharmonic oscillator

Consider a particle under potential  of an anharmonic oscillator, with coef-
ficient  satisfying relation . Such a potential has a maximum at , worth 

. If the particle gets a potential energy which is larger than this maximum value, it 
can escape from the potential. 
The resolution of the Schrödinger equation (B.13) leads to the eigenvalues , given by a se-
ries expansion of the form

(B.16)

where the non-dimensional constants ,  and following are small compared to unity, and 
rapidly decreasing.

Particles in a box

Given a free particle ( ), submitted to the boundary conditions of a box with sides 
. The resolution of the Schrödinger equation (B.13) leads to the following energies 

(B.17)

The rotation of two linked particles

Consider a pair of point particles, separated by a distance , submitted to a rotation around 
their center of mass. The classic hamiltonian is written

     with     (B.18)

where  is the inertial moment of the two particles of mass  and .
The resolution of the Schrödinger equation (B.13) leads to the eigenvalues 

(B.19)

For each value of energy  corresponding classically to a different angular velocity, there are 
 eigenstates, which correspond classically to different orientations of the axis of rotation. 
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We say that the energy state  is   times degenerated.

The particle in a central potential

Consider a particle with mass  under a central potential of type

 (B.20)

where  is a constant.
The resolution of Schrödinger’s equation (B.13) leads to following energy eigenvalues 

 (B.21)

where  is a whole number called the principal quantum number, which characterizes the 
energetic level of the particle. The detailed resolution of this problem in polar coordinates 

 leads us to write the eigenstates as a product of a function of  and a function of 

     and      (B.22)

These two functions are parametrized by the quantum numbers . The number  is an 
integer between  and , called the azimuthal quantum number, which characterizes the 
quantification of the angular kinetic momentum  of the particle, the norm of which is worth 

, while  is the magnetic quantum number, worth  , and which 
characterizes the quantification of the projection of the angular kinetic momentum along an axis 

, which is worth . Indeed for each value of energy  corresponds

 (B.23)

different eigenstates of the wave function. We say that the energy state  is  degenerated. 
As a convention, to the quantum azimuthal number we associate the letters  de-
pending on whether it is worth 0, 1, 2, 3, 4, ... and the different states of the particle are desi-
gned by the symbols  etc., in which the number and the letter represent 
the principal quantum number and the azimuthal quantum number respectively.

The density of states in phase space

Let’s consider the case of a particle trapped in a box with volume . We have 
seen that the limit conditions imposed on Schrödinger’s equation (B.13) imply a discrete distri-
bution of energies   (B.17). It is then interesting to calculate the phase volume  occupied 
by each energetic state of the particle. Let’s start by counting the number  of states for which 
energy is inferior or equal to a given value .  For that, we calculate in 3D a number of points, 
separated by  along axis , contained in the first octant of a 
sphere with radius 

 (B.24)
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in which the radius  is calculated from expression (B.17) of the energy levels, for a maximum 
energy 

 (B.25)

With regards to the phase space volume  occupied by a particle whose energy is inferior or 
equal to the value , and as a consequence for which the momentum is inferior or equal to 

, it is given by

(B.26)

We deduce that the phase space volume  occupied by each energetic state is given by 
 and is worth

 (B.27)

This result, namely that the phase space volume  occupied by each eigenstate of a particle 
possessing  degrees of liberty is worth , is rather generic in quantum mechanics and is an 
important concept in statistical physics.

B.3 - On bosons and fermions

Let’s consider a system with 2 independent particles contained in a box. The energy  of that 
system will be given by

 (B.28)

where  and  represent the discrete energies of the two particles, given by relation (B.17), 
and where  and  represent two particular combinations of three quantum numbers .
The Schrödinger equation of that system is written

(B.29)

It is easy to verify that a solution to this equation is given by the product of wave functions of 
particles 1 and 2, by supposing that particle 1 has an energy  and that particle  2 has an 
energy 

 (B.30)

But for a same value of energy  of the system, there exists an other solution, which corres-
ponds to the exchange of two identical particles, namely that particle 1 has energy  and that 
particle  2 has energy 

(B.31)

However, one of the fundamental properties of linear homogeneous differential equations is that 
any linear combination of particular solutions is also a solution,  so that the more general solu-
tion to the Schrödinger equation can be written as

