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Abstract. Using Eulerian coordinates to describe solid lattice deformations, it has been shown
that the set of equations known as Maxwell’s equations—typically applied to electromagnetic
phenomena in vacuum or matter—can also describe the elastic, anelastic, and plastic deformations
of isotropic solid lattices containing topological defects such as dislocations and disclinations,
under conditions of constant and homogeneous expansion. The analogy between the two physical
systems is complete: it extends beyond one of the two Maxwell equation pairs in vacuum to both
pairs, and includes analogues to dielectric polarization, magnetization, electric charges, and
currents.

In the Eulerian approach, Maxwell’s equations emerge as a special case derived from a tensor
theory of lattice deformation, reducible to a vector formulation only for constant and homogeneous
expansion. When dynamic and non-homogeneous expansions are considered, the tensorial nature of
the theory becomes essential. This generalization naturally leads to a new conceptual framework for
the Universe based on the existence of a crystalline ether. This framework offers a simple, unified,
and coherent description of all major theories of modern physics—including electromagnetism,
relativity, gravitation, quantum physics, cosmology, and the Standard Model of particle physics.

Introduction

The description of solid lattice deformations using Maxwell’s equations in an Eulerian
framework [1,2]—for the case of constant and homogeneous expansion [3,4]—is striking for a
simple reason: it begins with the assumption that the lattice obeys a purely Newtonian dynamic law
in the absolute reference frame of an external observer, equipped with orthonormal rulers and a
universal clock. Yet, the topological singularities within the lattice—dislocations and disclinations
with their associated charges—follow relativistic dynamics inside the lattice, as dictated by the
Maxwellian equations governing shear forces in the medium. From this viewpoint, the relativistic
dynamics of these singularities emerge directly from the classical Newtonian dynamics of the
elastic lattice in the observer’s frame.

The analogy between the Eulerian theory of deformable lattices and classical electromagnetism
is sufficiently precise and far-reaching to merit detailed investigation. Beyond its mathematical
elegance, it suggests an underlying structural correspondence between the mechanical properties of
a lattice and the field properties of space. By introducing specific elastic properties—volume
expansion, shear, and rotation—expressed as free energy per unit volume, one can construct a
hypothetical lattice obeying a modified Newton’s equation. This equation includes an additional
force term directly linked to the distortion energy of singularities (dislocation and disclination
loops) within the lattice. Remarkably, such a model provides a coherent basis for a new



interpretation of the Universe [5—7], conceptualized as a crystalline ether.

In this framework, the Universe behaves as a finite, massive, and elastic three-dimensional
lattice embedded in an absolute vacuum, with topological singularities corresponding to matter.
This approach, developed and expanded in recent works [8,9], yields natural analogues for the key
phenomena described by electromagnetism, special and general relativity, gravitation, quantum
physics, cosmology, and the Standard Model. It also offers physical interpretations for phenomena
currently treated as axiomatic—such as the invariance of the speed of light, gravitational
interaction, quantum decoherence, and the emergence of particle properties.

Storytelling of the theory

The question “What if the Universe were a crystal?” emerged gradually over forty years ago,
while I was preparing a course for fourth-year physics students. At that time—holding a degree in
physics-engineering and a doctorate in physics—I was conducting research on dislocation dynamics
at the Swiss Federal Institute of Technology in Lausanne (EPFL). My experimental work focused
on mechanical spectroscopy and ultrasonic attenuation, but my academic duties also included
teaching.

One of the courses | taught, Physics of Dislocations, was closely tied to my research.
Dislocations—defects in the arrangement of atoms in crystalline solids—play a central role in
determining macroscopic deformation properties. Their motion explains much of the elasticity,
anelasticity, and plasticity of crystalline materials. Over years of teaching and refining the course, I
began noticing intriguing analogies between the theory of dislocations and other branches of
physics.

The first analogy to emerge was with Maxwell’s theory of electromagnetism. Initially, the
resemblance seemed surprising and perhaps superficial. Yet, as the years passed, the analogy grew
more precise: it was not confined to one of Maxwell’s two equation pairs in a vacuum but extended
to both, including phenomena such as dielectric polarization, magnetization, electric charge, and
electric current.

Drawing inspiration from the literature, I demonstrated that it is possible to compute the rest
energy E of dislocations—corresponding to the elastic deformation energy stored in the lattice—
as well as their kinetic energy E_ , associated with the motion of lattice particles mobilized during
dislocation movement. From these results, one can define a virtual inertial mass M o that satisfies
relations strikingly similar to Einstein’s famous equation E 0=Moc2 , yet obtained here through
purely classical means, without invoking a principle of relativity. Furthermore, at high velocities,
dislocation dynamics conform to the principles of special relativity and Lorentz transformations.

This led to a paradoxical conclusion: the relativistic behavior of dislocations is not fundamental
but emerges as a consequence of the purely Newtonian dynamics of the elastic lattice in the
laboratory frame. This realization deepened the analogy between solid-state deformation theory and
the theories of electromagnetism and relativity.

These analogies—unexpected and yet remarkably consistent—prompted me to explore them
systematically. Over the following decades, I developed two complementary lines of theoretical
work. The first, published in Eulerian Theory of Newtonian Deformable Lattices [1,2], reformulates
the mechanics of deformable solids using Euler coordinates rather than the traditional Lagrangian
approach. The second, expanded in The Theory of the Crystalline Ether [8], proposes a radically
different picture of the Universe: a finite, elastic, massive lattice embedded in an absolute vacuum,
whose topological singularities correspond to matter.



What is remarkable is that this framework allows one to derive the major theories of modern
physics—Maxwell’s equations, special relativity, Newtonian gravitation, general relativity, modern
cosmology, quantum mechanics, and the Standard Model—starting only from the foundational
concepts of classical physics: Newton’s equations of motion, the first law of thermodynamics
(energy conservation), the second law of thermodynamics (entropy), and a precise geometric
description of lattice evolution in Euler coordinates.

Yet, despite the simplicity of its principles, the full development is mathematically demanding.
The formalism involves advanced tensor and vector calculus, making it more accessible to
physicists familiar with solid-state physics. To reach a broader audience, I later wrote a more
accessible exposition, The Crystalline Ether [9], presenting the essential ideas with minimal
mathematics while retaining the logical structure.

The Quest for a Theory of Everything

Modern physics is built on mathematical formalisms designed to reproduce experimental
observations, but these formalisms are often postulated rather than derived from transparent first
principles. Maxwell’s equations, for example, accurately describe electromagnetism without
providing a clear physical picture of what electric and magnetic fields are, what electric charge
fundamentally represents, or how electromagnetic waves propagate through a vacuum.

Similarly, special relativity rests on Lorentz transformations, yet offers no mechanistic
explanation for why time dilates and lengths contract, or with respect to which “absolute” frame
such effects occur. General relativity relates the curvature of space-time to mass-energy via
Einstein’s celebrated field equation, but without clarifying why matter curves space-time or what
space-time itself physically constitutes. Quantum mechanics is formulated around Schrédinger’s
equation, but the nature of the wavefunction, the origin of quantum probabilities, and the boundary
between classical and quantum regimes (quantum decoherence) remain open questions.

In cosmology, general relativity is extended with additional hypotheses such as dark matter and
dark energy—terms which denote unexplained phenomena inserted to reconcile theory with
observation. Likewise, the Standard Model of particle physics accurately catalogs elementary
particles and their interactions, but offers no intrinsic explanation for the real nature of the particles,
the existence of three particle families, the values of their masses and charges, the origin of spin, or
the deep nature of the weak and strong forces.

These theories, despite their empirical success, have no common derivation from a unified
foundation. The search for a Theory of Everything—a framework capable of explaining the nature
of space-time, matter, and their interactions—remains one of the central challenges of modern
physics.

Historically, physicists have pursued various unification strategies:

- Grand Unification Theories (GUTs) merge the electromagnetic, weak, and strong forces.

- Quantum Gravity and Loop Quantum Gravity aim to quantize gravity.

- Supersymmetry extends space-time symmetries to connect bosons and fermions.

- String and Superstring Theories replace point particles with one-dimensional strings whose
vibrational modes correspond to different particles.

- M-Theory attempts to unify five versions of string theory, requiring additional spatial dimensions
for mathematical consistency.

Yet none of these approaches simultaneously and coherently explains electromagnetism,
relativity, gravitation, quantum physics, and the structure of elementary particles. Even the much-



discussed eleven-dimensional M-Theory lacks predictive power for measurable quantities such as
particle masses. Experimental searches for new particles, including dark matter candidates, have so
far yielded no decisive results.

Since the 1980s, progress toward unification appears to have stagnated. Thousands of theoretical
papers—often emphasizing increasingly abstract mathematical structures—have failed to resolve
the core mysteries of physics. This pursuit of “mathematical beauty” has at times drifted away from
physical reality, consuming vast resources in the construction of ever more complex experiments
while delivering little new insight. Prominent voices, including Unzicker and Jones [10], Smolin
[11], Woit [12], and Hossenfelder [13], have raised strong critiques of this trend.

In contrast, the approach developed in this work takes a radically different path. Rather than
assembling an intricate hybrid of existing theories, it begins from the simplest classical principles—
Newton’s equation of motion, the first and second laws of thermodynamics—and applies them
within an original geometric framework based on Euler coordinates. The result is a model of the
Universe as a finite, massive, elastic solid lattice—a cosmological lattice or crystalline ether—
embedded in an infinite, absolute vacuum.