(B.32)
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This expression would indicate that there exists a vast number of stationary states for a system 
with 2 particles. However, we must take into account the fact that due to the uncertainty prin-
ciple in quantum mechanics, identical particles lose their individuality. We say that the quantum 
particles are non discernible, which means that it is not possible to follow the trajectory of a gi-
ven particle over time. If we consider the wave function  of the system, we know that  
determines the probability to find two particles in a certain portion of space. If we exchange the 
two particles, it is clear that must remain unchanged. However the phase of  can be mo-
dified by this exchange so that . If we proceed to a second exchange of particles, 
we have that  and we find ourselves in the initial state , if .  To satisfy 
this last condition, it is sufficient that  or .
In the case where the wave function  transforms as  during the exchange of two 
particles, the wave function is said to be symmetric, and the particles are called bosons. The 
wave function  is written with a normalization factor 

(B.33)

If the wave function  transforms as , the wave function is said to be antisymmetric, 
and the particles are called fermions. The wave function  is written with a normalization fac-
tor  as

 (B.34)

The non-discernibility of two particles is then very clearly seen in the two previous expressions 
for the antisymmetric function, it is not possible for two particles to be in the same state since 
the quantum function  would be null: that is the mathematical expression of the Pauli exclu-
sion principle, which states that two fermions cannot occupy the same state simultaneously.
In the case of a system with  identical particles, the previous concepts are easily generali-
zed. In the case of bosons, the symmetric wave function  of the system is written under 
the form

 (B.35)

where the sum is on all the possible permutations of the system.  If the system possesses  
particles in energy ,  particles in energy ,  particles in energy , etc., the number of 
terms that correspond to the wave function  is given by

(B.36)

In the case of fermions, the antisymmetric wave function  of the system can be written 
under the form of a determinant

 (B.37)

Indeed the permutation of two columns of a determinant changes the sign of the determinant, 
which assures the anti-symmetry of the wave function  under the exchange of two par-
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ticles. Furthermore, we also know that the determinant is null if two lines are identical, which 
corresponds here to the expression of the Pauli exclusion principle, namely that a quantum 
state cannot be occupied by more than one fermion.

B.4 - Particle spin

In general, the wave function  of a system is composed of two parts: a spatial component 
and a spin component. The notion of spin is a purely quantum characteristic of particles, asso-
ciated with the classical notion of angular kinetic momentum of the particle. If the angular mo-
mentum of the spin of a particle is  and its angular orbital momentum is , the totally angular 
momentum  of the particle will correspond to the vectorial sum of the two: .
The norm of  is quantized as   and the projection of  on axis  is worth

, where  is the quantum number of spin corresponding to an integer in the case of 
boson or a half integer in the case of fermions and  is a quantum number that can span  
and  in integer steps. We can both recognize that the norm of  is one of these projections, 
for example . The azimuthal angle is always undetermined as the operators  and  do 
not commute with the operator associated to .
The spin component of the wave function  of the two particles is symmetric when the spin of 
the two particles are anti-parallel. We have the following possibilities for the wave function  
of the two particles:
• Fermions:  the wave function is antisymmetric  parallel spins and anti-symmetric spatial 
component, or anti-parallel spins and spatial symmetric components.
• Bosons:  symmetric wave function  parallel spins and symmetric spatial components, or 
anti-parallel spins and antisymmetric spatial components.

B.5 - The Dirac equation 

The Dirac equation, formulated in 1928, is born out of an attempt to incorporate special relativity  
to a quantum formulation in the framework of relativistic quantum mechanics of elementary par-
ticles with half integer spins, such as electrons. For that, Dirac sought to transform the Schrö-
dinger equation in order to render it invariant under the Lorentz transform, namely to render it 
compatible with the principles of special relativity.
To insure the compatibility of a quantum wave equation with the Lorentz transform, it is neces-
sary that the derivations of time and space contribute in a symmetric fashion in the wave equa-
tion, which is not the case of the Schrödinger equation. One way to go about it is to use the re-
lativistic relation

 (B.38)

and use the operators defined in (B.5) and (B.6) to obtain a wave equation

 (B.39)

This equation is symmetric in the derivations of time and space, but it is a second order equa-
tion, which makes it resolution hard as we must then specify the initial conditions of the function 
and it’s derivatives to find a solution.
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Dirac then has the idea of writing relation (B.39) under the following form

(B.40)

and to look for the values of  to have finishing cross terms in . For that to be 
the case, one must introduce 4x4 matrices which satisfy a series of relations such as 

 and .
This factorization allows us to write 

 (B.41)

where is now a wave function with four components.
The formulation given by Dirac to this equation is the following

 (B.42)

where  is the mass of the particle,  is the speed of light,  the reduced Planck constant,  
and  the coordinates of space and time, and  the wave function with four components. 
The fact that the wave function is now formulated in terms of a spinor with four components ra-
ther than a simple scalar is due to the demands placed by special relativity. In this formulation, 
the matrices  become Dirac matrices , with , of dimension 4x4, which 
act on the spinor . We can write these matrices in the Dirac representation, in terms of 
the Pauli matrices, under the form

(B.43)

in which the complex 2x2 Pauli matrices are written

(B.44)

It is common in quantum mechanics to consider the operator of the momentum   and in this 
case the equation of Dirac is written in condensed form as

(B.45)

The Dirac equation (B.42) takes into account quite naturally the notion of spin and allows us to 
predict the existence of antiparticles. Indeed, besides the solution corresponding to the elec-
tron, there exist another solution corresponding to a particle with negative energy and opposed 
charge, the positron, which was identified later in 1932, by Carl Anderson by using a fog cham-
ber.        
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Standard Model of elementary particles

As we speak, particle physics explains the intimate structure of matter thanks to a 
model called the Standard Model. This model uses fermions, particles of matter 
that present two rather different families, the family of the leptons and the family of 
the quarks.  It also has 3 types of interaction between these fermions: the electro-
magnetic interaction, the weak interaction and the strong interaction. 
The interactions between fermions of matter happen in the exchange of particles 
called gauge bosons, corresponding to the quantas of the quantum fields of interac-
tion. The electromagnetic interaction uses the photon , the weak interaction uses 
3 gauge bosons  ,  and , and the strong interaction uses 8 gauge bo-
sons which are called gluons. 
With respect to the mass of particle, it is introduced in the standard model by a new 
interaction associated with the Higgs quantum field, whose interaction particle is 
called the Higgs boson.
The Standard Model of particles, in spite of its success, leaves many unresolved 
questions among which the problem of the gravitational interaction which is not 
present.  We will also list a series of unresolved problems in the Standard Model.

C.1 – On leptons and quarks

The family of leptons (fig. C.1) is composed of three generations and two types of particles: 
three particles that are electrically neutral called electronic neutrino ( ), muonic neutrino ( ) 
and tau neutrino ( ), and three particles that are electrically charged, called electron ( ), 
muon ( ) and tau ( ). Each of these 6 particles possesses in principle an anti-particle ( , 

, , ,  et ) which is essentially characterized by an opposed electrical charge, 
which already begs the question about the existence of anti-particles for neutrinos. The leptons 
are quasi-punctual particles which are sensible to the electromagnetic interaction and the weak 
interaction, but not to the strong interaction. It was thought for a long time that neutrinos do not 
posses mass but recent measurements show differently.
The family of quarks (fig. C.1) is also composed of 3 generations with two types of particles 
electrically charged: a first generation is formed of quarks down (d) and up (u), respectively with 
electrical charges -1/3 and +2/3 of the electrical charge of an electron, a second generation 
composed of quarks strange (s) and charm (c), respectively with electrical charges -1/3 et +2/3 
of the electrical charge of an electron, and a third generation composed of bottom (b) and up (t), 
respectively with electrical charges -1/3 and +2/3 of the electrical charge of the electron. Each 
quark possesses its anti-particle with an opposed electrical charge ( , , , ,  et ). The 
quarks are sensible to the electromagnetic interaction, to the weak interaction and to the strong 
interaction. The quarks are not free particles, rather they exist in the form of assemblies of 
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quarks called hadrons. The quarks are linked within the hadrons by the strong force. 
The hadrons are under two forms: the mesons composed of a quark and an anti-quark, such as 
particles  ,  or , and the baryons composed of 3 quarks, such as the 
proton  and the neutron , or 3 anti-quarks.
Each particle of matter, whether it be a lepton or a quark, possesses a non-null mass and a spin 
spin 1/2, which gives it the status of a fermion.

Figure C.1 - The particles of the Standard Model

C.2 - On the fundamental interactions and the gauge bosons

In the Standard Model, we consider the following 3 possible interactions between particles: elec-
tromagnetic interaction, weak interaction and strong interaction. These interactions are descri-
bed by the theories of the quantum field (except the gravitational interaction which can never be 
introduced in the Standard Model, despite intense research for the graviton gauge boson which 
would be associated to it). Each interaction calls upon a field which is dedicated to it, and is 
done via the exchange of a particle called a gauge boson (fig. C.1), which corresponds to the 
quantum of the field considered. The electromagnetic interaction calls upon the photon ( ), a 
gauge boson with null mass. The weak interaction calls upon the 3 gauge bosons ,  and 