Within this model, matter consists of topological singularities (dislocations, disclinations,
dispirations) embedded in the lattice. By analyzing the mechanical, thermodynamic, and geometric
properties of such a structure, one naturally recovers the core results of electromagnetism, special
and general relativity, gravitation, quantum mechanics, and the Standard Model—while also
providing new and physically intuitive explanations for phenomena traditionally treated as
axiomatic or unexplained.

The formulation of the deformation of a solid lattice in Euler coordinates

The mechanical behavior of deformable solids is most commonly described using Lagrangian
coordinates, where material points are tracked from their initial positions through deformation. In
this framework, various differential geometries are employed to model the topological defects—
such as dislocations and disclinations—that occur within the material.

However, the Lagrangian description presents intrinsic limitations. From a mathematical
standpoint, the tensors describing the deformation of a continuous solid in Lagrangian coordinates
are of higher order in the spatial derivatives of the displacement field, leading to cumbersome
formalisms when large distortions (both deformations and rotations) are present. Physically, the
Lagrangian system becomes impractical when describing the time evolution of a lattice’s
microscopic structure (e.g., during phase transitions) or when incorporating structural defects (point
defects, dislocations, disclinations, grain boundaries) and additional physical properties (thermal,
electrical, magnetic, or chemical fields).

The application of differential geometry to solid defects began with Nye (1953) [14], who
established the relationship between the dislocation density tensor and lattice curvature.
Independently, Kondo (1952) [15] and Bilby (1954) [16] demonstrated that dislocations can be
interpreted as crystalline analogues of Cartan’s (1922) [17] continuum torsion. This approach was
formalized in detail by Kroner (1960) [18]. While geometrically elegant, such methods inherit the
complexity of the general relativity formalism, making the resulting field equations difficult to
manipulate and interpret. Additional complications arise when introducing defect types beyond
dislocations. For example, Kroner (1980) [19] proposed that extrinsic point defects could be
associated with matter in the Universe, requiring the introduction of Einstein’s equations in a purely
Riemannian geometry, while intrinsic point defects might require non-metric affine connections.



Disclinations, in turn, may require still more elaborate geometries, such as those of Finsler or
Kawaguchi.

The net effect is that both the Lagrangian coordinate system and differential geometric
treatments often require a heavy “mathematical artillery” (metric tensors, Christoffel symbols, and
local infinitesimal reference frames), as seen, for example, in Zorawski’s theory of dislocations
(1967) [20].

Motivated by these challenges, I sought a simpler yet equally rigorous formulation of deformable
solids, by using an Eulerian coordinate system (fig. 1). This led to the Eulerian theory of Newtonian
deformable lattices [1,2], originally published in French (2013) and then in English (2016).
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Figure 1- Euler’s coordinates and the geometro-kinetic equations

In this framework of eulerian coordinates, lattice deformation is characterized by two primary
classes of geometric changes (fig. 2): the distortions, changes involving deformation and rotation,
and the contortions, changes involving bending and torsion.

The Eulerian approach employs a vector representation of tensors, offering significant
advantages over a purely tensorial description. Vector analysis provides a powerful and compact
formalism for deriving the geometro-kinetic equations in figure 1, which govern the kinetics of
deformation, and the geometro-compatibility equations in figure 2, which ensure the structural
integrity of the lattice.



Once this topological description is established, the physics—Newtonian dynamics and Eulerian
thermokinetics—is introduced. With these ingredients, one can write the complete set of evolution
equations for a lattice in Euler coordinates, capturing elastic, anelastic, plastic, and self-diffusion
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Figure 2 - The system of distortions and contortions in the presence of plastic charges
and the geometro-compatibility equations

This formulation enables the derivation of state functions and equations of state for isotropic
solids, the analysis of elastic and thermal responses, the study of wave propagation and
thermoelastic relaxation phenomena, the modeling of mass transport and inertial relaxations, and
the prediction of anelastic and plastic responses. It also describes the structural transitions of both
second and first order in solid lattices.



The concepts of dislocation and disclination charges in lattices

The study of topological singularities—defects such as dislocations (fig.3/fig.4) and
disclinations (fig.5/fig.6)—has been a central theme in solid-state physics for over a century. The
conceptual foundation was laid by Volterra (1907) [21], who introduced the idea of macroscopic
defects in elastic bodies. The modern theory of lattice dislocations began in 1934 with the
independent works of Orowan [23], Polanyi [24], and Taylor [25], who described the edge
dislocation. Burgers (1939) [26] extended the theory to screw and mixed dislocations. And by 1956,
the first direct observations of dislocations, using transmission electron microscopy, were reported
by Hirsch, Horne, and Whelan [27], and by Bollmann [28]. Disclinations were first observed by
Lehmann (1904) [29] in molecular crystals, and later described physically by Friedel (1922) [30].
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In the Eulerian theory [1,2], these defects are approached via the concept of charges—an
analogy to electric charge—using Volterra’s “cut-and-glue” constructions as a guiding intuition. In
Euler coordinates charge density appears in the geometrocompatibility equations, and charge flux
appears in the geometrokinetic equations.
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This formulation introduces two primary classes of charges (fig.2): B
- the tensorial dislocation charge density A, the vectorial flexion charge A and the scalar rotation
charge density A — first-order charges associated with plastic distortions (plastic deformation and

rotation), and



- the tensorial disclination charge density é,- and the scalar curvature charge density 0 — second-
order charges associated with plastic contortions (plastic bending and torsion).

Dislocation and disclination lines and membranes. These charges are quantized within the
lattice and can be topologically localized only along strings, 1D line defects such as dislocation or
disclination lines (fig.3/fig.4), or membranes, 2D defect surfaces such as grain boundaries or twin
planes (fig.5/fig.6). A tensor of linear dislocation charge ]\i can be defined, from which a scalar
rotation charge A (associated with the screw component) and a vector bending charge A
(associated with the edge component) are derived without the need for an arbitrary Burgers vector
convention.

Dislocation and disclination loops. These charges can also appear as topological loop
singularities of the lattice. Two of them will play a central role in the particle analogy:
- Twist Disclination Loop, constructed by making a circular cut in the lattice, rotating the two sides
relative to each other, and reattaching them. It possesses a rotation charge q,, generating a
divergent rotation vector field, analogous to an electric charge and its associated divergent electric
field.
- Edge Dislocation Loop, formed by inserting (interstitial type) or removing (vacancy type) a lattice
plane along a circular cut, then rejoining the material. It possesses a curvature charge q,,
generating a divergent curvature vector field, with some analogy with a gravitational mass.

Long-range fields of localized clusters of charges. In Euler coordinates, when one considers a
localized cluster of topological singularities—e.g., one or more dislocation loops or disclination
loops—at large distances, the short-range tensor nature of the distortion fields becomes negligible.
The lattice perturbations can then be described by a vectorial divergent rotation field associated
with the total scalar rotation charge Q, of the cluster (analogous to the electric charge), and a
vectorial divergent curvature field associated with the total scalar curvature charge Q, of the
cluster (analogous, in some respects, to a gravitational mass).

The advantages of the Eulerian charge formalism. 1t reproduces the main results of classical
dislocation theory while adding new rigor and generality. The evolution of the charges and the
associated deformation fields can be treated exactly, even under strong volume expansions or
contractions.

By introducing also charge fluxes analytically, one can describe the macroscopic and
microscopic defect structures associated with dislocation and disclination charges, the motion of
dislocation charges through Orowan’s relation, and the Peach—Koehler force acting on
dislocations.

This leads to a complete set of evolution equations for a lattice in Euler coordinates, explicitly
accounting for the presence of topological singularities. The framework enables the calculation of
fields and energies for screw, edge and mixed dislocations in isotropic lattices, their mutual
interactions, and the modeling by dislocation strings—a fundamental tool for explaining the
macroscopic anelastic and plastic behaviors of crystalline solids.

The premises for describing the Universe by a «Crystalline Ether»

The rest energy and the Lorent; transformation. Within the Eulerian framework for solid
lattices, it is possible to calculate the rest energy E; of dislocations, corresponding to the elastic
deformation energy stored in the lattice, as well as their kinetic energy E _, which is the kinetic



energy of lattice particles mobilized during defect motion. This allows the definition of a virtual
inertial mass for the defect that—remarkably—satisfies a relation of the form E :Mocz, obtained
entirely from classical mechanics, without invoking the principle of relativity.

At high velocities, dislocation dynamics also obey the principles of special relativity, including
Lorentz transformations. This relativistic behavior emerges naturally from the Newtonian lattice
dynamics described in Euler coordinates.

The analogy with Maxwell’s equations: furthermore, in the case of an isotropic solid
undergoing a homogeneous and constant volume expansion (so that deformation occurs purely
through shear), a complete and exact analogy with Maxwell’s equations appears. This is achieved
by replacing the shear tensor with the rotation vector. The existence of analogies between
electromagnetism and incompressible continuous media was noted in earlier works (see Whittaker,
1951 [31]), but the Eulerian approach extends this to the both pairs of Maxwell equations, and the
analogues of dielectric polarization, magnetization, electric charges, and currents.

Physically, this implies that a cosmological lattice could serve as a real medium supporting
electromagnetic fields, providing tangible interpretations for the field quantities of
electromagnetism.

This analogy is striking because the initial assumption is that the lattice obeys simple Newtonian
dynamics in the absolute reference frame of a “Great Observer” GO, equipped with orthonormal
rulers and a universal clock. Yet the topological singularities—dislocations and disclinations with
their associated charges—are governed internally by relativistic dynamics due to the Maxwell-like
equations that describe the shear forces. From this perspective, the relativistic behavior of
singularities is simply a consequence of the Newtonian dynamics of the lattice as seen by the GO.

The new curvature charge: it has no equivalent in standard physics, but will play a central role
in the subsequent parts of this theory.

While analogies between defect mechanics and field theories (electromagnetism, relativity,
gravitation) had been explored before—most notably by Kroner [18,19], and reviewed by Whittaker
[31] and Unzicker [32]—none reached the level of completeness afforded by the Eulerian lattice
approach. The richness of these analogies, combined with features such as the absence of magnetic-
monopole analogues and possible resolutions of long-standing paradoxes (e.g., the electron’s self-
energy problem), strongly motivated further investigation.

This progression ultimately led to the development of the crystalline ether hypothesis, as
presented in my later works [8,9]: a finite, elastic, massive lattice embedded in an absolute vacuum,
in which topological singularities represent matter, and whose mechanical laws reproduce—and
often clarify—the known laws of physics.

The «Crystalline Ether » and its Newton's Equation

By introducing specific elastic properties for describing a cosmological lattice—namely volume
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one obtains the Newton'’s equation describing the local momentum p of the lattice:
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in which €, and C, are respectively the atomic concentrations of self-interstitials and vacancies,
and A is the vectorial flexion charge. -

This Newton’s equation contains an additional force term grad(F di“) directly related to the
local distortion energy which can be due to the topological singularities contained in the lattice. In
the cosmological interpretation, these singularities correspond to matter. This additional term will
then play a fundamental role in establishing analogies not only with gravitation but also with
quantum physics.

Wave Propagation and the Nature of Photons and Quantum Wave Functions. In this
cosmological lattice, transverse and longitudinal wave propagation exhibits distinctive features:
- linearly polarized transverse waves are always accompanied by longitudinal wavelets.
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- pure transverse waves can only be realized as circularly polarized waves, a property that connects
directly to the behavior of photons in quantum electrodynamics.

- longitudinal waves may vanish entirely (as in general relativity’s treatment of gravity), but only
under certain conditions, specifically when the lattice’s volume expansion drops below a critical
threshold, and

- localized longitudinal vibration modes appear in this case. These modes will have a direct link to
the quantum wave function in quantum mechanics.

Black hole in the vicinity of an expansion singularity. By calculating the curvature of wave
trajectories in the vicinity of a singularity in the volume expansion field 7, one can determine the
conditions under which a “lattice trap” or “sphere of perturbations” forms for transverse waves.
Such traps correspond to black holes in the astrophysical analogy: regions from which no transverse
wave (light) can escape (fig.7).

Cosmological Expansion, Dark Energy, and Cyclic Scenarios. A finite cosmological lattice in
absolute space can undergo dynamic volume expansion and contraction, driven by a kinetic energy
of expansion. Depending on the signs and magnitudes of the elastic moduli, several expansion
scenarios emerge: Big Bang—like expansion, with a rapid inflation, then a deceleration and possibly
followed by a re-acceleration of expansion, and Big Crunch—like contraction, as illustrated in figure
8, potentially leading to Big Bounce cycles.
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In this framework, the acceleration of cosmic expansion—currently attributed to a hypothetical
dark energy—is instead a natural consequence of the lattice’s stored elastic and kinetic energies of
expansion.

Electromagnetic Field Analogy and Maxwell’s equations

Newton’s equation (2) for the cosmological lattice can be decomposed into: a rotational part,
associated with shear deformations and local rotations, and yielding equations for the macroscopic
local rotation field identical to Maxwell’s equations of electromagnetism, and a divergent part,
associated with the scalar expansion field and responsible for gravitational and quantum
phenomena.

This separation is possible under the assumption that the concentrations of point defects—
vacancies and self-interstitials—are spatially homogeneous and constant in time. In such a case, the
velocity fields of the lattice and its defects can be split into rotational components (index “rot”) and
divergent components (index “div”), leading to two coupled but distinct subsystems of equations.

When the average volume expansion field is both homogeneous and quasi-constant, the density
of lattice sites can be considered uniform. Newton’s equation then reduces to its purely rotational
part. The full description of the rotational field requires incorporating the fopological equations for
the elastic rotation vector, namely the geometro-kinetic equation (fig.1—analogous to Maxwell—
Ampere), and the geometro-compatibility equation (fig.2—analogous to Maxwell-Gauss), in the
presence of rotation charges.

Exact analogy with Maxwell’s equation. In this quasi-constant expansion regime, the set of
equations (3) describing shear and rotation in the cosmological lattice is formally identical to
Maxwell’s equations (4) for electromagnetic fields in a continuous medium.
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Physical interpretations in this analogy. The analogy with electromagnetism offers a direct

mapping between lattice quantities and electromagnetic ones:

- rotation field @& of the lattice corresponds to electric displacement field D,

- rotation torque field M corresponds to electric field E

- lattice velocity field ¢ corresponds to magnetic field H ,

- momentum field np corresponds to magnetic induction field B,

- density of rotation charges A corresponds to density of electric charges

- anelastic rotation field &®™ corresponds to dielectric polarization P (for which relaxation,
resonance and hysteresis behaviours are possible),

- mass transport in the lattice corresponds to magnetic response of matter (paramagnetic and
diamagnetic analogy with atomic concentrations of interstitials and vacancies, magnetization
analogy with flux of vacancies and interstitials).

Only the presence of the vectorial flexion charge A" in the Newton’s equation of cosmological
lattice differs from the Maxwell-Faraday's equation of electromagnetism. But this charge A,
which should correspond to a vector electric charge, cannot exist as long as we only consider
topological singularities of the loop type.
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This correspondence is more than formal: it extends to phenomenological behaviour, including
relaxation laws, thermal activation effects, and even hysteresis in non-Markovian transport regimes
of defects—directly analogous to magnetic hysteresis in ferromagnetic or antiferromagnetic
materials.

Lorentz transformation and Special Relativity

Lorentz transformation. In the cosmological lattice approach, the elastic distortion fields
generated by moving topological singularities—such as dislocations, disclinations, or rotation
charges—propagate at finite speeds through the lattice via transverse waves. When the description
is shifted from the local fixed reference frame of the lattice to the local moving frame of the



singularity, the transformation laws of the fields reduce exactly to the Lorentz transformation. This
correspondence reproduces the well-known relativistic effects of length contraction along the
direction of motion, time dilation, and invariance of the transverse wave velocity in moving local
frames.

To interpret the shortening of the ruler in the direction of movement, we have to imagine the
architecture of the cluster as a set of topological singularities linked together by their interactions
via their respective fields of rotation (figure 9). These singularities of the lattice move relative to the
lattice at velocity V in the direction Ox_, and the finiteness of the speed c, of their interactions via
the rotation field requires that the complete architecture of the cluster of singularity contracts in the
direction Ox, .
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Figure 9 — The mobile Lorentz frames of the moving observers HS’ and HS"'

But this contraction does not affect the lattice, which retains its original volume expansion state,
which is shown in figure 9 for the case of two clusters of identical singularities which move at two
different velocities, v' and v", measured compared to the lattice by the GO observer. Thus, the
relativistic effects on the rulers of observers HS’ and HS'', associated with the collective movement
of singularities with respect to the lattice, have nothing to do with the effects of volume expansion
or contraction of the lattice as illustrated in figure 13.

Unlike Einstein’s formulation, in which the Lorentz transformation is a universal postulate, here
it emerges directly from the material structure of the cosmological lattice, which acts as the physical
support for all phenomena. This framework privileges the absolute reference frame of the Grand
Observer GO, capable of measuring absolute velocities and simultaneity. Observers made of



singularities—Homo Sapiens HS’ and HS''—are limited to relative simultaneity and cannot detect
their absolute state of motion inside the lattice.

The relativistic energy of a moving singularity in the lattice follows the exact Einsteinian form
E = mctz, where ¢, is the velocity of transverse waves in the lattice. This result holds for screw and
edge dislocations as well as for disclination or dislocation loops. Only spherical rotation charges
deviate slightly, producing a situation reminiscent of the classical electromagnetic “electron
paradox.” The analogy extends further: the Peach—Koehler force acting on moving rotation charges
plays the same role as the Lorentz force in electromagnetism.

In this perspective, the cosmological lattice is a genuine physical aether. While the GO can
detect absolute motion and simultaneity, and measures light propagation speed strongly dependent
on the value of the lattice expansion, HS observers always measure a constant light propagation
speed in all inertial frames and remain unaware of the underlying absolute frame. Relativistic
effects such as time dilation and length contraction of figure 9 coexist with possible local volume
variations of the lattice due to expansion or contraction (figure 13).

Special relativity. This reinterpretation preserves the predictions of Special Relativity while
embedding them in an absolute framework. It offers natural explanations for experimental results,
such as the null outcome of the Michelson—Morley experiment, the composition of relativistic
velocities, and the classical Doppler—Fizeau formulas—reinterpreted from the standpoint of the
GO.

The twin paradox. Imagine two Homo Sapiens, denoted HS’ and HS'', each moving at a
different velocity as measured by the external observer, GO. For the two HS observers
themselves—who have no access to these absolute velocities but can only perceive their relative
motion, as illustrated in figure 9—their principle of relativity corresponds exactly to that of Special
Relativity. In particular, when applying the Lorentz transformation, HS’’ perceives HS’ as aging
more slowly, while HS”’ simultaneously perceives HS’’ as aging more slowly. At first glance, this
symmetrical situation seems paradoxical and is known as the twin paradox in Special Relativity.
However, within this framework, the paradox finds an elegant resolution. It is the observer GO who
can unambiguously determine that the Homo sapiens who traveled at the higher velocity relative to
the lattice reference frame will indeed be younger than his twin upon reunion.