, particles with non-null mass, electrically neutral, positive and negative respectively. With 
regards to the strong interaction, it involves 8 gauge bosons called gluons, which are actually 
null mass particles. All the gauge bosons associated with these interactions are spin 1 particles, 
which explains their bosons name.
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C3 - On the electromagnetic interaction and the quantum electrodynamics

The quantum theory which describe the electromagnetic interaction is called quantum electro-
dynamics. It is a quantization of the electro-magnetic field: charged particles interact with the 
exchange of field quanta, the photons. It is a relativistic theory, as it takes into account the pro-
pagation time of the interaction, namely the velocity of the vector boson, the photon. In that 
theory, we can represent an interaction in a very simple and expedient way, thanks to Feynman 
diagrams. In figure C.2, we have represented the example of interactions between two electrons 
by the exchange of a virtual photon, which we qualify here as “virtual”, as it cannot be detected 
experimentally.

Figure C.2 - Feynman diagram of interaction between two electrons and a photon

C4 - On the weak interaction and the electro-weak theory

The weak interaction acts on all the elementary fermions, be they leptons or quarks.  It is actual-
ly the only interaction acting on neutrinos. It is responsible for nuclear decay. This interaction 
has two aspects: the weak interaction via charged currents, whose vectors are the gauge bo-
sons  and , and the weak interaction by neutral current, whose vector is the gauge bo-
son . The gauge bosons of the weak interaction are the only ones which present non null 
masses, and in fact very elevated masses, which imposes, when combined with the uncertainty 
relation of Heisenberg  and the relation of Einstein , a lifetime  which 
is very short and, as a consequence, since the velocity of light is a limit, a reach of the interac-
tion which is small (on the order of ), which explains that this interaction only manifest 
at the scale of the atomic core.
As the gauge bosons  and  have a non-null electrical charge. The fermions can change 
their electrical charge during an interaction via the exchange of  or , which changes 
their flavor (we call fermionic flavor the nature of the fermion: electron, neutrino, quark u, quark 
d, etc.). For example, beta radio-activity is explained by the emission of a  by a quark d of 
the neutron, which changes then its flavor and becomes a quark u. Then, the  materializes 
in the form of an electron and an electronic anti-neutrino (figure C.1,b).
The gauge boson  does not possess an electrical charge, and cannot induce a change in 
flavor during a weak interaction. The weak interaction by neutral current is similar to the ex-

W + W −

Z 0

 ΔE i Δt ≈ ! ΔE = mc2 Δt

10−15 m[ ]

W + W −

W + W −

W −

W −

Z 0
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change of a photon. Two fermions that can exchange a photon can also exchange a , with 
the exception of a neutrino which can exchange a  but cannot exchange a photon as it is a 
neutral particle. 
There exists many types of weak interaction depending on the fermions that interact: the lepto-
nic interactions, the semi-leptonic interactions and the hadronic interactions, for which examples 
of Feynman diagrams are reported in figure C.3.
The electromagnetic interaction and the weak l’interaction were unified in a quantum theory cal-
led the electro-weak theory.

Figure C.3 - examples of Feynman diagrams
 for the weak leptonic, semi-leptonic and hadronic interactions

C5 - On the strong interaction and the quantum chromodynamics

The strong interaction is a short interaction between quarks by the intermediary of gluons, the 

Z 0

Z 0
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vector gauge bosons of this interaction. This interaction allows us to explain not only the me-
sons composed of a quark and an anti-quark and the baryons composed of 3 quarks, but also 
how neutrons and protons link up to form atomic nuclei.
To elaborate a quantum theory of the strong interaction, it was necessary to use a new type of 
charge, called the color charge, hence the name Quantum Chromodynamic Theory. Each quark 
possesses a color charge, red ( ), green ( ) or blue ( ), and the anti-quarks possess a 
charge with the complementary colors ( ), ( ) or ( ).
The strong interaction is then explained by the exchange of colored gluons between elementary 
fermions with a color charge, which allows us to exchange the color charges between fermions. 
There exist 8 gluons with different colors, corresponding to the 8 different combinations of a co-
lor and an anti-color.  Thus, during the exchange of a gluon between 2 quarks, they can interact 
which is not the case for other gauge bosons. The leptons which do not possess a color charge, 
are not subject to the strong force.
While the mass of gluons is null, the strong interaction is of very short range, on the order of 

, and it possesses a characteristic that is strange: it gets stronger the further away the 
quarks are. And if they are infinitely close they do not interact anymore. This property bears the 
name of asymptotic freedom, and it is responsible for quark confinement inside hadrons: this 
implies that quarks cannot exist by themselves.
The particles formed of quarks are hadrons, meaning linked states with many quarks via gluons.  
The hadrons are ‘white’ meaning have a color combination which is null.  We can then consider
- the baryons, combinations of three quarks respectively red, green and blue, or anti-baryons, 
combinations of three anti-quarks respectively anti-red, anti-green and anti-blue. The triplets 
formed of three quarks (picked in the set u, d, s or c) are represented by the diagrams in figure 
C.4, in the cases where the global spin is  and ,  with the name given to the particle 
corresponding to this triplet,
- the mesons, which contain a color quark (red, green and blue) and an anti-quark with the cor-
responding anti-color (anti-red, anti-green or anti-blue). The doublets formed of a quark and an 
anti-quark (from quarks u, d, s or c) are represented in the diagram of figure C.5, in the case of 
a global spin 1 and 0, with the name given to the particle corresponding to the doublet.

C6 - On the mass of the particles and the Higgs boson

In a first version of the Standard Model, all the particles (leptons and quarks) we described had 
no mass, which could not be right. To patch that fact, the theoreticians imagined a fifth interac-
tion, different from all four others (electromagnetic, weak, strong and gravity), by invoking a field 
whose quantum is a particle of spin 0: The Higgs boson (fig. 29.1). It is then the interaction 
between elementary fermions with null mass and the Higgs field via Higgs bosons which confer 
a mass to the fermions of the Standard Model. The existence of the Higgs was recently experi-
mentally verified at CERN.

C7 - On the issues and open questions of the Standard Model

Despite the success of the Standard Model, there are many unresolved questions in this model, 

R G B
R G B
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amongst which we can cite quickly the following:
- the absence of gravitational interaction in this theory,
- the existence of 12 fermions (leptons and quarks) and 4 fundamental forces in the theory,
- the existence of three generations of fermions (leptons and quarks), which allows us to ac-
count for the violation of the CP invariance (charge/parity), which we estimate is the cause of 
the asymmetry between matter and anti-matter in the actual universe,
- the prediction of the masses of the various fermions and bosons,

Figure C.4 - the baryons composed of triplets of quarks (u, d, s or c) 

Figure C.5 - the mesons composed of doublets of quark-antiquark  (u, d, s or c)

- the necessity to adjust experimentally a large number of parameters (26 parameters are nee-
ded in the case where the neutrinos have a mass.) to obtain a functional theory, such as the 
masses of particle (table C.1) and the intensities of the various forces (tableau C.2), which must 
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necessarily be set by the experimental results,
- the existence of 3 massive gauge bosons in the case of the weak interaction,
- the confinement due to the strong force,
- the quantized electrical values of 1, 1/3 and 2/3,
- the absence of an explanation for dark energy and dark matter in that model.
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Table C.1 - the charges and masses of the leptons and the quarks.

Table C.2 - the charges and masses of the gauge bosons

Fermions (spin 1/2) Electrical charge 
(qe) Mass (MeV/c2)

lepton electron -1 0,51

lepton muon -1 106

lepton tau -1 1777

lepton electron neutrino 0 < 0,0000022

lepton muon neutrino 0 < 0,17 

lepton tau neutrino 0 < 15,5

quark Up u +2/3 2,55

quark Down d -1/3 5,04

quark Charm c +2/3 1270

quark Strange s -1/3 105

quark Top t +2/3 173100

quark Bottom b -1/3 4200

νµ

ντ

τ −

νe

µ−

e−

Gauge bosons (spin 1) Electrical charge  
(qe) Mass (MeV/c2)

photon 0 0

boson intermediary -1 80398

boson intermediary +1 80398

neutral boson intermediary 0 90187

8 gluons g 0 0

Z 0

γ

W +

W −

Bosons de jauge (spin 0) Charge électrique 
(qe) Masse (MeV/c2)

boson de Higgs 0 125000H 0
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Conjectures of the cosmological lattice

We will list here the different axioms that were postulated à priori in our theory of 
the cosmological lattice and that are chosen to find à posteriori strong analogies 
with all the other theories of physics.