Gravitational Field Analogy for the topological singularities

Gravitational Field. In the cosmological lattice framework, topological singularities—localized
distortions such as dislocation loops, disclination loops, or rotation charges—generate external
expansion perturbation fields t that behave analogously to gravitational fields. Newton’s second
partial equation shows that these gravitational-like fields consist of three distinct components:

- a dominant term associated with the energy (mass-energy term) of the singularity,
- a weaker term linked to the curvature charge of the singularity, and
- another weaker term associated with its rotation charge.

This threefold decomposition goes beyond Einstein’s General Relativity, which accounts only

for the mass-energy term.

Static versus dynamic gravitational fields: the quantum decoherence. A central result of the
theory, is that the external expansion perturbation fields of a singularity can exist in two
fundamentally different regimes:



- Static regime: if the energy density or/and rotation charge are below some critical values, stable
static solutions exist, corresponding to stationary long-range gravitational-like fields.
- Dynamic regime: if these quantities exceed these critical values, no static solution to Newton’s
second partial equation exists. The only possible solutions are dynamic, marking a transition to
behaviors analogous to quantum effects. This threshold defines the quantum decoherence limit for
the singularity, a topic we will revisit later.

Thus, figure 10 maps the domains of existence of static and dynamic solutions, showing that
high-energy singularities inevitably enter a time-dependent, potentially quantum-dominated phase.
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Figure 10 - the mean perturbation field in the static solution domain for energy density values
of the singularity below the critical value, and domain of the quantum behaviour
for values above the critical value.

Static gravitational fields of elementary dislocation loops. Calculations applied to the
fundamental loop types reveal the structure of their gravitational fields:
- Twist disclination loop (rotation charge): produces a long-range 1/r gravitational-like field from its
elastic distortion energy, analogous to the gravitational field of mass, and a short-range 1/r’ term
from its rotation charge. Its gravitational mass equals its inertial mass.
- Prismatic edge dislocation loop (curvature charge): its gravitational field is dominated by the
curvature term producing a long-range 1/r gravitational-like field, rather than the distortion energy
term. This leads to a difference between the inertial mass and the gravitational mass of the edge
dislocation loop. Moreover, the equivalent curvature mass can exceed the inertial mass and may
even be negative in the case of the interstitial-type loops, suggesting the theoretical possibility of
repulsive gravity in this framework.

In all cases, the energy of the gravitational field itself for the different loops is negligible



compared to their elastic distortion energies, meaning Einstein’s relation E =M, 0c2 holds precisely
within the lattice model.

Newtonian Gravitation in the Cosmological Lattice Framework

The long-range gravitational interaction between clusters of twist disclination loops in the
cosmological lattice exhibits a strong formal analogy with Newton’s law of gravitation.
In this framework, the inertial mass of twist disclination loops—proportional to the square of their
rotation charge—dominates over that of edge or mixed dislocation loops. Consequently, expansion-
field perturbations are primarily generated by these twist disclination loops.

When two such clusters, separated by a distance d, interact via their expansion-field
perturbations, the resulting force of interaction depends on the gravitation masses of the clusters,
and can be calculated and expressed in the form:
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where G(K K ,K,,7,,..) plays the role of a gravitational constant, but depends in fact on the
intrinsic lattice parameters and also on the local background volume expansion 7. The correction
term 6(1/d,..) is of second order and becomes negligible for low cluster densities and large
separation d, recovering the exact Newtonian form.

Unlike the universal constant G of classical gravitation, G(K oK K, 7)) varies with the
average state of expansion T of the lattice, and may even become negative if lattice expansion
exceeds a certain critical value This introduces a potential coupling between cosmological
expansion and the effective strength of gravitation, suggesting that gravitational interactions could
evolve over cosmic time.

At short ranges, the second-order corrections predict a slight change in the force compared with
pure Newtonian gravity equation. For planetary motion, these corrections are minimal as in the case
of General Gravity

Thus, within the weak-field and large-distance regime, the cosmological lattice approach
reproduces Newtonian gravitation exactly, while naturally embedding it into a broader framework
in which G(K,,K,,K,,7,,..) becomes a dynamic quantity tied to the lattice’s expansion state.

General Relativity analogy

By considering the gravitational effects on topological singularities composed primarily of twist
disclination loops, the cosmological lattice model allows us to deduce how local rulers and clocks
behave for observers HS embedded within regions of varying lattice expansion 7 (fig.11).

Local Invariance of Maxwell’s Equations. A key result is that Maxwell’s equations remain
locally invariant for any local observer HS, regardless of the local value of the lattice’s volume
expansion. This means that, for every local observer, the speed of transverse waves—identified
with the speed of light—is constant. However, when measured by the Great Observer GO in
absolute space frame, this wave speed depends strongly on the local expansion 7 .

This reconciles the invariance of light speed in relativity with a deeper mechanical explanation:
the constancy is a local property of the lattice dynamics in the local frames of the HS observers
rather than a fundamental postulate.



Local observers HS
(Homo Sapiens)

S,

External Great
Observer GO
Invariant Maxwell’s equations Maxwell’s equations dependent on local expansion
in Oy,yzy,t, in Ox,x,X,
K + K +K K +K
€=y~ =cste Ct(‘t)=J 23 —of 223 xeste
mn, mn mn,

Figure 11 - Local rulers and clocks in the reference frames of the homo sapiens HS and HS”,
and the local invariance of the Maxwell’s equations in the HS frames.

Analogies with the equations of General Relativity. The gravitational interactions derived from
the expansion field show strong analogies not only with Newtonian gravitation in the weak-field
limit, but also with the Einstein’s general relativity in curved space-time descriptions. For example
the model reproduces Schwarzschild-like metrics at large distances from a massive object, and it
predicts the same deflection of wave trajectories (light bending) than the General Relativity in
strong gravitational fields.

But the Eulerian approach differs slightly from General Relativity, as shown in table 12, and
introduces two key refinements compared to General Relativity:

- Short-range modifications of Schwarzschild’s metric, arising naturally from the lattice structure.

- a finite treatment of black hole horizons: the radius of the sphere of perturbations and the point of
no return are identical, equal to the Schwarzschild radius, and the limit radius at which
gravitational time dilation would become infinite is reduced to zero, eliminating divergences in the
description of the black hole interior. This means that the model does not encounter the infinite
quantities that often plague black hole solutions in general relativity.

These gravitational results not only match Einstein’s predictions in the appropriate limits but
also extend them, offering new interpretations of relativistic effects as emergent mechanical
phenomena within the cosmological lattice



Perfect cosmological lattice General Relativity
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Table 12 - Comparative behavior of the perfect cosmological lattice with the General Relativity

Weak Interaction Forces Between Loop Singularities: Particles and Antiparticles

Among the possible fopological loop singularities of the cosmological lattice, two play a central
role in the particle analogy: the twist or screw disclination loop, and the edge dislocation loop.
When a twist disclination loop and an edge dislocation loop couple, their respective rotation and
curvature fields interact, and they form a dispiration loop. This interaction produces a short-range
binding potential—eftectively a capture force—between the loops (fig.13).

Weak interaction force and particles-antiparticles in this lattice picture. Because of its very
limited range, this interaction is directly analogous to the weak nuclear force observed in the
Standard Model (fig.14). The dispiration loop model thus provides a mechanical interpretation of
particles bound by the weak force. In this framework:

- a particle corresponds to a dispiration loop in which the edge dislocation component is of
interstitial type (positive curvature charge),

- an antiparticle corresponds to a dispiration loop in which the edge dislocation component is of
vacancy type (negative curvature charge).

The twist disclination component provides the electric charge of the particle, while the edge
dislocation component determines its curvature charge.

Mass of Curvature and Deviation from the Equivalence Principle. A key new concept in this
model is the mass of curvature: the equivalent mass associated with the gravitational effects of the
curvature charge. Unlike inertial mass, curvature mass can be positive (vacancy loops) or negative
(interstitial loops).
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Figure 13 - Long and short range interactions potential between a twist disclination loop (BV)
and an edge dislocation loop (BC), with different dislocation loops nature

This leads to a small deviation from the equivalence principle: particles and antiparticles have
identical inertial masses (related to their energy), but their gravitational masses (which correspond
to the sum of their inertial mass and their curvature mass) differ slightly due to the opposite signs of
their curvature charges.
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For example, in the case of neutrinos and antineutrinos:
- a neutrino (pure interstitial edge dislocation loop) has a negative gravitational mass (antigravity),
because its negative curvature mass has a greater magnitude than its inertial mass.
- an antineutrino (pure vacancy edge dislocation loop) has a positive gravitational mass of slightly
greater magnitude than the negative gravitational mass of the neutrino.

Cosmological Consequences of Curvature Mass Asymmetry. This asymmetry between the
gravitational properties of particles and antiparticles will play a major role in the cosmological
evolution of matter and antimatter. It provides a natural mechanism for matter—antimatter
segregation in the early Universe and offers an explanation for the observed matter dominance. In
the next section, we will see that this mechanism also contributes to the formation of galaxies and
their central supermassive black holes, the apparent disappearance of antimatter from the
observable Universe, and the nature of dark matter as a background sea of gravitationally repulsive
neutrinos.