        

Conjecture 0:   the free energy of the “cosmological lattice”  per unit volume of lattice is

                     (13.5)

Conjecture 1:   for the cosmological lattice to present analogies with Einstein Gravitation, 
                          with electromagnetism and with the photons of quantum mechanics,

             the following must hold:

                         (14.30)

Conjecture 2:  the usual singularities of the field of expansion must be ‘negative’ 
                         for them to correspond to the usual gravitational field                          (15.5) 

Conjecture 3:  it seems more ‘reasonable’ to imagine cosmological lattices with ,
                         so as to have a finite expansion (16.19)

Conjecture 4:    there are no localized electrical vector charges  in the cosmological lattice,
               so that the density  of vector electric charges is necessarily equal to zero

                 in the Maxwell equations: (17.41)

Conjecture 5a:  the module  should satisfy  (19.53)

Conjecture 5b:  the module  should satisfy and (19.55)

Conjecture 6:     the module  should satisfy (19.57)

Conjecture 7:   the radius of a twist disclination loop is much greater 
                          than the cosmological lattice step:   

                              (19.92)

Conjecture 8:   the singularities of vacancy type correspond by analogy to anti-matter
                          and the singularities of interstitial type to matter (22.115)

 F
déf = Fdéf τ , τ 2,( !α i

él )2,( !ω él )2,( !α i
an )2,( !ω an )2⎡⎣ ⎤⎦

i ∃ pure transverse waves circularly polarized ⇔ K2 + K3 > 0

i ∃ longitudinal waves ⇔
τ 0 < τ 0cr =

K0

2K1
− 2K2

3K1
−1 K1 > 0( )

τ 0 > τ 0cr =
K0

2K1
− 2K2

3K1
−1 K1 < 0( )

⎧

⎨
⎪⎪

⎩
⎪
⎪

K1 > 0

!q !λ
 
!
ρ

!ρ =0
K1 K1 << K0

K2 K2 << K0 K2 << K3

K0 K0 > 0

ln ATLRTL / a( ) >>1
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Conjecture 9:  the metric of our theory in a weak gravitational field must be the same than
                         the Schwarzschild metric in General Relativity (24.49)

Conjecture 10:   there exists two operators which, when applied to the wave function 
                            of a mobile singularity in the lattice, allows us to measure its relativistic             
                            energy and its relativistic momentum, namely

                            (28.15)

Conjecture 11:    satisfies the following equation in the cosmological lattice

                                 (29.9)

Conjecture 12:     the angle  takes discrete values linked to the symmetry of the lattice
                              and independent in volume expansion      (31.1)

Conjecture 13:     the stacking of the R, B, V planes follows three basic rules with respect
                              to the axial properties of the CFC lattice:           (31.2)

Rule 1:  the alternation of the planes R, B, V  cannot be broken,
 either by impossibility, or by penalty of an extremely high 
 stacking fault surface energy ,

Rule 2:  there may appear a shift in the succession of R, B, V planes 
 according to a connecting fault plane perpendicular to the dense planes, 
 and this shift has a non-zero connecting fault surface energy ,

Rule 3:  if a plane of a given color is rotated by an angle ,
  ou ,  it changes color according to the table below 

 ψ
!r ,t( )

i! ∂
∂t
ψ → Evψ

− i! ∂
∂xi

ψ →Pv iψ

⎧

⎨
⎪⎪

⎩
⎪
⎪

K1
K1 ≥ K1 cr = K0 2π

4 RTL
2 / qλTL

2

ΩTL

βTL = cste( )

γ 1

γ 0
±2π /3

±4π /3 ±2π
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Mathematical formulas

The mathematical concepts needed for the comprehension of this book are sum-
med up in this appendix, written up as a review of differential calculus. We esta-
blish in this annex the formulas for integral derivatives on mobile domains.

E.1 - Vectorial calculus

The scalar product 

The scalar product of two vectors  and  gives us a scalar . In a orthonormal framework, 
the scalar product is calculated as the sum of the products of the components

  (E.1)

The intrinsic properties of the scalar product are the following

 (E.2)

The vectorial product 

The vectorial product of two vectors  and  gives us a vector . In a orthonormal frame-
work, the vectorial product of two vectors can be calculated by using the formalism of determi-
nant calculation in the following way

 (E.3)

The intrinsic properties of the vectorial product are the following

(E.4)

The mixed product

The mixed product of three vectors ,  and  is composed of the scalar product and the 
vectorial product which gives us a scalar . 
In a orthonormal framework, the mixed product of three vectors is equal to the determinant of 
the components of the three vectors

 
!u  

!v a

 
a = !u !v = u1v1 + u2v2 + u3v3 = ui

i
∑ vi

a = !u !v = !u !v cosα
a = !u !v = !v !u
!u⊥ !v ⇒ !u !v = 0
!u = !u !u = !u 2 = Lu (norm)

⎧

⎨
⎪
⎪

⎩

⎪
⎪

 
!u  

!v  
!w

 

!w = !u ∧ !v =

!e1
!e2
!e3

u1 u2 u3
v1 v2 v3

= !ei u jvk − ukvj( )
i
∑

!w = !u ∧ !v = !u !v sinα = S (area)
!w = !u ∧ !v = −!v ∧ !u
!w⊥ !u et !w⊥ !v
!u " !v ⇒ !u ∧ !v = 0