Black Holes and Neutron Stars

The cosmological lattice framework allows the introduction of macroscopic lacunar or
interstitial singularities, which may appear as a spherical hole in the lattice of lacunar type (fig.15),
or a spherical inclusion of interstitial type composed of a lattice material embedded within the
surrounding lattice (fig.1).
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Figure 15 - the external expansion field of a macroscopic vacancy for two values of the
background expansion of the lattice. Case (b) may correspond to a black hole.



Formation from Gravitational Collapse. Consider a macroscopic object within the cosmological
lattice, composed either entirely of particles (with interstitial curvature charge) or entirely of
antiparticles (with vacancy curvature charge).

If the object’s mass is sufficiently large, and if it is electrically neutral (composed of electrically
neutral atoms), gravitational attraction will eventually cause it to collapse under its own weight:

- Case [ — Antiparticle-dominated object: the twist disclination loops (electric charges) annihilate in
pairs, releasing enormous amounts of energy, and the edge dislocation loops of lacunar type merge
into a spherical hole in the lattice. The result is a macroscopic lacunar singularity (fig.11),
becoming a black hole in the astrophysical analogy in the case (b).

- Case 2 — Particle-dominated object: the twist disclination loops (electric charges) also annihilate,
again releasing large amounts of energy and the edge dislocation loops of interstitial type coalesce
into a spherical inclusion of lattice material. The result is a macroscopic interstitial singularity
(fig.12), a neutron star (a pulsar) in the astrophysical analogy.

AT

Figure 16 - the internal and external expansion fields of a macroscopic interstitial

Neutron Stars and Black Holes as “Particle-Antiparticle” Pairs. In this interpretation, a black
hole is the macroscopic “antiparticle” of a neutron star, if both originate from collapsing objects
initially containing equal numbers of curvature-charged loops. Combining a neutron star and a
black hole of corresponding magnitudes would then result in mutual annihilation, releasing extreme
amounts of energy.

Implications for High-Energy Astrophysics. This lattice-based view of compact objects:
- provides a mechanical analogy for the nature of black holes and neutron stars,
- suggests new ways to think about energy release during collapse.
- links macroscopic astrophysical phenomena directly to the microscopic topology of space at the
lattice level.



A plausible scenario for the cosmological evolution of the Universe

In standard physics, General Relativity (GR) governs gravitational interactions, while the
Standard Model of particle physics describes the properties of elementary particles. However,
neither framework satisfactorily explains why our Universe is predominantly matter, how galaxies
initially formed, or the nature of the so-called “dark matter.”

The cosmological lattice theory provides an alternative approach by modeling the fabric of space
as an elastic, discrete lattice capable of hosting topological singularities. Particles and antiparticles
are not fundamental point-like entities but composite structures made of loops of disclinations and
dislocations. Crucially, the theory introduces curvature charge, a property absent from General
Relativity and the Standard Model, associated with edge dislocation loops. This curvature charge
directly affects the gravitational behavior of particles, particularly neutrinos, leading to phenomena
not predicted by conventional theories.

Particle Composition and Curvature Charge. The model classifies particles according to the
nature of their dominant topological singularities:

- Matter particles — e.g., electrons, protons, neutrons — contain twist disclination loops (giving
electrical charge), possible mixed dislocation loops (electric dipole moment), and predominantly
interstitial edge loops with negative curvature charge. They are gravitationally attractive.

- Antimatter particles — e.g., positrons, antiprotons — contain twist disclination loops, possible mixed
dislocation loops, and predominantly vacancy edge loops with positive curvature charge. They are
gravitationally attractive.

- Neutrinos are pure interstitial edge loops with negative curvature charge, without disclinations or
mixed dislocations. They are gravitationally repulsive.

- Antineutrinos are pure vacancy edge loops with positive curvature charge. They are
gravitationally attractive.

This structural difference induces 15 possible gravitational interactions of varying intensities,
depending on the type of singularities involved. In most interactions between particles and/or anti-
particles, gravity is attractive but slightly stronger for antiparticles than for particles. In contrast,
neutrino—neutrino interactions are repulsive, antineutrino—antineutrino interactions are attractive,
and neutrino—antineutrino interactions are extremely weak.

A Plausible Evolutionary Scenario. On the basis of the cosmological expansion-contraction
behaviors of the lattice and the gravitational interactions between topological singularities via the
local volume expansion of the lattice, we can then imagine a very plausible scenario of
cosmological evolution of the topological singularities leading to the current structure of our
Universe.

This scenario is entirely based on the fact that, in the case of the simplest edge dislocation loops,
analogously similar to neutrinos, the mass of curvature dominates the mass of inertia, so that
neutrinos should be the only gravitationally repulsive particles, while anti-neutrinos would be
gravitationally attractive. This assertion then allows us to give a simple explanation to several facts
that are still very poorly understood in the evolution of matter in the Universe.

Stage 1 — Big Bounce and Lattice Solidification. At the end of contraction, enormous
compression heats the lattice to extreme temperatures, possibly “liquefying” its structure. The
rebound initiates cooling, leading to rapid solidification into a lattice. As in classical crystallization
processes, this transition produces numerous topological defects—dislocations and disclinations,
loops, vacancies, interstitials—distributed throughout the lattice space.



Stage 2 — Formation of Elementary Particles. Cooling during inflation causes singularity loops
to bind into stable, localized configurations—topological “dispirations”—that correspond to known
elementary particles and antiparticles

Stage 3 — Galaxy Formation in a Sea of Repulsive Neutrinos. The initial “hot soup” of particles
and anti-particles contains both attractive particles (matter and antimatter) and repulsive neutrinos.
As temperature decreases, the system undergoes a phase separation (fig.17): attractive particles and
anti-particles precipitate, while neutrinos form an expansive surrounding medium. This phase
transition naturally yields proto-galaxies embedded in a neutrino “ocean.” This mechanism, absent
in classical cosmology, makes neutrino repulsion the driver of galaxy formation.
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Stage 4 — Matter—Antimatter Segregation within Galaxies. Gravitational asymmetry between
matter and antimatter leads antiparticles to migrate inward toward galactic centers, while matter
remains in the periphery. The central zones experience intense annihilation matter-antimatter
(producing gamma radiation).

Stage 5 — Disappearance of Antimatter via Black Hole Formation. The antimatter-rich galactic
cores undergo gravitational collapse, producing macroscopic vacancies that, beyond a certain
expansion threshold, behave as supermassive black holes. This process explains both the absence of
antimatter in today’s Universe and the observed ubiquity of massive central black holes in galaxies.

Stage 6 — Star and Planetary System Formation. With antimatter gone, residual matter coalesces
into gas clouds, igniting star formation and generating planetary systems.

Stage 7 — Stellar Collapse and Neutron Stars. Most massive matter stars in galaxies can also
undergo gravitational collapse into macroscopic interstitial singularities, corresponding to neutron
stars or pulsars—never into vacancy-type black holes, since they lack the structural composition of
antimatter.

Stage 8 — Future Evolution. The Universe continues expanding at an accelerating rate.
Approaching a critical expansion value will invert the gravitational constant’s sign and eliminate
localized quantum modes in favor of the appearance of longitudinal waves, leading to a cataclysmic
evolution of the Universe. This stage could be followed by a contraction phase (fig.8) and,
eventually, another big bounce.

Dark Matter. The pervasive neutrino sea exerts a compressive effect on galaxies, which
counterbalances rotational and tidal forces, and which naturally explains the high velocities of
peripheral stars. This mechanism directly links the concept of curvature charge in neutrinos to the
dark matter problem, removing the need for dark matter (unseen exotic mass).

Reinterpretation of Key Cosmological Observations. The cosmological lattice model provides a
unified reinterpretation of key cosmological phenomena and their present-day consequences:
- Matter—Antimatter Asymmetry — The introduction of curvature charge in dislocation loops
provides a single mechanism that explains both the observed asymmetry and the subsequent
disappearance of antimatter. This same property drives the segregation of matter and antimatter
during galaxy formation.
- Supermassive Black Holes — Their universal presence at galactic centers is naturally explained by
the gravitational collapse of segregated antimatter, linking the antimatter problem to one of the most
striking large-scale structures in the Universe.
- Neutron Stars — The collapse of massive stars in the matter-dominated arms of galaxies produces
compact stellar remnants (neutron star), whose density and rotation reflect the specific curvature
charges and rotation of the initial star.
- Large-Scale Galaxy Distribution — The combined effects of matter clustering, antimatter collapse
into central black holes, and the compressive action of the neutrino sea shape the hierarchical
structure of galaxies, clusters, and filaments observed today.
- Hubble Constant — instead of being a universal constant, it emerges as a direct measure of the
lattice expansion rate, and therefore varies with cosmological epoch. This connects the large-scale
dynamics of the Universe with the microscopic structure of the lattice.
- Galaxy Redshift — the observed spectral shifts arise from lattice expansion during photon travel,
rather than from Doppler motion. In this framework, no speed-of-light limit applies in the GO
frame, thereby reconciling observed redshifts at extreme distances.



- Cosmic microwave background (CMB) — when the temperature drops to ~3000 K, matter and
antimatter become electrically neutral (via atom formation), allowing photons to decouple and
propagate freely, producing the cosmic microwave background (CMB). The observed “cooling” of
the CMB to 2.7 K is explained as a direct effect of lattice expansion altering rulers and clocks in
local HS reference frames, while in the GO frame photon frequency remains constant and only the
wavelength stretches.

Conclusion. The formation of galaxies could correspond to a phenomenon of precipitation of
matter and antimatter within a sea of repulsive neutrinos. The disappearance of antimatter could
correspond to a phenomenon of segregation of particles and antiparticles within galaxies, due to
their slight difference in gravitational properties, a segregation during which antiparticles would
gather in the center of galaxies to finally collapse and form gigantic black holes in the heart of
galaxies, a phenomenon that perfectly explains the disappearance of anti-matter from the Universe.

The cosmological lattice theory unifies aspects of particle physics, gravitation, and cosmology in
a coherent framework rooted in topological singularities. Its predictions—particularly regarding
neutrino gravitational behavior and the evolution of curvature charge—offer multiple avenues for
observational verification. If confirmed, this model would provide a physically grounded alternative
to both dark matter and inflationary cosmology, while opening new perspectives on the cyclic
nature of the Universe.

Quantum physics

Quantum mechanics, despite its extraordinary predictive power, remains conceptually opaque.
The central object of the theory—the wave function—is a mathematical tool without an agreed-
upon physical interpretation. Attempts to restore physical meaning, such as de Broglie’s pilot-wave
theory or Bohm’s stochastic mechanics, illustrate the enduring unease about the completeness of the
quantum formalism.

From Static to Dynamic Perturbations. In figure 9 of the lattice model, a singularity’s mass
density defines whether expansion perturbations remain static or dynamic. Below the critical
threshold, internal distortions balance elastically, producing a static gravitational field. Above it,
equilibrium becomes impossible, and perturbations must oscillate dynamically. This threshold is
identified with the quantum decoherence limit, the boundary between classical-like static states and
fully quantum dynamic behavior.

These dynamic perturbations obey Newton’s second partial equation for lattice expansion
(fig.18). At first order, localized solutions exist in the form of exponentially decaying oscillations.
These represent stable, bounded fluctuations whose amplitude diminishes with distance but
oscillates with a pulsation dependent on the singularity’s energy. In effect, singularities become
sources of oscillatory gravitational waves confined within the lattice.

To connect these fluctuations with measurable quantities, a conjecture has to be made, which
postulates a correspondence between derivatives of the wave function and physical observables:

- the second time derivative correlates with the square of relativistic energy,
- the spatial Laplacian correlates with the square of relativistic momentum.

Introducing a universal scaling constant—identified with Planck’s constant—aligns these
relations with the canonical operators of quantum mechanics. This conjecture is not arbitrary: it
arises naturally from the dynamics of lattice fluctuations and thus provides a physical grounding for
the operator formalism of quantum mechanics.



Relativistic Regime. For a massive singularity moving at relativistic speeds, the relativistic wave
equation predicts (fig.19):
- Temporal oscillations with frequency increasing with energy and diverging as velocity approaches
the speed of light.
- Spatial oscillations whose wavelength contracts with velocity, reproducing Lorentz contraction.
- Envelope decay narrowing with increasing energy, meaning fluctuations become more localized
for massive or fast-moving singularities.
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These predictions echo relativistic effects described in special relativity, but here they are
derived from lattice dynamics rather than spacetime geometry.

The wave function is no longer abstract. It is the mathematical representation of oscillatory
gravitational fluctuations coupled to singularities. Regions where the amplitude vanishes
correspond to zones with negligible gravitational oscillations—hence negligible probability of

finding a singularity. Conversely, zones of high amplitude correspond to a high likelihood of
presence.
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Figure 19 - Associated gravitational perturbations
to a massive singularity moving at relativistic speed

Non-Relativistic Limit. When motion is slow and a potential dominates, the relativistic wave
equation reduces to a non-relativistic form identical to Schrodinger’s equation (fig.20)

The Hamiltonian H=T+V(r,t) emerges as the sum of kinetic and potential energies of the
singularity. Stationary solutions correspond to eigenstates with quantized energies, just as in
standard quantum theory.

The last one relation for £'” in figure 19 allows us for the first time to give a comprehensible
interpretation to quantum mechanics by saying that:

“The Schrodinger equation is an equation deduced from the second partial equation of Newton




of a perfect cosmological lattice, which allows us to calculate the wave function l//H(F,t) of a
topological singularity, representing the amplitude and phase of the dynamic gravitational
Sfluctuations of pulsation @ = H /h associated with its Hamiltonian H”.

Stationary Case. In static potentials, the wave equation reduces further to the time-independent
Schrodinger equation, leading to discrete eigenvalues and eigenfunctions. Physically, this describes
standing gravitational oscillations modulated by the potential landscape (fig.21).
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Figure 20 - Non-relativistic wave equation and Schrodinger's equation
in the case of gravitational perturbations associated
to a massive singularity moving at non-relativistic speed

Quantum Phenomena Reinterpreted. This approach naturally explains the emergence of wave—
particle duality, Heisenberg’s uncertainty principle, bosons and fermions, Pauli’s exclusion
principle, and quantum entanglement:



- Wave—Particle Duality: In this model, the singularity is the particle and the gravitational
fluctuation field is the wave. Their coexistence makes wave—particle duality a straightforward
consequence rather than a paradox.

- Double-Slit Experiment. A singularity passes through one slit, but its fluctuation field spans both.
Interference arises when fields recombine, guiding the trajectory of the singularity and producing
the observed statistical pattern.

- Uncertainty Principle. Non-commutativity of operators derived from the conjecture in figure 18
yields Heisenberg’s uncertainty relations. Measurement imprecision reflects the inherent coupling
between position and momentum encoded in gravitational fluctuations, not an intrinsic randomness
of nature.

ih a—u—l = L Ay +(E a5t 4 V(F])y/ Non-relativistic wave equation
ot 2M, ~ ‘'° s
: ., 0
conjecture 10 ih i, e Ey
LS AV N = (Ev ~E&)y=(E“+V)y=Hy Wave equatior?
2M, — = = = ~—  independent of time
eigen values of the energy H=H
2
= Ay, +V(F)y,=Hy, Stationnary Schrédinger’s equation
(]
stationnary wave function v,
420, : > :

TP(F ) =hy, (F )e " Stationnary gravitational perturbations

Figure 21 - Schrédinger's standing wave equation with eigenvalues
for a massive singularity placed in a static potential

- Entanglement and Decoherence. When two singularities share a common fluctuation field, they
become entangled: perturbing one modifies the shared field, immediately affecting the other.
Decoherence occurs when the shared field is disrupted, decoupling the singularities.

- Bosons, Fermions, and the Exclusion Principle. When two singularities coexist in the same
potential, symmetric superpositions (bosons) allow them to share states without destructive
interference of fluctuations of pulsation @ =(2E HH +Hm) /h, and antisymmetric superpositions
(fermions) annihilate fluctuations of pulsation a)=‘Hn—Hm‘/ h if states coincide, embodying
Pauli’s exclusion principle. This distinction emerges directly from the behavior of lattice

perturbations, not as an imposed axiom, as shown in figure 22.
- Relation to Bohmian Mechanics. The approach parallels Bohm’s pilot-wave theory but grounds
the guiding wave in the real physical substrate of lattice fluctuations. Unlike purely formal pilot



waves, these fluctuations have measurable energetic content and obey Newtonian equations.

- Reconciling Einstein and Quantum Mechanics, Einstein’s critique of quantum theory—that it
lacked completeness—finds validation here. The probabilistic nature of quantum outcomes is not
fundamental but arises from stochastic dynamics of singularities, akin to Brownian motion or
walking droplets experiments. Hidden variables exist, but they are non-local gravitational
fluctuations, consistent with Bell’s theorems.
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Figure 22 - Stationary equation for the superposition of topological singularities,
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- The Role of Planck’s Constant. Planck’s constant enters naturally as the scaling factor between
wave function derivatives and energetic terms. This raises the possibility that Planck’s constant is
not fundamental but derivable from lattice parameters, offering a deeper origin of quantization

Conclusion. We have established a coherent framework where quantum mechanics emerges as
the microscopic manifestation of gravitational fluctuations in a cosmological lattice. Schrodinger’s
equations, uncertainty principles, and particle statistics all follow directly from Newton’s second
partial equation of the lattice once the quantum decoherence limit is surpassed.

This approach demystifies the wave function, explains quantum probabilities as expressions of
fluctuating gravitational fields, and unifies classical and quantum descriptions under a single lattice-
based mechanics. If correct, this framework implies that guantum physics is already a gravitational
theory, rendering unnecessary attempts to “quantize gravitation” in the traditional sense.



Topological and Classical Interpretation of Quantum Spin

Spin is a cornerstone of modern quantum mechanics, yet its physical meaning remains
enigmatic. In the standard view, spin is treated as an intrinsic quantum number without classical
analogue. Attempts by early quantum theorists to interpret spin as the self-rotation of a particle
were abandoned because the equatorial velocity of such a rotation would exceed the speed of light.
However, within the cosmological lattice framework—where space is modeled as an elastic
medium populated by topological singularities—this objection disappears. Near the core of
singularity loops, static expansion is extremely high, raising the effective local speed of light and
allowing rotational motions that would otherwise be forbidden. This reinterpretation opens the
possibility that spin is, in fact, a quantized rotational motion of loops of topological defects.
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Figure 23- Classic solution of rotation of the twist disclination loop:
angular momentum, magnetic moment and kinetic energy.



As a matter of fact, using a simplified form of Newton’s second partial equation applied within
the torus surrounding a twist disclination loop, one finds that static solutions require unrealistic
constraints on elastic moduli. Numerical estimates, using analogies with electron parameters,
confirm that these conditions cannot be met. Therefore, the internal field of gravitational
perturbations inside the loop cannot remain static. This leads to the conjecture that, in the perfect
cosmological lattice, the loop must adopt a dynamic state.