⎧

⎨
⎪⎪

⎩
⎪
⎪

 
!u  
!v  

!w
b
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 (E.5)

The intrinsic properties of the mixed product are the following:

  (E.6)

Compositions of products

The three products of vectors, the scalar product, the vectorial product and the mixed product 
can be composed together. These compositions verify the following equations

(E.7)

E.2 - Vectorial Analysis

The gradient operator

The gradient of a scalar field  is a vectorial field  defined in each point  of space by the 
following limit taken on the surface  limiting a volume  taken around point  (figure E.1)

(E.8)

Figure E.1 - gradient operator

The direction of vector  is consequently perpendicular to the level surfaces of the function  
in space and its norm is proportional to the velocity of variation of the function  in that direc-
tion. This intrinsic definition shows that the gradient is an invariant of field , meaning that it 
does not depend on the system of coordinates that one chooses. In a orthonormal framework, 
the gradient can be calculated thanks to the following relation

 

b = !u, !v, !w[ ] = !u !v ∧ !w( ) =
u1 u2 u3
v1 v2 v3
w1 w2 w3

= ui vjwk − vkwj( )
i
∑

 

b = !u, !v, !w[ ] = !u !v ∧ !w( ) = V (volume)
b = !u !v ∧ !w( ) = !v !w ∧ !u( ) = !w !u ∧ !v( )

⎧
⎨
⎪

⎩⎪

 

!u ∧ !v ∧ !w( ) = !u !w( ) !v − !u !v( ) !w
!u ∧
!
t( ) !v ∧ !w( ) = !u !v( ) !t !w( ) − !u !w( ) !t !v( )

!u ∧
!
t( )∧ !v ∧ !w( ) = !u, !t , !w[ ]!v − !u, !t , !v[ ] !w

!u, !v, !w[ ]!t = !t , !v, !w[ ] !u + !u, !t , !w[ ]!v + !u, !v, !t[ ] !w

⎧

⎨

⎪
⎪

⎩

⎪
⎪

f  
!u A

S V A

 

!u A = grad
" !"""

f A = limV→0

1
V
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!
S

S
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!u f

f
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 (E.9)

The intrinsic properties of the gradient operator are the following:
- the derivative of  in a given direction  in space is given by the scalar product

 (E.10)

- if , then  (E.11)

- if ,  is called a conservative vectorial field and it can be derived from the scalar 
potential . In this case, if the field  is known, the field  can be easily found, by resolution 
of , modulo an additive constant. If , we also have

(E.12)

(E.13)

- the gradient theorems

(E.14)

(E.15)

The curl (rotational) operator

The curl (rotational) of a vectorial field  is another vectorial field  which satisfies in all point 
 of space the following limit taken on a contour  around point  and perpendicular to any 

direction  in space (figure E.2)

(E.16)

The direction of vector  is consequently perpendicular to the surface of maximum circulation 
of a vector  around  and its norm is proportional to the velocity of circulation of  around

 in that direction.

Figure E.2 - rotational operator
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This intrinsic definition shows that rotational is an invariant of field , meaning that it does not 
depend on the system of coordinates we have chosen. In a orthonormal framework, the rotatio-
nal can be calculated thanks to the formalism of the determinant, in the following fashion

 (E.17)

The intrinsic properties of the rotational operator are the following:

- (E.18)

- if ,  is said to be irrotational vectorial field. In this case, the previous property im-
plies that 

- if , then (E.19)

- if ,  is said to be a rotational vectorial field and it derives from the vector potential 
. In this case, if the vectorial field  is known, the vectorial field  can be found up to the 

gradient of a scalar field

- rotational theorems

(E.20)

 (E.21)

The divergence operator

The divergence of a vectorial field  is a scalar field  satisfying in every point  of space the 
following limit taken on surface  limiting volume  taken around point  (figure E.3)

 (E.22)

The scalar  represents as a consequence the limit of the field flux  through the surface  
and is only different from zero if the field  diverges locally around a point . This intrinsic 
definition shows that the divergence is an invariant of the field , meaning that it does not de-
pend on the system of coordinates that was chosen.