Classic treatment of the loop rotation. The only possible dynamic solution is a confined rotation
of the loop on itself . Treating the loop as a classic rotating toroidal object with distributed mass
yields expressions for its moment of inertia, angular momentum and kinetic energy (fig.23).

Because the loop carries a rotation charge (analogous to electric charge), its rotation induces a
magnetic moment. The ratio of magnetic moment to angular momentum, i.e. the gyromagnetic
ratio, emerges naturally and is approximately equal to 2, recovering the Bohr magneton for
electrons.
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Figure 24 - Quantum solution of rotation of the twist disclination loop:
quantified rotational energy levels and magnetic quantum number



Quantization: Assuming that the twist disclination loop actually turns on itself, this microscopic
movement of rotation will induce a field of gravitational fluctuations in the vicinity of the loop,
depending on the second partial Newton equation.

Now we saw in the previous part that, in the absence of a time-varying potential, Newton's
second partial equation leads to the stationary Schrodinger equation, illustrated in figure 19. The
treatment of the rotation movement of a microscopic object around an axis by the stationary
Schrédinger equation is succinctly summarized in figure 24.

For a particle subject to rotation, it is preferable to describe the operator H linked to the classical
Hamiltonian in spherical coordinates (0,¢) . In the absence of a potential, this operator H is linked
to the square operator of the angular momentum L? by the last relation obtained in figure 22. With
the expression of this operator in spherical coordinates, we deduce the stationary Schrdodinger's
equation in spherical coordinates, whose stationary solutions have quantified energy levels
g =h*j(j+1)/2I,, of rotation.

For each value of the energy € corresponding to a given angular speed, there are 2j+1
different eigenstates corresponding conventionally to different orientations of the axis of rotation. It
is said that the energy state €, has a degeneracy of 2j+1.

It is the magnetic quantum number m_ that characterizes the quantification of the projection of
the angular momentum along a certain axis z. It can take the 2j+1 following values
m_=j,j—1,.,1—j,—J, so that the projection L_of the angular momentum on an axis Oz takes the
values L =7m_ .

Apart from the kinetic energy and the kinetic momentum of the loop, we still deduce the
quantized magnetic moment of the loop along the axis Oz, which depends directly on the magnetic
quantum number m_, which also depends on the Landé factor g, of the screw loop, which is
roughly equal to 2 in the case of the twist disclination loop, but which would depend on the
distribution of mass and charge in the case of other types of topological singularities. We note that,
in the expression of the quantified momentum, we then find the value of the famous Bohr
magneton, namely hq, . /2M" .

Finally, the resolution of the stationary Schrodinger equation in this case makes it possible to
deduce the eigen wave functions y (6,¢) correlated to the different energy levels £, and to use
them to obtain the stationary gravitational perturbations zi” ) in the immediate vicinity of the loop
under the form 77(6,9) = h%y _(6,9)exp(+i(E, +& )t /h).

Conclusion. A longstanding objection to the “classical rotation” interpretation of spin is that the
equatorial velocity would exceed the light velocity. Within this framework, however, the local
speed of light is enhanced by the enormous static expansion near the loop core. Explicit calculations
show that the condition V ouatorial = Boy@py <€ is satisfied, making the rotational motion both
possible and necessary. Hence, spin can be regarded as a real, relativistically consistent rotation.

In this reinterpretation, spin is not an abstract intrinsic property but a real, quantized rotational
motion of topological loops within the cosmological lattice.

This model reproduces all known features of spin—discrete angular momentum, degeneracy,
magnetic moments—while resolving the apparent conflict with relativity. It also bridges the gap
between fermions and bosons as topological manifestations of different rotational states. At the
cosmological scale, it has also been shown that the existence of spin enforces constraints on the

dynamics of the Universe, linking microscopic loop structure to macroscopic cosmic evolution.



Attempt to explain the Standard Model with a "Colored'" FCC Cosmological Lattice

We present here an hypothetical reinterpretation of the Standard Model of particle physics based
on the concept of a colored face-centered cubic (FCC) cosmological lattice. In this framework,
fundamental particles are identified with fopological singularities such as screw disclination loops
and edge dislocation loops, embedded in the lattice. The quantization of charges, the origin of color,
the emergence of baryons and mesons, the structure of weak and strong interactions, and the
replication of particle families are explained as direct consequences of the mechanical and
topological constraints of the lattice. The model also introduces the concept of curvature charge,
which provides a physical origin for the matter—antimatter asymmetry and clarifies the distinction
between fermions and bosons.

Emergence of “colors”. The foundation of this hypothetical model is a face-centered cubic
lattice in which the densest crystallographic planes are assigned cyclic colors (R, G, B). This
coloring reflects in fact the existence of preferred orientations of planes and enforces three strict
stacking rules:

- Rule I: the RGB alternation of the dense planes cannot be disrupted without introducing stacking
faults that cost very high stacking fault surface energies,

- Rule 2: connections between misaligned planes perpendicular to the dense planes generate a
connecting fault plane perpendicular to the dense planes, with a non-zero connecting surface fault
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Figure 25 - quarks and antiquarks formed by combinations of screw disclination loops
of quantized angles with edge dislocation loops
which ensure the continuity of succession of planes R,B,V.



- Rule 3: rotations of a lattice plane with an angle of *x /3 or 27 /3 permute its color
assignment.

Quarks as Dispirations. These simple geometrical rules already encode the possibility of
fractional quantization of charge: screw disclination loops inserted in this structure naturally carry
charges in multiples of 1/3, reproducing the charge spectrum of quarks.

Quarks are modeled as dispirations, i.e., coupled entities formed from screw disclination loops
and edge dislocation loops (fig. 25). As already discussed, the weak interaction is interpreted as a
short-range coupling between screw disclination loops and edge dislocation loops, and this
association reduces strongly the formation energy of quarks by allowing to respect the first stacking
rules.

Their fractional rotation charges q,,, (¥27°R., /3 .+¥4n’R; /3) emerge from the rotation Q
(xm /3 or +27 /3 ) carried by the screw disclination, while the color charge (R, G, B) corresponds
to the cyclic RGB orientation of the lattice planes disturbed by the defect. The three colors of quarks
(red, green, blue) are therefore not abstract quantum numbers but geometric properties of the
lattice. Antiquarks correspond to the complementary defects of the quark. The edge dislocation
loops associated in the disclination loops can be of interstitial or vacancy type, and carry a
curvature chargeq,,. (table 26).

name 2, 958y edge loop 9o5c color
d +2m /3 -2n°R:, /3 |  interstitial -2na R VouB
u —47 /3 +4n’RZ, /3 |  Interstitial -2na RVouB
d -2r/3 +21°R?, /3 vacancy +21a R.VouB
u +4r /3 —47°R:, /3 vacancy +27a R,V ouB

Table 26 - The four quarks composed of a screw disclination loop
combined with an interstitial or lacunar edge dislocation loops

Gluons are particles allowing to exchange the “color orientation” of the quarks they connect.
They correspond well to pairs of edge dislocation loops propagating between quarks, and they are
massless due to their lattice symmetries (fig.27).

This approach offers a mechanical analog of Yang—Mills fields, but rooted in the geometry of
the cosmological lattice.

Strong Interaction, Confinement and Asymptotic Freedom. The strong interaction arises
because dispirations composing the quarks cannot exist freely without violating stacking rules: they
must be confined in color-neutral combinations (triplets or pairs), in which each quark is connected
to the others by a cylinder of connecting fault of surface fault energy v, . This naturally explains
why free quarks are unobservable.



At long separation distances, the energy stored in these connecting fault cylinders increases
linearly with the separation distance, leading finally to a quark confinement with a constant force of
interaction, as experimentally proved by the Jefferson Lab Data [33]. When trying to separate
quarks, the energy stored in the cylinder of connecting fault increases to the point where it creates
new quark—antiquark pairs: isolating a quark without hadronization is then impossible. At short
separation distances, the interaction weakens, producing an asymptotic freedom effect, fully
consistent with QCD phenomenology.
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Figure 27 - Feynman diagram of the color exchange of two quarks
by the exchange of a bicolor gluon

Baryons, Mesons, and Composite Particles. The necessary confinement of quarks lead to two
types of stable particles: the baryons and the mesons (fig. 28).

- Baryons of table 29, which are formed from triplets of dispirations (quarks) whose combined
colors sum to neutrality (R+G+B). The fractional charges add up to integer values (e.g., proton,
neutron). Spin and magnetic moments emerge from the collective rotation of the loops.

- Mesons of table 30, which correspond to quark—antiquark pairs, color-neutral due to
cancellation of RGB with anti-RGB.

This construction reproduces completely the observed hadronic spectrum, including the spin
composition leading to the difference between spin 2 baryons (proton, neutron) and spin 3/2
baryons (A baryons), and the spin 0 mesons (7 and 17 mesons) and the spin 1 mesons (p and ®
mesons). In the case of the triplet combinations of figure 25, it appears that the triplets composed of
three identical quarks or anti-quarks with total spin 2 do not correspond to existing baryons, but
could correspond to leptons of different electrical charges. This surprising point is discussed in
detail in references [8,9].
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Leptons. Leptons arise from simpler loop configurations (figure 31 and table 32):

- Neutrinos and anti-neutrinos correspond to pure edge dislocation loops inserting or removing
three consecutive colored planes (RGB or anti-RGB) in order to respect the first stacking rule. Their
helicity (left-handed helicity of neutrino versus right-handed helicity of anti-neutrino) follows
directly from the geometry of these insertions and the stacking rules of the colored cosmological
lattice. The fact that neutrinos and anti-neutrinos are always respectively left-handed and right-
handed is very important, because it explains the phenomenon of parity violation in the weak
interaction.



- Electrons and positrons are modeled as screw disclination loops with angle of rotation € of
127, combined with triple edge dislocation loops, and bounded by the weak interaction force

(fig.14).
combina- | symbol | symbol £, 98v edge loop | 9onc
tions spin 1/2 spin 3/2
ddd e (7 .5 +2r | -2n°R:, | interstitial —67a
glectron
dud n A° 0 0 interstitial | _¢za
neutron
udu P A -2r | +2n°R?, | interstitial | _gnq
proton o
uuu e (277) A —4n | +4n’R,, | interstiial | _rq
lepton ?
—_— o o—
dia | ¢ B & —2n | +2n'R:, | vacaney | 6za
positron
diud . A° 0 0 vacancy 67a
antineutron
udi P A +2n | -2#’R:, | vacancy -
antiproton
uuuw e (| A +4m | -4n’R}, | vacancy | 6na
anti-lepton ?

Table 29 - The "white" baryons formed by 3 quarks, and the four “leptons”
obtained by collapsing combinations of three same quarks.

combina- symbol symbol (o 9inv edge | 9osc
tions spin 0 spin 1 loop
dd n° p° 0 0 : 0
du n p +27 -2n’R;, - 0
du nt P -2r +2n°R;, - 0
uu n’ o’ 0 0 : 0

Table 30 - The "white" mesons formed by a quark and an anti-quark.
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Figure 31 - Structure of the neutrino, the anti-neutrino, the electron and the positron,

as assemblies of edge dislocation loops and screw disclination loops.

symbol 2, 95y edge loop 9o5c
v, 0 0 interstitial —61a
e 2 27t R;v interstitial —67a
v, 0 0 vacancy 6na
e -2m +2m°R;, vacancy 6ra
w- +27 -2n°R}, . 0
w* -2r +21°RY, ; 0
Z° (+27)+(-27) 0 ¢ 0

Table 32 - The leptons of the first family and the intermediate gauge bosons.




Massive Bosons. Other configurations are produced when the angle of rotation €2, of the screw
disclination loop is 27, but without combination with edge dislocation loops, corresponding to
the W and Z bosons (table 31). The high mass of the W charged bosons results from the
concentration of a screw disclination of angle 27 within extremely small distances, due to the
absence of edge dislocation loops which are not necessary to respect the stacking rules in this case.
And the Z boson of neutral charge could correspond to a particle composed of two pure screw
disclination loops of rotation angle +27 and —27 bounded by their opposed electrical charges.
These massive bosons allow the weak interaction to operate not only in the case of weak leptonic
interactions as in figure 15, but also between quarks.

Attempt to explain the three families of quarks and leptons of the Standard Model

In the Standard Model, there are not only the quarks and leptons just described, but there are
also two additional families of quarks and leptons, distinguished mainly by the much higher masses
observed experimentally each time one moves from one family to the next.

The fact that there are two additional families with much higher energies could perhaps be
attributed to the appearance of stacking faults between dense axial planes, faults that were initially
eliminated by rule 1. In fact, we constructed the first family of particles taking this rule into
account, i.e., by ensuring that the R, V, B sequence of dense planes is never violated. To do this, we
had to introduce edge dislocation loops of the correct color to describe quarks, and introduce a triple
edge loop of three colors to describe leptons.

Let us imagine that there could be stacking faults between the dense planes of the lattice. There
are only two types of stacking faults that are possible: either a faulty alternation of planes of the
type X-Y-X, or a faulty alternation of the type X-X.

Let us assume that the defect energies associated with these two types of stacking faults are
essentially due to the axial properties of these planes, and therefore have axial surface defect
energies y, and y,, respectively. The defect energy y, is associated with an X-¥-X type
stacking fault, while the defect energy y,, is due to an X-X type stacking fault. The fault energy
7., 1s therefore related to a stacking error with the second neighboring plane, while y , is related
to a stacking error with the first neighboring plane. There is therefore a strong possibility that the
energy y,, will be significantly higher than the energy y, , and therefore that y , >>7y. .

On the possible constitution of neutrino families. Let's take the case of neutrinos, which we
know exist in three different states or three “flavors,” as physicists say: electron, muon, and tau. By
removing or adding one or two planes to the electron neutrino and antineutrino in figure 31, we can
construct the six neutral leptons shown in figure 33.

On the possible constitution of electron families. In the case of electrons and anti-electrons in
figure 31, it suffices to add to the neutrinos in figure 33 the screw disclination loops with a rotation
angle Q_ of 127 respectively. In these cases, we obtain the electrons and anti-electrons of the
first family, the muons and anti-muons of the second family, and the taus and anti-taus of the third

family shown in figure 34.

On the possible constitution of quark families. In the case of quarks, we can add or subtract 1 or
2 axial dense planes to quarks u and d and/or anti-quarks u and d, so as to reveal stacking faults
in the axial dense planes with energies y, ory,,.
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Figure 33 - The three families of neutrinos and anti-neutrinos
obtained by removing or adding one or two dense planes,
with the appearance of stacking faults of type X-Y-X and X-X.

This gives us the family of quarks shown in figure 35, which is also composed of three
generations of two types of electrically charged particles: the first generation consists of down (d)
and up (u) quarks, with electric charges of -1/3 and +2/3 of the electric charge of the electron,
respectively; a second generation composed of strange (s ) and charm (c ) quarks, with electric
charges of -1/3 and +2/3 of the electric charge of the electron, respectively, and a third generation
composed of bottom (b) and fop (t) quarks, with electric charges of -1/3 and +2/3 of the electric
charge of the electron, respectively. Each quark also has its own antiparticle with the opposite
electric charge (d,u,s,c,b,t ).
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Figure 34 - The three families of electrons and anti-electrons
obtained by removing or adding two or one dense plane,
in combination with a screw disclination loop.

Quark decay via weak interaction. According to this hypothetical model describing the three
families of quarks and their respective flavors d, u, s, ¢, b, and ¢, based on the existence of X-¥-X
and X-X stacking faults between dense planes, we can deduce the pathways through which quarks
should decay. The diagram of possible decays is shown in figure 36.

With this hypothetical model, we find the usual pure decays via weak interaction during the
transformations u->d, c->s, and t->b within the same family. On the other hand, the decays from
one family to another c->d, s->u, t->s, b->c, t->d, and b->u do not correspond exactly to the
decays described in the literature since, in addition to the emission of a usual boson W* or W™,



the emission of a lepton vV, ou v _ must be added to respect the number of axial planes during the
decay. This discrepancy with the usual theory of the standard model should make it possible to
experimentally verify or refute the idea that the existence of three families of elementary particles
could be due to energies y. and y,, of stacking faults of dense planes in a “colored” FCC lattice.
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Figure 35 - The three families of quarks and anti-quarks
obtained by adding or removing one or two dense planes,
in combination with a screw disclination loop.



Figure 36 — Diagram of possible quark decays via weak interaction,
With particles produced according to each decay pathway..

Conclusion. This hypothetical colored FCC cosmological lattice provides a topological
reinterpretation of the Standard Model, unifying quarks, leptons, and bosons as manifestations of
screw disclination loops and edge dislocation loops. Fractional charge, color, confinement, weak
parity violation, and family replication all emerge naturally from the geometry and stacking rules of
the lattice. The introduction of curvature charge offers a physical explanation for matter—antimatter
asymmetry and the fermion—boson distinction. While open questions remain, this model suggests a
possible mechanical and geometrical foundation of particle physics, connecting the Standard Model
to the deeper structure of the cosmological lattice.

Quantum fluctuations of the vacuum, cosmological theory of multiverses and gravitons

It is still possible to deduce some very hypothetical consequences of the perfect cosmological
lattice associated with pure gravitational fluctuations (fluctuations of the scalar lattice expansion).

One can imagine the existence of pure longitudinal fluctuations within the cosmological lattice
that can be treated either as random gravitational fluctuations that could have an analogy with the
quantum fluctuations of the vacuum, or as stable gravitational fluctuations, which could lead at the
macroscopic scale to a cosmological theory of Multiverses, and at the microscopic scale to the
existence of a form of stable quasi-particles that could be called gravitons, by analogy with
photons, but which in fact have nothing in common with the gravitons usually postulated in the
framework of General Relativity.

Conclusion

Our cosmological lattice approach to the Universe is based on the two basic concepts mentioned
in the summary, which are disarmingly simple. And by judiciously applying these two perfectly
classical initial concepts (massive and elastic solid lattice, Newton's law, principles of
thermodynamics), it is really very surprising to note that the behaviors of this lattice (the Universe)
and its topological singularities (the Matter) satisfy all modern theories of physics, even though we
postulated that the lattice in absolute space rigorously follows the perfectly classical laws of
Newton and thermodynamics.



But in this approach of the Universe, nothing comes yet to give a definitive explanation to the
existence of the Universe, to the deep cause of the big-bang, and to the real composition of the
crystalline ether, i.e. of the solid, massive and elastic cosmological lattice. These points remain, at
least for the moment, within the scope of individual philosophy or beliefs. But, from an
epistemological point of view, this approach shows that it is perfectly possible to find a very simple
framework to understand, explain and unify the different theories of modern physics, a framework
in which there would no longer be many mysterious phenomena other than the "raison d'étre” of
the Universe.
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