Figure E.3 - divergence operator
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In an orthonormal framework, the divergence can be calculated thanks to the following relation

 (E.23)

The intrinsic properties of the divergence operator are the following:

-  (E.24)

- if ,  is said to be a conservative vectorial field or solenoidal field and the previous 
property implies that 

- if , then  (E.25)

- if ,  is said to be a divergent vectorial field. In this case, if the scalar  is known, 
the vectorial field  can be calculated up to a rotational vectorial field

-  the divergence theorem

(E.26)

The Laplacian operator

The laplacian of a scalar field , or the laplacian of a vectorial field , is a scalar field , or a 
vectorial field , defined intrinsically by applying twice the vectorial operators ,  or 

 by the following relations

 (E.27)

These intrinsic definitions show that the Laplacian is an invariant of field  or , meaning that 
it does not depend on the system of coordinates that were chosen, since it is defined in terms of 
the operators ,  or . In an orthonormal framework, the Laplacian can be calculated 
thanks to the following relations

  (E.28)

The intrinsic properties of the laplacian operator are the following:

- (E.29)

- (E.30)

-  The Green formulas

(E.31)

(E.32)
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The « del » operator

The formal operator "del"   is an operator defined by the relation

(E.33)

To use this operator, some simple rules are observed including the following:

- "del" behaves as a vector,

- if "del" works on a product, the result is the sum of expressions obtained by considering suc-
cessively the derivation of each of the terms (derivation rule of a product),

- "del" must come before the terms on which it acts. If, after transformation, "del" acts on a term 
on which it did not before, we consider this term as a constant as far as “del” is concerned,

- The classic operators of vectorial analysis are then expressed in the following form:

              and              (E.34)

On the linearity, distributivity and iteration of the vectorial operators

The vectorial operators satisfy a set of rules that are very convenient, linked to linearity, distri-
butivity and iteration of these diverse operators as shown by the following formulas, where 

 are constants

 (E.35)
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(E.37)
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E.3 - Derivatives of integrals on volumes, surfaces and mobile contours

The derivative of an integral on a mobile volume

Given the integral of a function  on a volume  mobile with velocity  in space 
and the problem of calculation of temporal variation of this integral. To carry out this calculation, 
we must consider the volume  at instant , which becomes volume  at instant  
(figure E.4). By definition the temporal derivative of the integral is equal to the following limit, 
calculated for  going to zero

(E.38)

Figure E.4 - derivative of an integral on a mobile volume

The two limits of this last expression can be calculated by introducing the volume  
defined in the figure with a “cylindrical” shape, and we have

(E.39)

(E.40)
so that the formula we seek is written under the form

(E.41)

Just as the argument of the integral can be written

(E.42)

the formula for the calculation of the derivative of the integral on a field  is deduced from (E.
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68) 

(E.43)

The derivative of an integral on a mobile surface

Given the field integral  on a surface  mobile with velocity  and the problem of 
the calculation of the temporal variations of this integral. To carry out this calculation, we must 
consider the surface  at instant , which becomes the surface  at instant  (figure 
E.5). By definition, the temporal derivative of the integral is equal to the following limit, calcula-
ted for  tending to zero

(E.44)

(E.45)

Figure E.5 - derivative of an integral on a mobile surface

The first limit is deduced immediately

(E.46)

To calculate the second limit, we must define  as a lateral surface linking the contours of 
surfaces  and ,  as the closed surface made up of the surfaces ,  and , 

 as the volume comprised inside the closed surfaces  and  as the contour around the 
surface , then we effect the following transformations, by using the divergence and rotational 
theorems

(E.47)
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We have for the second limit

(E.48)

so that the formula we seek is written

 (E.49)

If the integral is calculated on a closed surface, the previous relationship is written

 (E.50)

so that the derivation formula becomes

(E.51)

This last relation could have been derived directly from formula (E.43) by using the divergence 
theorem

(E.52)

The derivative of an integral on a mobile contour

Given the integral of a field  on a contour  mobile with velocity  and the pro-
blem of calculating the temporal variation of that integral. To carry that calculation, we must 
consider a contour  at instant , which becomes contour  at instant  (figure E.6). 
By definition, the temporal derivative of the integral is equal to the following limit, calculated for 

 tending to zero

(E.53)

The first term of the limit transforms by giving a partial derivative

(E.54)

To calculate the second term of the limit, we have to define  like a closed contour 
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 and  as a surface surrounded by the contour , and then to effect the follo-
wing transformations, by applying the Stokes theorem of the rotational

Figure E.6 - derivative of an integral on a mobile contour

(E.55)

(E.56)

The second term of the limit is then

(E.57)

so that the derivation formula sought after is written

  (E.58)

On a closed contour, the points  and  are equal, so that it becomes in this case

 (E.59)

Furthermore, this last formula could have been directly established by relation (E.52). Indeed

 (E.60)
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